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Abstract

We prove an existence and uniqueness result for the obstacle problem of quasilinear
parabolic stochastic PDEs. The method is based on the probabilistic interpretation
of the solution by using the backward doubly stochastic differential equation.
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1 Introduction

We consider the following stochastic PDE, in Rd,

dut(x) +
[ 1

2
∆ut(x) + f(t, x, ut(x),∇ut(x)) + divgt (x, ut (x) ,∇ut (x))

]
dt

+ ht(x, ut(x),∇ut(x)) ·
←−
dBt = 0,

(1)

over the time interval [0, T ], with a given final condition uT = Φ and f, g =
(
g1, · · · , gd

)
,

h =
(
h1, · · · , hd1

)
non-linear random functions. The differential term with

←−
dBt refers to the back-

ward stochastic integral with respect to a d1-dimensional Brownian motion on
(
Ω,F ,P, (Bt)t≥0

)
.

We use the backward notation beacause in the proof we will employ the doubly stochastic frame-
work introduced by Pardoux and Peng [22].

In the case where f and g do not depend of u and ∇u, and if h is identically null, the equation (1)
becomes a linear parabolic equation,

∂tu(t, x) +
1
2

∆u(t, x) + f(t, x) + divg(t, x) = 0. (2)

If v : [0, T ]× Rd −→ R is a given function such that v(T, x) ≤ Φ(x), we may roughly say that the
solution of the obstacle problem for (2) is a function u ∈ L2

(
[0, T ];H1(Rd)

)
such that the following
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conditions are satisfied in (0, T )× Rd :

(i) u ≥ v, dt⊗ dx− a.e.,

(ii) ∂tu+
1
2

∆u+ f + divg ≤ 0

(iii)
(
u− v

)(
∂tu+

1
2

∆u+ f + divg
)

= 0.

(iv) uT = Φ, dx− a.e.

(3)

The relation (ii) means that the distribution appearing in the RHS of the inequality is a non-
positive measure. The relation (iii) is not rigourously stated. We may roughly say that one has
∂tu+ 1

2∆u+ f + divg = 0 on the set {u > v}.
If one expresses the obstacle problem for (2) in terms of variational inequalities one should also ask
that the solution has a minimality property (see Mignot-Puel [18] or Bensoussan-Lions [3] p.250).
The work of El Karoui et al [12] treats the obstacle problem for (2) within the framework of
backward stochastic differential equations (BSDE in short). Namely the equation (2) is considered
with f depending of u and ∇u, while the function g is null (as well h) and the obstacle v is
continuous. The solution is represented stochastically as a process and the main new object of this
BSDE framework is a continuous increasing process that controls the set {u = v}. This increasing
process determines in fact the measure from the relation (ii). Bally et al [1] (see also [16]) point
out that the continuity of this process allows one to extend the classical notion of strong variational
solution (see Theorem 2.2 of [3] p.238) and express the solution to the obstacle as a pair (u, ν)
where ν equals the RHS of (ii) and is supported by the set {u = v}. In the present paper we adopt
this point of view which has the advantage of expressing the notion of solution independently of
the double stochastic framework and without the minimality property of Mignot-Puel [18], which
would be very difficult to manipulate in the case of the stochastic PDE. In section 2.2 we are going
to examine the potential and the measure associated to a continuous increasing process. We call
such potentials and measures, regular potentials, respectively regular measures.

Now let us consider the final condition to be a fixed function Φ ∈ L2
(
Rd
)
and the obstacle v be a

random continuous function, v : Ω× [0, T ]×Rd −→ R. Then the obstacle problem for the equation
(1) is defined as a pair (u, ν), where ν is a random regular measure and u ∈ L2

(
Ω× [0, T ];H1(Rd)

)
satisfies the following relations :

(i′) u ≥ v, dP⊗ dt⊗ dx− a.e.,

(ii′) dut(x) +
[ 1

2
∆ut(x) + f(t, x, ut(x),∇ut(x)) + divgt (x, ut (x) ,∇ut (x))

]
dt

+ ht(x, ut(x),∇ut(x)) ·
←−
dBt = −ν(dt, dx), a.s.,

(iii′) ν
(
u > v

)
= 0, a.s.,

(iv′) uT = Φ, dP⊗ dx− a.e..

(4)

In Section 2.4 we explain the rigorous sense of the relation (iii′) which is based on the quasi-
continuity of u . The main result of our paper is Theorem 4 which ensures the existence and
uniqueness of the solution of the obstacle problem for (1). The method of proof is based on the
penalization procedure and the doubly stochastic calculus which is essential, although the definition
of the solution and the statement of the result avoids the doubly stochastic framework.
Similarly to the case treated in El Karoui et al [12], the most difficult point is to show that the
approximating sequence converges uniformly on the trajectories over the coincidence set {u = v}.
This is proven in Lemma 7. A useful tool in our paper is also the probabilistic representation of
the divergence term obtained in [24] and the doubly stochastic representation corresponding to the
divergence term of the stochastic PDE in [8].
Finally we would like to thank our friend Vlad Bally for a stimulating discussion on the obstacle
problem we had "à la Gare de Montparnasse".
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2 Preliminaries
The basic Hilbert space of our framework is L2

(
Rd
)
and we employ the usual notation for its

scalar product and its norm,

(u, v) =
∫

Rd

u (x) v (x) dx, ‖u‖2 =
(∫

Rd

u2 (x) dx
) 1

2

.

In general, we shall use the notation

(u, v) =
∫

Rd

u(x)v(x) dx,

where u, v are measurable functions defined in Rd and uv ∈ L1(Rd).
Our evolution problem will be considered over a fixed time interval [0, T ] and the norm for a
function L2

(
[0, T ]× Rd

)
will be denoted by

‖u‖2,2 =

(∫ T

0

∫
Rd

|u(t, x)|2dxdt

) 1
2

.

Another Hilbert space that we use is the first order Sobolev space H1
(
Rd
)

= H1
0

(
Rd
)
. Its natural

scalar product and norm are

(u, v)H1(Rd) = (u, v) + (∇u,∇v) , ‖u‖H1(Rd) =
(
‖u‖22 + ‖∇u‖22

) 1
2

where we denote the gradient by ∇u(t, x) =
(
∂1u(t, x), · · ·, ∂du(t, x)

)
.

Of special interest is the subspace F̃ ⊂ L2
(
[0, T ];H1

(
Rd
))

consisting of all functions u(t, x) such
that t 7−→ ut = u(t, ·) is continuous in L2(Rd). The natural norm on F̃ is

‖u‖T = sup
0≤t≤T

‖ut‖2 +

(∫ T

0

‖∇ut‖2dt

) 1
2

.

The Lebesgue measure in Rd will be sometimes denoted by m. The space of test functions
which we employ in the definition of weak solutions of the evolution equations (1) or (2) is
DT = C∞ [0, T ]) ⊗ C∞c

(
Rd
)
, where C∞ ([0, T ]) denotes the space of real functions which can be

extended as infinite differentiable functions in the neighborhood of [0, T ] and C∞c
(
Rd
)
is the space

of infinite differentiable functions with compact support in Rd.

2.1 The probabilistic interpretation of the divergence term
The operator ∂t+ 1

2∆, which represents the main linear part in the equation (1), is probabilistically
interpreted by the Bownian motion in Rd. We shall view the Brownian motion as a Markov
process and therefore we next introduce some detailed notation for it. The sample space is Ω′ =
C
(
[0,∞); Rd

)
, the canonical process (Wt)t≥0 is defined by Wt(ω) = ω(t), for any ω ∈ Ω′, t ≥ 0

and the shift operator, θt : Ω′ −→ Ω′, is defined by θt(ω)(s) = ω(t+ s), for any s ≥ 0 and t ≥ 0.
The canonical filtration F0

t = σ (Ws; s ≤ t) is completed by the standard procedure with respect
to the probability measures produced by the transition function

Pt(x, dy) = qt(x− y)dy, t > 0, x ∈ Rd,

where qt(x) = (2πt)−
d
2 exp

(
−|x|2/2t

)
is the gaussian density. Thus we get a continuous Hunt

process
(
Ω′,Wt, θt,F ,F0

t ,Px
)
. We shall also use the backward filtration of the future events
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F ′t = σ (Ws; s ≥ t) for t ≥ 0. P0 is the Wiener measure, which is supported by the set Ω′0 = {ω ∈
Ω′, w(0) = 0}. We also set Π0(ω)(t) = ω(t) − ω(0), t ≥ 0, which defines a map Π0 : Ω′ → Ω′0.
Then Π = (W0,Π0) : Ω′ → Rd × Ω′0 is a bijection. For each probability measure on Rd, the
probability Pµ of the Brownian motion started with the initial distribution µ is given by

Pµ = Π−1
(
µ⊗ P0

)
.

In particular, for the Lebesgue measure in Rd, which we denote by m = dx, we have

Pm = Π−1
(
dx⊗ P0

)
.

These relations are saying thatW0 is independent of Π0. It is known that each component (W i
t )t≥0

of the Brownian motion, i = 1, · · · , d, is a martingale under any of the measures Pµ. The next
lemma shows that

(
W i
t−r,F ′t−r

)
, r ∈ (0, t] is a backward local martingale under Pm.

Lemma 1. Let 0 < s < t. If A ∈ σ(Wt) is such that Em [|Wt|;A] <∞, then one has Em [|Ws|;A] <
∞. Moreover, for each B ∈ F ′t, and i = 1, · · · , d, one has

Em
[
W i
s ;A ∩B

]
= Em

[
W i
t ;A ∩B

]
.

Proof: We note that Wt is uniformly distributed, and consequently for each c > 0, the set
Ac = {|Wt| ≤ c} satisfies

Em [|Wt|;Ac] <∞.
This shows that the class of the sets to which applies the statement is rather large.
The vector (W0,Ws −W0,Wt −Ws) has the distribution m ⊗ N (0, s) ⊗ N (0, t − s), under the
measure Pm. Then one deduce that (Ws,Wt −Ws) has the distribution m ⊗ N (0, t − s) and we
may write, for ϕ1, ϕ2 ∈ Cc

(
Rd
)
,

Em [ϕ1(Wt −Ws)ϕ2(Wt)] =
∫

Rd

∫
Rd

ϕ1(y)ϕ2(x+ y)qt−s(y)dydx

=
(∫

Rd

ϕ2(x)dx
)(∫

Rd

ϕ1(y)qt−s(y)dy
)
.

This relation shows that the vector (Wt −Ws,Wt) has the distribution N (0, t − s) ⊗ m, under
Pm.Then the obvious inequality |Ws| ≤ |Wt|+ |Wt −Ws|

(
1{|Wt|≤1} + |Wt|

)
allows one to deduce

the first assertion of the lemma.
In order to check the second assertion of the lemma we write

Em
[
W i
s ;A ∩B

]
= Em

[
W i
t ;A ∩B

]
− Em

[
W i
t −W i

s ;A ∩B
]

and all that it remains to check is that the last term is null. In order to shows this one first
observe that the distribution of the vector (Wt −Ws,Wt,Wt1 −Wt,Wt2 −Wt1 , · · · ,Wtn −Wtn−1)
is N (0, t − s) ⊗m ⊗ N (0, t1 − t) ⊗ · · · ⊗ N (0, tn − tn−1), for each system s < t < t1 < · · · < tn.
Then one has, for each B ∈ σ (Wt1 −Wt, · · · ,Wtn −Wtn−1),

Em
[
W i
t −W i

s ;A ∩B
]

= E0
[
W i
t −W i

s

]
m(A)P0(B) = 0,

which implies the assertion of the lemma. �

Now let us assume that f and |g| belong to L2
(
[0, T ]× Rd

)
and u ∈ F̃ is a solution of the

deterministic equation (2). Let us denote by∫ t

s

gr ∗ dWr =
d∑
i=1

(∫ t

s

gi(r,Wr)dW i
r +

∫ t

s

gi(r,Wr)d
←−
W i
r

)
. (5)

Then one has the following representation (Theorem 3.1 in [24])
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Theorem 1. The following relation holds Pm-a.s. for each 0 ≤ s ≤ t ≤ T ,

ut(Wt)− us(Ws) =
d∑
i=1

∫ t

s

∂iur(Wr)dW i
r −

∫ t

s

fr(Wr)dr −
1
2

∫ t

s

gr ∗ dWr (6)

In [24] one uses the backward martingale
←−
Mµ,i defined under an arbitrary Pµ, with µ a probability

measure in Rd, in order to express the integral
∫ t
s
gr ∗ dWr. Though formally the definition looks

different, one easily sees that it is the same object.

2.2 Regular measures
In this section we shall be concerned with some facts related to the time -space Brownian motion,
with the state space [0, T [× Rd, coresponding to the generator ∂t + 1

2∆. Its associated semigroup
will be denoted by

(
P̃t
)
t>0

. We may express it in terms of the Gaussian density of the semigroup
(Pt)t>0 in the following way

P̃tψ (s, x) =
{ ∫

Rd qt (x, y)ψ (s+ t, y) dy, if s+ t < T,
0, otherwise,

where ψ : [0, T [ × Rd → R is a bounded Borel measurable function, s ∈ [0, T [ , x ∈ Rd and t > 0.
So we may also write

(
P̃tψ

)
s

= Ptψt+s if s + t < T . The corresponding resolvent has a density
expressed in terms of the density qt too, as follows

Ũαψ (t, x) =
∫ T

t

∫
Rd

e−α(s−t)qs−t (x− y)ψ (s, y) dyds.

or (
Ũαψ

)
t

=
∫ T

t

e−α(s−t)Ps−tψs ds.

In particular this ensures that the excessive functions with respect to the time-space Brownian
motion are lower semicontinuous. In fact we will not use directly the time space process, but only
its semigroup and resolvent. For related facts concerning excessive functions the reader is refered
to [6] or [4]. Some further properties of this semigroup are presented in the next lemma.

Lemma 2. The semigroup
(
P̃t
)
t>0

acts as a strongly continuous semigroup of contractions on the
spaces L2

(
[0, T [× Rd

)
= L2

(
[0, T [ ; L2

(
Rd
))

and L2
(
[0, T [ ;H1

(
Rd
))
.

Proof : Obviously it is enough to check the following relations

lim
r→0

(∫ T−r

0

‖Prut+r − ut‖22 dt+
∫ T

T−r
‖ut‖22 dt

)
= 0,

lim
r→0

(∫ T−r

0

‖∇
(
Prut+r − ut

)
‖22 dt+

∫ T

T−r
‖∇ut‖22 dt

)
= 0.

First we note that, for each function u ∈ L2
(
[0, T [× Rd

)
and r > 0, one has

lim
r→0

∫ T−r

0

‖ut+r − ut‖22 dt = 0.

This property is obvious for a function u ∈ Cc
(
[0, T [× Rd

)
and then it is obtained by approximation

for any function in L2
(
[0, T [× Rd

)
. Then the relation

lim
r→0

∫ T−r

0

‖Prut+r − ut‖22 dt = 0,
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easily follows. From it one deduces the strong continuity of
(
P̃t
)
t>0

on L2
(
[0, T [× Rd

)
.

In order to prove the same property in the space L2
(
[0, T [ ;H1

(
Rd
))

one should start with the
relation

lim
r→0

∫ T−r

0

∥∥∇(ut+r − ut)∥∥2

2
dt = 0,

which holds for each u ∈ C∞c
(
[0, T [× Rd

)
and then repeat with obvious modifications, the previous

reasoning. �

The next definition restricts our attention to potentials belonging to F̃ , which is the class of
potentials appearing in our parabolic case of the obstacle problem.

Definition 1. (i) A function ψ : [0, T ]× Rd → R is called quasicontinuous provided that that for
each ε > 0, there exists an open set, Dε ⊂ [0, T ]× Rd, such that ψ is finite and continuous on Dc

ε

and
Pm ({ω ∈ Ω′/∃ t ∈ [0, T ] s.t. (t,Wt (ω)) ∈ Dε}) < ε.

(ii) A function u : [0, T ]×Rd → [0,∞] is called a regular potential, provided that its restriction to
[0, T [×Rd is excessive with respect to the time-space semigroup, it is quasicontinuous, u ∈ F̃ and
limt→T ut = 0 in L2

(
Rd
)
.

Observe that if a function ψ is quasicontinuous, then the process (ψt (Wt))t∈[0,T ] is continuous.
Next we will present the basic properties of the regular potentials. Do to the expression of the
semigroup

(
P̃t
)
t>0

in terms of the density, it follows that two excessive functions which represent
the same element in F̃ should coincide.

Theorem 2. Let u ∈ F̃ . Then u has a version which is a regular potential if and only if there
exists a continuous increasing process A = (At)t∈[0,T ] which is

(
Ft
)
t∈[0,T ]

-adapted and such that
A0 = 0, Em

[
A2
T

]
<∞ and

ut(Wt) = E
[
AT
∣∣Ft]−At, Pm−a.s., (i)

for each t ∈ [0, T ] . The process A is uniquely determined by these properties. Moreover the following
relations hold

ut (Wt) = AT −At −
d∑
i=1

∫ T

t

∂ius (Ws) dW i
s , Pm − a.s. , (ii)

‖ut‖22 +
∫ T

t

∥∥∇us∥∥2

2
ds = Em (AT −At)2 , (iii)

(u0, ϕ0) +
∫ T

0

1
2
(
∇us,∇ϕs

)
+
(
us, ∂sϕs

)
ds =

∫ T

0

∫
Rd

ϕ (s, x) ν (dsdx) , (iv)

for each test function ϕ ∈ D, where ν is the measure defined by

ν (ϕ) = Em
∫ T

0

ϕ (t,Wt) dAt, ϕ ∈ Cc
(
[0, T ]× Rd

)
. (v)

Proof : We first remark that the uniqueness of the increasing process in the representation (i)
follows from the uniqueness in the Doob -Meyer decomposition.
Let us now assume that u is a regular potential which is a version of u.We will use an approximation
of u constructed with the resolvent. By the resolvent equation one has

αŨαu = αŨ0

(
u− αŨαu

)
.
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Let us set fn = n
(
u− nŨnu

)
and un = nŨnu = Ũ0f

n. Since u is excessive, one has fn ≥ 0 and
un, n ∈ N∗, is an increasing sequence of excessive functions with limit u. In fact un, n ∈ N∗, are
potentials and their trajectories are continuous. On the other hand, the trajectories t→ ut (Wt) are
continuous on [0, T [ by the quasi-continuity of u. The process (ut (Wt))t∈[0,T [ is a super-martingale
and, because limt→T ut = 0 in L2, it is a potential and the trajectories have null limits at T.
Therefore this approximation also holds uniformly on the trajectories, on the closed interval [0, T ] ,

lim
n→∞

sup
0≤t≤T

|unt (Wt)− ut (W )| = 0, Pm − a.s.

The function un solves the equation (∂t + L)un + fn = 0 with the condition unT = 0 and its
backward representation is

unt (Wt) =
∫ T

t

fns (Ws) ds−
d∑
i=1

∫ T

t

∂iu
n
s (Ws) dW i

s .

If we set Ant =
∫ t
0
fns (Ws) ds, after conditioning, this representation gives

unt (Wt) = AnT −Ant −
d∑
i=1

∫ T

t

∂iu
n
s (Ws) dW i

s = Em [AnT /Ft]−Ant . (∗)

In particular one deduces

un0 (W0) = Em
[
AnT /F0

]
= AnT −

d∑
i=1

∫ T

0

∂iu
n
s (Xs) dW i

s ,

Also from the relation (∗), it follows that

Em (AnT −Ant )2 = Em
(
unt
(
Wt

)
+

d∑
i=1

∫ T

t

∂iu
n
s

(
Ws

)
dW i

s

)2

= ‖unt ‖
2
2 +

∫ T

t

∥∥∇uns ∥∥2

2
ds. (∗∗)

A similar relation holds for differences, in particular one has

Em
(
AnT −AkT

)2
=
∥∥un0 − uk0∥∥2

+ 2
∫ T

0

∥∥∇ (uns − uks )∥∥2

2
ds.

On the other hand, the preceding lemma ensures that limα→∞ αŨα = I , in the space L2
(
[0, T [ ;H1

(
Rd
))
,

which implies

lim
n→0

∫ T

0

∥∥∇(unt − ut)∥∥2

2
dt = 0.

These last relations imply that there exists a limit limnA
n
T =: AT in the sense of L2 (Pm) .

Let us denote by Mn = (Mn
t )t∈[0,T ] ,M = (Mt)t∈[0,T ] the martingales given by the conditional

expectations Mn
t = Em [AnT /Ft] ,Mt = Em [AT /Ft] . Then one has limn→∞Mn = M, in L2 (Pm)

and hence
lim
n→∞

Em sup
0≤t≤T

|Mn
t −Mt|2 = 0.

Then the relation unt (Wt) = Mn
t −Ant shows that the processes An, n ∈ N∗, also converge uniformly

on the trajectories to a continuous process A = (At)t∈[0,T ] . The inequality

sup
0≤t≤T

|Ant −At| ≤ AT + |AnT −AT | ,
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ensure the conditins to pass to the limit and get

lim
n→∞

Em sup
0≤t≤T

|Ant −At|
2 = 0.

Passing to the limit in the relations (*) and (**) one deduces the relations (i), (ii) and (iii).
In order to check the relation (iv) from the statement we observe that the relation is fulfilled by
the functions un,

(un0 , ϕ0) +
∫ T

0

( 1
2
(
∇uns ,∇ϕs

)
+ (uns , ϕs)

)
ds =

∫ T

0

∫
Rd

ϕ (s, x) fn (s, x) dsdx

= Em
∫ T

0

ϕ (s,Ws) dAns ,

where ϕ is arbitrary in DT . In order to get the relation (iv) it would suffice to pass to the limit
with n → ∞ in this relation. The only term which poses problems is the last one. The uniform
convergence on the trajectories implies that, Pm -a.s., the measures dAnt weakly converge to dAt.
Therefore one has

lim
n→∞

∫ T

0

ϕt (Wt) dAnt =
∫ T

0

ϕt (Wt) dAt, Pm − a.s.

On the other hand one has∣∣∣∣∣
∫ T

0

ϕt (Wt) dAnt

∣∣∣∣∣ ≤ sup
0≤t≤T

ϕ2
t (Wt) +A2

T + |AnT −AT |
2
.

By Ito’s formula and Doob’s inequality one has

Em
(

sup
0≤t≤T

ϕ2(t,Wt)
)
≤ 4‖ϕ0‖2 + 4Em

(∫ T

0

∣∣∂tϕ(t,Wt)
∣∣ dt)2

+ 16 Em
∫ T

0

∣∣∇ϕ∣∣2(t,Wt) dt

+ 2 Em
(∫ T

0

∣∣∆ϕ∣∣(t,Wt) dt
)2

≤ 4‖ϕ0‖2 + 4T
∫ T

0

∥∥∂tϕt∥∥2

2
dt+ 16

∫ T

0

∥∥∇ϕt∥∥2

2
dt+ 2T

∫ T

0

∥∥∆ϕt
∥∥2

2
dt <∞.

The preceding estimate ensures the possibility of passing to the limit and deducing that

lim
n

Em
∫ T

0

ϕ (s,Ws) dAns = Em
∫ T

0

ϕ (s,Ws) dAs.

and thus we obtain the relation (iv).
Let us now consider the converse. Assume that u ∈ F̃ and A is a continuous increasing process
adapted to

(
Ft
)
t∈[0,T ]

and satisfying the relation (i). In order to simplify the subsequent notation
it is convenient to extend our given function by putting ut = 0 for t > T. Now we shall show that

Pr(ut+r) ≤ ut, t ∈ [0, T ], r > 0. (7)

By the Markov property one gets

Prut+r(Wt) = EWt [ut+r(Wr)] = Em
[
ut+r(Wr+t)

∣∣∣Ft]
= Em

[
Em

[
AT

∣∣∣Ft+r]−At+r ∣∣∣Ft] = Em
[
AT

∣∣∣Ft]−At+r,
where the last line comes from the relation (i). This shows that

Prut+r(Wt) ≤ ut(Wt), Pm−a.s.
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and as the distribution ofWt under Pm ism, we deduce the inequality (7). Moreover this inequality
shows by iteration that if r ≤ r′, then

Pr′ut+r′ ≤ Prut+r. (8)

By the properties of the semigroup density and since t → ut is continuous with values in L2, it
follows that, for each r > 0, Prut+r, t ∈ [0, T ] , has a continuous version in [0, T ]× Rd defined by

ur (t, x) =
∫

Rd

qr (x, y)ut+r (y) dy.

The inequality (8) shows in fact that ur is supermedian with respect to
(
P̃t
)
t>0

and, because of
continuity, in fact it is excessive. Then u = limr→0 u

r is also excessive and since limr→0 Prut+r =
ut, in L2, clearly u is a version of u. The process (ut (Wt))t∈[0,T ] is a càdlàg supermartingale and
more precisely a potential. By the relation (i) this process admits a continuous version. It follows
that itself is continuous and, as a consequence, one has the following convergence, uniformly on
the trajectories,

lim
r→0

sup
0≤t≤T

|urt (Wt)− ut (Wt)| = 0, Pm − a.s.

On the other hand, by the representation (i) one has

Em sup
0≤t≤T

|ut (Wt)|2 <∞,

which leads to
lim
r→0

Em sup
0≤t≤T

|urt (Wt)− ut (W )|2 = 0.

This relation implies that u is quasicontinuous, and hence it is a regular potential, completing the
proof. �

It is known in the probabilistic potential theory that the regular potentials are associated to con-
tinous additive functionals (see [4], Section IV.3 or [13], Theorem 5.4.2). In the above theorem the
additive aspect is not evident. In fact it is hiden in the relation (i). This relation implies that, for
t ≤ s, As − At is measurable with respect to the completion σ

(
Wr/r ∈

[
t, s
])
. This can directly

be proven but it also follows from the approximation of A by An. For the processes An, n ∈ N,
this measurability property obviously holds. And this measurability ensures the fact that A cor-
responds to an additive functional for the time -space process, which we are not explicitly using.

The measure ν from the theorem, expressed in the relation (v), is also completely determined by
the relation (iv), because the test functions are dense in Cc

(
[0, T ]× Rd

)
. A natural question now is

whether one Radon measure on [0, T ]×Rd can be associated via the relation (iv) from the theorem
to two distinct potentials. The answer is that there is only one such potential and more precisely
it can be directly expressed with the density qt (x, y) in terms of the measure, as one can see from
the next lemma.

Lemma 3. Let u be a regular potential and ν a Radon measure on [0, T ]× Rd such that relation
(iv) holds. Then one has

(φ, ut) =
∫ T

t

∫
Rd

(∫
Rd

φ (x) qs−t (x− y) dx
)
ν (dsdy) ,

for each φ ∈ L2
(
Rd
)
and t ∈ [0, T ] .
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Proof : We first remark that the relation (iv) is in fact equivalent to the following more explicit

one

(ut, ϕt) +
∫ T

t

( 1
2

(∇us,∇ϕs) + (us, ∂sϕs)
)
ds =

∫ T

t

∫
Rd

ϕ (s, x) ν (dsdx) ,

with any ϕ ∈ D and t ∈ [0, T ] .
Clearly it is sufficient to prove the lemma for φ ∈ Cc

(
Rd
)
such that φ ≥ 0. Then we set ψ (s, y) =∫

Rd φ (x) qs−t (x− y) dx, for s ∈ [t, T ] and y ∈ Rd. Then ψs = Ps−tφ and the map s → ψs is in
C1
(
]t, T ];L2

(
Rd
))

and ∂sψ = 1
2∆ψs. Let η ∈ Cc (R+) be a decreasing function such that η = 1

on the interval [0, 1] and η = 0 for x ≥ 2. Set ηn (x) = η
(
|x|
n

)
, so that (ηn)n∈N is an increasing

sequence in Cc
(
Rd
)
with limit 1Rd . For each fixed n the function ηnψ can be approximated by

convolution with smooth functions and then by test functions from D, and consequently we may
write the relation (iv) in the form

(ut, ηnψt) +
∫ T

t

(1
2
(
∇us,∇

(
ηnψs

))
+ (us, ηn∂sψs)

)
ds =

∫ T

t

∫
Rd

ηn (x)ψ (s, x) ν (dsdx) .

Then it is easy to see that we may pass to the limit with n→∞, in this relation too. Then we get

(ut, ψt) +
∫ T

t

(1
2

(∇us,∇ψs) + (us, ∂sψs)
)
ds =

∫ T

t

∫
Rd

ψ (s, x) ν (dsdx) ,

which becomes the relation asserted by the lemma, on account of the relation ∂sψ = 1
2∆ψs. �

We now introduce the class of measures which intervene in the notion of solution to the obstacle
problem.

Definition 2. A nonnegative Radon measure ν defined in [0, T ]×Rd is called regular provided that
there exists a regular potential u such that the relation (iv) from the above theorem is satisfied.

As a consequence of the preceding lemma we see that the regular measures are always represented
as in the relation (v) of the theorem, with a certain increasing process. We also note the following
properties of a regular measure, with the notation from the theorem.

1. A set B ∈ B
(
[0, T ]× Rd

)
satisfies the relation ν (B) = 0 if and only if

∫ T
0

1B (t,Wt) dAt =
0, Pm − a.s.

2. If a set B ∈ B
(
]0, T [× Rd

)
is polar, in the sense that

Pm ({ω ∈ Ω′/∃t ∈ [0, T ] , (t,Wt (ω)) ∈ B}) = 0,

then ν (B) = 0.

3. If ψ1, ψ2 : [0, T ] × Rd → R are Borel measurable and such that ψ1(t, x) ≥ ψ2(t, x), dt ⊗
dx − a.e., and the processes

(
ψit (Wt)

)
t∈[0,T ]

, i = 1, 2, are a.s. continuous, then one has
ν
(
ψ1 < ψ2

)
= 0.

2.3 Hypotheses
Let B = (Bt)t≥0 be a standard d1-dimentional Brownian motion on a probability space

(
Ω,FB ,P

)
.

So Bt =
(
B1
t , · · · , B

d1
t

)
takes values in Rd1 . Over the time interval [0, T ] we define the backward

filtration
(
FBs,T

)
s∈[0,T ]

where FBs,T is the completion in FB of σ(Br −Bs; s ≤ r ≤ T ).
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We denote by HT the space of H1(Rd)-valued predictable and FBt,T -adapted processes (ut)0≤t≤T
such that the trajectories t→ ut are in F̃ a.s. and

‖u‖2T <∞.

In the reminder of this paper we assume that the final condition Φ is a given function in L2(Rd)
and the functions appearing in the equation (1)

f : [0, T ]× Ω× Rd × R× Rd → R ,

g = (g1, ..., gd) : [0, T ]× Ω× Rd × R× Rd → Rd

h = (h1, ..., hd1) : [0, T ]× Ω× Rd × R× Rd → Rd
1

are random functions predictable with respect to the backward filtration
(
FBt,T

)
t∈[0,T ]

. We set

f(·, ·, ·, 0, 0) := f0, g(·, ·, ·, 0, 0) := g0 = (g0
1 , ..., g

0
d) and h(·, ·, ·, 0, 0) := h0 = (h0

1, ..., h
0
d1).

and assume the following hypotheses :

Assumption (H): There exist non-negative constants C, α, β such that

(i) |f(t, ω, x, y, z)− f(t, ω, x, y
′
, z
′
)| ≤ C

(
|y − y′ |+ |z − z′ |

)
(ii)

(∑d1
j=1 |hj(t, ω, x, y, z)− hj(t, ω, x, y

′
, z
′
)|2
) 1

2 ≤ C |y − y′ |+ β |z − z′ |,

(iii)
(∑d

i=1 |gi(t, ω, x, y, z)− gi(t, ω, x, y
′
, z
′
)|2
) 1

2 ≤ C |y − y′ |+ α |z − z′ |.

(iv) the contraction property (as in [8]) : α+
β2

2
<

1
2
.

Assumption (HD2)

E
(∥∥f0

∥∥2

2,2
+
∥∥g0
∥∥2

2,2;T
+
∥∥h0
∥∥2

2,2

)
<∞,

Assumption (HO) : The obstacle v(t, ω, x) is a predictable random function with respect to the
backward filtration

(
FBt,T

)
. We also assume that t 7→ v(t, ω,Wt) is P ⊗ Pm-a.s. continuous on

[0, T ] and satisfies
v(T, ·) ≤ Φ(·).

We recall that a usual solution (non reflected one) of the equation (1) with final condition uT = Φ,
is a processus u ∈ HT such that for each test function ϕ ∈ DT and any ∀t ∈ [0, T ], we have a.s.

∫ T

t

[
(us, ∂sϕs) +

1
2

(∇us,∇ϕs) +
(
gs,∇ϕs

]
ds−

(
Φ, ϕT

)
+
(
ut, ϕt

)
=
∫ T

t

(fs, ϕs) ds+
∫ T

t

(hs, ϕs) ·
←−
dBs.

(9)

By Theorem 8 in [8] we have existence and uniqueness of the solution. Moreover, the solution
belongs to HT . We denote by U(Φ, f, g, h) this solution.
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2.4 Quasi-continuity properties
In this section we are going to prove the quasi-continuity of the solution of the linear equation, i.e.
when f, g, h do not depend of u and ∇u. To this end we first extend the double stochastic Ito’s
formula to our framework. We start by recalling the following result from [8] (stated for linear
SPDE).

Theorem 3. Let u ∈ HT be a solution of the equation

dut +
1
2

∆utdt+
(
ft + divgt

)
dt+ ht

←−
dBt = 0,

where f, g, h are predictable processes such that

E
∫ T

0

[∥∥ft∥∥2

2
+
∥∥gt∥∥2

2
+
∥∥ht∥∥2

2

]
dt <∞ and ‖Φ‖22 <∞.

Then, for any 0 ≤ s ≤ t ≤ T , one has the following stochastic representation, Pm-a.s.,

u (t,Wt)−u (s,Ws) =
∑
i

t∫
s

∂iu (r,Wr) dW i
r−

t∫
s

f (r,Wr) dr−
1
2

t∫
s

g∗dW−
t∫
s

h (r,Wr)·
←−
dBr. (10)

We remark that FT and FB0,T are independent under P ⊗ Pm and therefore in the above formula

the stochastic integrals with respect to dWt and
←−−
dW t act independently of FB0,T and similarly the

integral with respect to
←−
dBt acts independently of FT .

In particular the process (ut(Wt))t∈[0,T ] admits a continuous version which we usually denote by
Y = (Yt)t∈[0,T ] and we introduce the notation Zt = ∇ut(Wt). As a consequence of this theorem
we have the following result.

Corollary 1. Under the hypothesis of the preceding theorem one has the following stochastic rep-
resentation for u2, P⊗ Pm-a.e., for any 0 ≤ t ≤ T ,

u2
t (Wt)− Φ2

(
WT

)
= 2

∫ T

t

[
usfs(Ws)−

1
2
|∇us|2(Ws)− 〈∇us, gs〉(Ws) +

1
2
|hs|2(Ws)

]
ds

+

T∫
t

(
urgr

)
(Wr) ∗ dWr − 2

∑
i

T∫
t

(
ur∂iur

)
(Wr) dW i

r + 2
∫ T

t

(
urhr

)
(Wr) ·

←−
dBr.

(11)

Moreover one has the estimate

E Em
(

sup
t≤s≤T

|Ys|2
)

+ E
[ ∫ T

t

‖∇us‖22 ds
]
≤ c

[
‖φ‖22 + E

∫ T

t

[
‖fs‖22 + ‖gs‖22 + ‖hs‖22

]
ds
]
, (12)

for each t ∈ [0, T ].

Remark 1. With the notation introduced above one can write the relation (11) as

|Yt|2 +
∫ T

t

|Zr|2dr = |YT |2 + 2
∫ T

t

Yrfr(Wr)dr − 2
∫ T

t

〈Zr, gr(Wr)〉 dr +
∫ T

t

Yrgr(Wr) ∗ dWr

− 2
∑
i

T∫
t

YrZi,rdW
i
r + 2

∫ T

t

Yrhr(Wr) ·
←−
dBr +

∫ T

t

|hr|2(Wr)dr.

(13)



The Obstacle problem for quasilinear Stochastic PDE’s 13

Proof : Assume first that g is uniformly bounded and belongs to (HT )d, so that E
∫ T
0

∥∥divgt∥∥2

2
dt <

∞. Then we may represent the solution in the form

ut (Wt)− us (Ws) =
∑
i

t∫
s

∂iur (Wr) dW i
r −

t∫
s

[
fr(Wr) + divgr(Wr)

]
dr −

t∫
s

hr(Wr) ·
←−
dBr.

By Lemma 1.3 of [22] we may write

u2
t (Wt)− u2

s (Ws) = −2
∫ t

s

[
ur (fr + divgr)(Wr)− |∇ur|2(Wr)− |hr|2(Wr)

]
dr

+ 2
∑
i

t∫
s

(
ur∂iur

)
(Wr) dW i

r − 2
∫ t

s

(
urhr

)
(Wr) ·

←−
dBr.

On the other hand, by Lemma 3.1 of [24] one has

−2
∫ t

s

div(ur gr)(Wr) dr =
∫ t

s

ur gr(Wr) ∗ dWr,

so that the preceding relation immediately leads to the relation (11). Then the standard calcu-
lations of BDSDE involving Young’s inequality, BDG inequality and Gronwal’s lemma give the
estimate (12).
Finally to obtain the result with general g one proceeds by approximation. �

In the deterministic case it was proven in [24] that the solution of a quasilinear equation has a
quasicontinuous version. Here we shall prove the same property for the solution of an SPDE as is
stated in the next proposition.

Proposition 1. Under the hypothesis of Theorem 3, there exists a function ū : [0, T ]×Ω×Rd −→
R which is a quasicontinuous version of u, in the sense that for each ε > 0, there exits a predictable
random set Dε ⊂ [0, T ]×Ω×Rd such that P-a.s. the section Dε

ω is open and ū (·, ω, ·) is continuous
on its complement (Dε

ω)c and

P⊗ Pm
(
(ω, ω′)

∣∣ ∃t ∈ [0, T ] s.t. (t, ω,Wt(ω′)) ∈ Dε
)
≤ ε.

In particular the process
(
ut(Wt)

)
t∈[0,T ]

has continuous trajectories, P⊗ Pm-a.s.

Proof : Let us choose k ∈ N with k > d
2 , so that the Sobolev space Hk(Rd) is continuously

imbeded in the space of Hölder continuous functions Cγ(Rd), with γ = 1 + [d2 ] − d
2 . We first

assume that φ ∈ Hk(Rd) and f , g1, · · · , gd, h1, · · · , hd1 belong to L2
(
[0, T ]× Ω;Hk(Rd)

)
. By

Theorem 8 in [8], applied with respect to the Hilbert space Hk(Rd), one deduces that the solution
u = U (Φ, f, g, h) has the trajectories t → ut(ω, ·) continuous in Hk(Rd) which implies that they
are in C[[0, T ]×Rd). On the other hand, we have from (12) the following general estimate

E Em
(

sup
0≤t≤T

u (t,Wt)
2 ) ≤ cE

[
‖Φ‖22 +

∫ T

0

(
‖ft‖22 + ‖gt‖22 + ‖ht‖22

)
dt
]
.

Now, for general (Φ, f, g, h), one chooses an approximating sequence of data (Φn, fn, gn, hn) which
are Hk(Rd) -valued and such that

E
(
‖Φn − Φn+1‖2 +

∫ T

0

[
‖fnt − fn+1

t ‖22 + ‖gnt − gn+1
t ‖22 + ‖hnt − hn+1

t ‖22
]
dt
)
≤ 1

2n
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Let un be the sequence of P-a.s continuous solutions of the equation associated to (Φn, fn, gn, hn).
Then set Eεn = {

∣∣un − un+1
∣∣ > ε} and Dε

k =
⋃
n≥k E

ε
n. Then we have

ε2P⊗Pm
(
(ω, ω′)

∣∣ ∃t ∈ [0, T ] s.t. (t, ω,Wt(ω′)) ∈ Eεn
)
≤ EEm

[
sup

0≤t≤T

(
unt (Wt)− un+1

t (Wt)
)2 ] ≤ c

2n
.

Further one takes ε =
1
n2

to get

P⊗ Pm
(
(ω, ω′)

∣∣ ∃t ∈ [0, T ] s.t. (t, ω,Wt(ω′)) ∈ Dε
k

)
≤
∞∑
n=k

cn4

2n
.

This shows the statement. �

We also need the quasicontinuity of the solution associated to a random regular measure, as stated
in the next proposition. We first give the formal definition of this object.

Definition 3. We say that u ∈ HT is a random regular potential provided that u(·, ω, ·) has a
version which is regular potential, P(dω)-a.s. The random variable ν : Ω −→M

(
[0, T ]× Rd

)
with

values in the set of regular measures on [0, T ] × Rd is called a regular random measure, provided
that there exits a random regular potential u such that the measure ν(ω)(dtdx) is associated to the
regular potential u(·, ω, ·), P(dω)-a.s.

The relation between a random measure and its associated random regular potential is described
by the following proposition.

Proposition 2. Let u be a random regular potential and ν be the associated random regular
measure. Let u be the excessive version of u, i.e. u (·, ω, ·) is a.s. an

(
P̃t
)
t>0

-excessive function
which coincides with u (·, ω, ·) , dtdx-a.e. Then we have the following properties:

(i) For each ε > 0, there exists a
(
FBt,T

)
t∈[0,T ]

-predictable random set Dε ⊂ [0, T ] × Ω × Rd such
that P -a.s. the section Dε

ω is open and u (·, ω, ·) is continuous on its complement (Dε
ω)c and

P⊗ Pm ((ω, ω′) /∃t ∈ [0, T ] s.t. (t, ω,Wt (ω)) ∈ Dε
ω) ≤ ε.

In particular the process
(
ut(Wt)

)
t∈[0,T ]

has continuous trajectories, P⊗ Pm-a.s.

(ii) There exists a continuous increasing process A = (At)t∈[0,T ] defined on Ω × Ω′ such that
As − At is measurable with respect to the P ⊗ Pm -completion of FBt,T ∨ σ (Wr/r ∈ [t, s]), for any
0 ≤ s ≤ t ≤ T , and such that the following relations are fulfilled a.s., with any ϕ ∈ D and t ∈ [0, T ] ,

(a) (ut, ϕt) +
∫ T

t

(
1
2

(∇us,∇ϕs) + (us, ∂sϕs)
)
ds =

∫ T

t

∫
Rd

ϕ (s, x) ν (dsdx) ,

(b) ut(Wt) = E
[
AT
∣∣Ft ∨ FBt,T ]−At,

(c) ut (Wt) = AT −At −
d∑
i=1

∫ T

t

∂ius (Ws) dW i
s ,

(d) ‖ut‖22 +
∫ T

t

∥∥∇us∥∥2

2
ds = Em (AT −At)2 ,

(e) ν (ϕ) = Em
∫ T

0

ϕ (t,Wt) dAt.

Proof: The proof of this proposition results from the approximation procedure used in the proof
of Theorem 2.
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(i) Let r > 0. The process ūr = (ūrt )t∈[0,T ], defined by ūrt = Prut+r, has the property that
(t, x) −→ ūrt is jointly continuous P-a.s. We also have

lim
r→0

EEm sup
0≤t≤T

∣∣ūrt (Wt)− ūt(Wt)
∣∣2 = 0,

by the arguments used at the end of the proof of Theorem 2. The one concludes as in the proof of
the preceding proposition.

(ii) The construction of the increasing process described in Theorem 2 holds globally for a ran-
dom regular potential producing on a.e. trajectory ω ∈ Ω, the increasing process corresponding to
u(·, ω, ·). �

We remark that, taking the expectation of the relation (ii-d) of this proposition one gets

EEm
(
A2
T

)
= E

(
‖u0‖22 +

∫ T

0

∥∥∇ut∥∥2

2
dt
)
.

3 Existence and uniqueness of the solution of the obstacle
problem

3.1 The weak solution
We now precise the definition of the solution of our obstacle problem. We recall that the data
satisfy the hypotheses of Section 2.3.

Definition 4. We say that a pair (u, ν) is a weak solution of the obstacle problem for the SPDE
(1) associated to (Φ, f, g, h, v), if

(i) u ∈ HT and u(t, x) ≥ v(t, x), dP⊗ dt⊗ dx a-e. and u(T, x) = Φ(x), dP⊗ dx a-e..

(ii) ν is a random regular measure on (0, T )× Rd.

(iii) for each ϕ ∈ DT , and t ∈ [0, T ],∫ T

t

[
(us, ∂sϕs) +

1
2

(∇us,∇ϕs)
]
ds−

(
Φ, ϕT

)
+
(
ut, ϕt

)
=
∫ T

t

[ (
f
(
s, us,∇us

)
, ϕs
)
− (g(s, .),∇ϕs)

]
ds

+
∫ T

t

(h (s, us,∇us) , ϕs) ·
←−
dBs +

∫ T

t

∫
Rd

ϕs(x) ν(dx, ds).

(14)

(iv) If u is a quasicontinuous version of u, then one has∫ T

0

∫
Rd

(us (x)− vs (x)) ν (dsdx) = 0, a.s.

We note that a given solution u can be writen as a sum u = u1 + u2, where u1 satisfies a linear
equation u1 = U

(
Φ, f(u,∇u), g(u,∇u), h(u,∇u)

)
with f, g, h determined by u, while u2 is the

random regular potential corresponding to the measure ν. By the Propositions 1 and 2, the
conditions (ii) and (iii) imply that the process u always admits a quasicontinuous version, so that
the condition (iv) makes sense. We also note that if u is a quasicontinuous version of u, then the
trajectories of W do not visit the set {u < v}, P⊗ Pm-a.s.
Here it is the main result of our paper
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Theorem 4. Assume that the assumptions (H), (HD2) and (HO) hold. Then there exists a
unique weak solution of the obstacle problem for the SPDE (1) associated to (Φ, f, g, h, v).

In order to solve the problem we will use the backward stochastic differential equation technics. In
fact, we shall follow the main steps of the second proof in [12], based on the penalization procedure.
The uniqueness assertion of Theorem 4 results from the following comparison result :

Theorem 5. Let Φ′, f ′, v′ be similar to Φ, f, v and let (u, ν) be the solution of the obstacle problem
corresponding to (Φ, f, g, h, v) and (u′, ν′) the solution corresponding to (Φ′, f ′, g, h, v′) . Assume
that the following conditions hold

(i) Φ ≤ Φ′, dx⊗ dP -a.e.

(ii) f (u,∇u) ≤ f ′ (u,∇u) , dtdx⊗ P -a.e.

(iii) v ≤ v′, dtdx⊗ P -a.e.

Then one has u ≤ u′, dtdx⊗ P -a.e.

Proof : The proof is identical to that of the similar result of El Karoui et al ([12], Theorem 4.1).
One starts with the following version of Ito’s formula, written with some quasicontinuous versions
u, u′ of the solutions u, u′ in the term involving the regular measures ν, ν′,

E
∥∥∥(ut − u′t)

+
∥∥∥2

2
+ E

∫ T

t

∥∥∇(us − u′s)+∥∥2

2
ds = E

∥∥∥(Φ− Φ′)+
∥∥∥2

2

+ 2E
∫ T

t

(
(us − u′s)

+
, fs (us,∇us)− f ′s (u′s,∇u′s)

)
ds+ 2E

∫ T

t

∫
Rd

(
us − u′s

)+
(x) (ν − ν′) (dsdx)

+ 2E
∫ T

t

(
∇ (us − u′s)

+
, gs (us,∇us)− g′s (u′s,∇u′s)

)
ds+ E

∫ T

t

‖hs (us,∇us)− h′s (u′s,∇u′s)‖
2
2 ds.

We remark that the inclusion {u > u′} ⊂ {u > v} ∪ {v > v′} ∪ {v′ > u′} and the fact that the set
{v > v′} ∪ {v′ > u′} is not visited by W , imply that ν

(
u > u′

)
= 0, a.s.. Therefore∫ T

t

∫
Rd

(
us − u′s

)+
(x) (ν − ν′) (dsdx) ≤ 0, a.s.

and then one concludes the proof by Gronwall’s lemma. �

3.2 Approximation by the penalization method

For n ∈ N, let un be a solution of the following SPDE

dunt (x) +
1
2

∆unt (x)dt+ f(t, x, unt (x),∇unt (x))dt+ n(unt (x)− vt(x))− dt

+ div
(
g (t, x, unt (x) ,∇unt (x))

)
dt+ h(t, x, unt (x),∇unt (x))

←−
dBt = 0

(15)

with final condition unT = Φ.
Now set fn(t, x, y, z) = f(t, x, y, z)+n(y−vt(x))− and νn(dt, dx) := n

(
unt (x)−vt(x)

)−
dtdx. Clearly

for each n ∈ N, fn is Lipschitz continuous in (y, z) uniformly in (t, x) with Lipschitz coefficient
C + n. For each n ∈ N, Theorem 8 in [8] ensures the existence and uniqueness of a weak solution
un ∈ HT of the SPDE (15) associated with the data (Φ, fn, g, h). We denote by Y nt = un(t,Wt),
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Zn = ∇un(t,Wt) and St = v(t,Wt). We shall also assume that un is quasi-continuous, so that Y n
is P⊗ Pm-a.e. continuous. Then

(
Y n, Zn

)
solves the BSDE associated to the data (Φ, fn, g, h)

Y nt = Φ (WT ) +

T∫
t

fr (Xr, Y
n
r , Z

n
r ) dr + n

∫ T

t

(Y nr − Snr )− dr +
1
2

T∫
t

gr (Wr, Y
n
r , Z

n
r ) ∗ dW

+

T∫
t

hr (Wr, Y
n
r , Z

n
r ) ·
←−
dBr −

∑
i

T∫
t

Zni,rdW
i
r .

(16)

We define Kn
t = n

∫ t

0

(Y ns − Ss)−ds and establish the following lemma.

Lemma 4. The triple (Y n, Zn,Kn) satisfies the following estimates

EEm |Y nt |
2 +λεEEm

∫ T

t

|Znr |2dr ≤ cEEm
[
|Φ(WT )|2 +

∫ T

t

(
|f0
s (Ws)|2 + |g0

s(Ws)|2 + |h0
s(Ws)|2

)
ds
]

+ cε E Em
∫ T

t

|Y nr |2 dr + cδ E Em
(

sup
t≤r≤T

|Sr|2
)

+ δ E Em
(
Kn
T −Kn

t

)2
(17)

where λε = 1 − 2α − β2 − ε, cε, cδ are a positive constants and ε > 0, δ > 0 can be chosen small
enough such that λε > 0 .

Proof : By using Ito’s formula (13) for (Y n, Zn) we get

|Y nt |2 +
∫ T

t

|Znr |2dr = |Φ(WT )|2 + 2
∫ T

t

Y ns fs(Ws, Y
n
s , Z

n
s )ds+ 2

∫ T

t

Y ns dK
n
s

− 2
∫ T

t

〈Zns , gs
(
Ws, Y

n
s , Z

n
s

)
〉 ds+

∫ T

t

Y ns gs(Ws, Y
n
s , Z

n
s ) ∗ dW − 2

∑
i

T∫
t

Y ns Z
n
i,sdW

i
s

+ 2
∫ T

t

Y ns hs(Ws, Y
n
s , Z

n
s ) ·
←−
dBs +

∫ T

t

|hs(Ws, Y
n
s , Z

n
s |2ds.

(18)

Using assumption (H) and taking the expectation in the above equation under P⊗ Pm we get

EEm |Y nt |
2 + EEm

∫ T

t

|Zns |
2
ds ≤ E |Φ(WT )|2 + cεEEm

∫ T

t

[
|f0
s (Ws)|2 + |g0

s(Ws)|2 + |h0
s(Ws)|2

]
ds

+ cε EEm
∫ T

t

|Y ns |
2
ds+

(
2α+ β2 + ε

)
EEm

∫ T

t

|Zns |
2
ds

+
1
γ

EEm[ sup
t≤s≤T

|Ss|2] + γEEm[(Kn
T −Kn

t )2]

where ε > 0, γ > 0 are a arbitrary constants and cε is a constant which can be different from line
to line. We have used the inequality

∫ T
t
Y ns dK

n
s ≥

∫ T
t
Sns dK

n
s and then we have applied Schwartz’s

inequality. We also have used the fact that under the measure Pm the forward-backward integral∫
Y nr g(r,Wr, Y

n
r , Z

n
r )∗dW as well the other stochastic integrals with respect to the brownian terms

have null expectation under P⊗ Pm. Finally Gronwall’s lemma leads to the desired inequality. �

Lemma 5.

EEm[(Kn
T −Kn

t )2] ≤ c′
[
EEm |Y nt |

2 + ‖Φ‖22
]

+ cε

[
EEm

∫ T

t

[
|Y ns |

2 + |Zns |
2
]
ds

+ E
∫ T

t

[
‖f0
s ‖22 + ‖g0

s‖22 + ‖h0
s‖22
]
ds
]
.

(19)
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Proof : Let now (ũn)n∈N be the weak solutions of the following linear type equations

dũnt +
1
2

∆ũnt + div gt (unt ,∇unt ) dt+ ht (unt ,∇unt ) ·
←−
dBt = 0,

with final condition ũnT = 0. Set Ỹ nt = ũn(t,Wt) and Z̃n = ∇ũn(t,Wt). Then by the estimate (12)
one has

EEm
[∣∣Ỹ nt ∣∣2 +

∫ T

0

∣∣Z̃ns ∣∣ ds] ≤ c̃Λ (20)

where Λ = EEm
∫ T

0

[
|gs(Ws, Y

n
s , Z

n
s )|2 + |hs(Ws, Y

n
s , Z

n
s )|2

]
ds. Since un−ũn verifies the equation

∂t(unt − ũnt ) +
1
2

∆(un − ũnt ) + ft(unt ,∇unt ) + n(unt − vt)− dt = 0,

we have the stochastic representation

Y nt − Ỹ nt = Φ (WT ) +

T∫
t

fr (Wr, Y
n
r , Z

n
r ) dr +Kn

T −Kn
t −

∑
i

T∫
t

(
Zni,r − Z̃ni,r

)
dW i

r .

from which one easily obtains the estimate

EEm[(Kn
T −Kn

t )2] ≤ cEEm
[
|Y nt |

2 + |Ỹ nt |2 +
∣∣Φ (WT )

∣∣2 +
∫ T

t

(
|f0
s (Ws)|2 + |Y ns |

2 + |Zns |
2 )

ds

+
∫ T

t

|Z̃ns |2 ds
]
.

Hence, using (20), we get

EEm[(Kn
T −Kn

t )2] ≤ c′ EEm
[
|Y nt |

2 + |Φ(WT )|2
]

+ c′εEEm
[ ∫ T

t

(
|Y ns |

2 + |Zns |
2
)
ds

+
∫ T

t

[
|f0
s (Ws)|2 + |g0

s(Ws)|2 + |h0
s(Ws)|2

]
ds
]
,

which gives our assertion. �

Lemma 6. The triple (Y n, Zn,Kn) satisfies the following estimate

E Em
(

sup
0≤s≤T

|Y ns |
2 )+ EEm

∫ T

0

|Zns |2 ds+ E Em (Kn
T )2 ≤ c

[
‖Φ‖22 + E Em

(
sup

0≤s≤T
|Ss|2

)
+ E

∫ T

0

[
‖f0
s ‖22 + ‖g0

s‖22 + ‖h0
s‖22
]
ds
]

where c > 0 is a constant.

Proof : From (17) and (19) we get

(1− δc′) E Em |Y ns |
2 +
(
1− 2α− β2 − ε− δc′ε

)
EEm

∫ T

s

|Znr |2 dr ≤ (1 + c′δ) ‖Φ‖22 + (cε + δc′ε) Λ

(cε + δc′ε) E Em
∫ T

s

|Y nr |2 ds+ cδ E Em
(

sup
t≤r≤T

|Sr|2
)
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where Λ = E Em
∫ T

t

[
|f0
s (Ws)|2 + |g0

s(Ws)‖2 + |h0
s(Ws)|2

]
ds. It then follows from Gronwall’s

lemma that

sup
0≤s≤T

E Em
(
|Y ns |

2
)

+ EEm
∫ T

s

|Znr |2 dr + E Em (Kn
T )2 ≤ c1

[
‖Φ‖22 + E Em

(
sup

0≤r≤T
|Sr|2

)
+ E

∫ T

s

[
‖f0
r ‖22 + ‖g0

r‖22 + ‖h0
r‖22
]
dr
]
.

Coming back to the equation (16) and using Bukholder-Davis-Gundy inequality and the last esti-
mates we get our statement. �

In order to prove the strong convergence of the sequence (Y n, Zn,Kn) we shall need the following
result.

Lemma 7. (The essential step)

lim
n→∞

EEm
[

sup
0≤t≤T

(
(Y nt − St)

−
)2
]

= 0 (21)

Proof: Let (un)n∈N be the sequence of solutions of the penalized SPDE defined in (15). From
Lemma 6, it follows that the sequence (f(un,∇un), g(un,∇un), h(un,∇un))n∈N is bounded in
L2
(
[0, T ]× Ω× Rd; R1+d+d1

)
. We may choose then a subsequence which is weakly convergent to

a system of predictable processes (f̄ , ḡ, h̄) and, on account of the Lemma 13 in the Appendix,
we obtain a sequence of families of coefficients of convex combinations, (ak)k∈N, such that the
sequences

f̂k =
∑
i∈Ik

αki f(ui,∇ui), ĝk =
∑
i∈Ik

αki g(ui,∇ui) and ĥk =
∑
i∈Ik

αki h(ui,∇ui)

converge strongly, i.e.

lim
k→∞

E
∫ T

0

‖f̂kt − f̄t‖22dt = 0

and similarly for ĝk, ḡ and ĥk, h̄.
Now for i ≥ n we denote by ui,n the solution of the equation

dui,nt + [
1
2

∆ui,nt − nu
i,n
t + nvt + ft(ui,∇ui) + div gt(ui,∇ui) ] dt+ ht(ui,∇ui) ·

←−
dBt = 0 (22)

with final condition ui,nT = vT . By comparison (Theorem 5) we have that ui,n ≤ ui. Further we
set ûk =

∑
i∈Ik

αki u
i,nk , where nk = inf Ik and we deduce that

ûk ≤
∑
i∈Ik

αki u
i ≤ lim

n→∞
un, (23)

where the last inequality comes from the monotonicity of the sequence un. Moreover we observe
that ûk is a solution of the equation

dûkt + [
1
2

∆ûkt − nkûkt + nkvt + f̂kt + div ĝkt ] dt+ ĥkt ·
←−
dBt = 0 (24)

with final condition ûkT = vT .
Now we are going to take the advantage of the fact that the equations satisfied by the sequence
of solutions ûk have strongly convergent coefficients. Let us denote by Ŷ k the continuous version
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on [0, T ] of the process
(
ûk(Wt)

)
t∈[0,T ]

, for any k ∈ N. We will prove now that there exists a
subsequence such that

lim
k→∞

sup
0≤t≤T

|Ŷ kt − St| = 0, P⊗ Pm-a.s. (25)

Since the equation (24) is linear the solution decomposes as a sum of four terms each corresponding
to one of the coefficients f̂k, ĝk, ĥk, v. So it is enough to treat separately each term.

a) In the case where f ≡ 0, g ≡ 0, h ≡ 0 one obtains the term corresponding to v. Then the
relation (25) is a direct consequence of the Lemma 11.

b) In the case where v ≡ 0, g ≡ 0, h ≡ 0, the representation of Ŷ k is given by

Ŷ kt =
∫ T

t

e−nk(s−t)f̂ks (Ws)ds−
d∑
i=1

T∫
t

e−nk(s−t)∂iû
k
r (Ws) dW i

s .

Thus we have ∣∣∣∣∣
∫ T

t

e−nk(s−t)f̂ks (Ws)ds

∣∣∣∣∣ ≤ 1√
2nk

(∫ T

t

(
f̂ks (Ws)

)2

ds

)1/2

.

This shows that lim
k→∞

sup
0≤t≤T

∣∣∣∣∣
∫ T

t

e−nk(s−t)f̂ks (Ws)ds

∣∣∣∣∣ = 0, P⊗ Pm-a.s., on some subsequence. For

the second term in the expression of Ŷ k we make an integration by parts formula to get∫ T

t

e−nk(s−t)∂iû
k
s (Ws) dW i

s = e−nk(T−t)U i,kT − U
i,k
t + nk

∫ T

t

U i,ks e−nk(s−t)ds

where U i,ks =
∫ s

0

∂iû
k
r (Wr) dW i

r . By the Corollary 3 of section 4 we know that the martingales

U i,k, k ∈ N converges to zero in L2, and hence on a subsequence we have limk→∞ sup0≤t≤T |U
i,k
t | =

0, P⊗ Pm-a.s. Then by Lemma 12 we see that for that subsequence

lim
k→∞

sup
0≤t≤T

∣∣∣∣∣
∫ T

t

e−nk(s−t)∂iû
k
s (Ws) dW i

s

∣∣∣∣∣ = 0, P⊗ Pm-a.s.

Therefore the desired result (25) holds also in this case. This time we get limk→∞ sup0≤t≤T |̂Y kt | =
0, P⊗ Pm-a.s..

c) In the case where f ≡ 0, h ≡ 0, v ≡ 0, the representation of Ŷ k is given by

Ŷ kt =
∫ T

t

e−nk(s−t)ĝks ∗ dW −
d∑
i=1

T∫
t

e−nk(s−t)∂iû
k
r (Ws) dW i

s

=
∑
i

∫ T

t

e−nk(s−t)ĝks (Ws)dW i
s +

∑
i

∫ T

t

e−nk(s−t)ĝks (Ws)
←−−
dM i

s −
d∑
i=1

T∫
t

e−nk(s−t)∂iû
k
r (Ws) dW i

s .

Now the proof is similar to that of the preceding case. We treat only the second term in the last

expression. We set
←−
U i,k
s =

∫ T

s

ĝkr (Wr)
←−−
dWm,i

r . Integration by parts formula gives

∫ T

t

e−nk(s−t)d
←−
U i,k
s =

←−
U i,k
t − e−nk(T−t)←−U i,k

T − nk
∫ T

t

←−
U i,k
s e−nk(s−t)ds.
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On the other hand the convergence ĝk → ḡ implies that the backward martingale
(←−
U i,k
t

)
t∈[0,T ]

converges to
( ∫ T

t
ḡi,r(Wr)

←−−
dWm,i

r

)
t∈[0,T ]

in L2
(
P ⊗ Pm

)
. The other terms in the above expres-

sion of Ŷ k may be handled similarly by integration by parts and taking into account Corol-
lary 4. Using again Lemma 12, as in the preceding case we get the relation (25) in the form
limk→∞ sup0≤t≤T |̂Y kt | = 0, P⊗ Pm-a.s...

d) In the case where f ≡ 0, g ≡ 0, v ≡ 0, the representation of Ŷ k is given by

Ŷ kt = −
d∑
i=1

T∫
t

e−nk(s−t)∂iû
k
r (Ws) dW i

s +
∫ T

t

e−nk(s−t)ĥks ·
←−
dBs

On account of Lemma 10, the same arguments used in the previous cases work again.

Now it is easy to see that the relation (25) holds for the general case. On the other hand (25) and
(23) clearly imply the relation

lim
n→∞

sup
0≤t≤T

(Y nt − St)
− = 0, P⊗ Pm-a.s.

and then, since Y n is bounded in L2, one gets the relation of our statement. �

We have also the following result

Lemma 8. There exists a progressively measurable triple of processes (Yt, Zt,Kt)t∈[0,T ] such that

E Em
[

sup
0≤s≤T

|Y nt − Yt|2 +
∫ T

0

|Znt − Zt|2dt+ sup
0≤t≤T

|Kn
t −Kt|2

]
−→ 0 as n→∞. (26)

Moreover we have that (Yt, Zt,Kt)t∈[0,T ] satisfies Yt ≥ St, ∀ t ∈ [0, T ] and
∫ T

0

(Ys − Ss)dKs = 0,

P⊗ Pm-a.e.

Proof : From the monotonicity of the sequence (fn)n∈N and the comparison theorem 5 we get
that un(t, x) ≤ un+1(t, x), dtdx⊗ P -a.e., therefore one has Y nt ≤ Y n+1

t , for all t ∈ [0, T ], P⊗ Pm
-a.s. Thus, there exists a predictable real valued process Y = (Yt)t∈[0,T ] such that Y nt ↑ Yt, for all
t ∈ [0, T ] a.s. and by Lemma 6 and Fatou’s lemma , one gets

E Em
(

sup
0≤s≤T

|Yt|2
)
≤ c.

Moreover, from the dominated convergence theorem one has

E Em
∫ T

0

|Y nt − Yt|2dt −→ 0 as n→∞. (27)
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The relation (13) gives , for n ≥ p,

|Y nt − Y
p
t |2 +

∫ T

t

|Zns − Zps |2ads = 2
∫ T

t

(Y ns − Y ps ) [fs(Ws, Y
n
s , Z

n
s )− fs(Ws, Y

p
s , Z

p
s )] ds

+ 2
∫ T

t

(Y ns − Y ps ) d (Kn
s −Kp

s )− 2
∫ T

t

〈Zns − Zps , gs
(
Ws, Y

n
s , Z

n
s

)
− gs

(
Ws, Y

p
s , Z

p
s

)
〉 ds

+
∫ T

t

(Y ns − Y ps ) [gs(Xs, Y
n
s , Z

n
s )− gs(Ws, Y

p
s , Z

p
s )] ∗ dW

− 2
∑
i

T∫
t

(Y ns − Y ps )
(
Zni,s − Z

p
i,s

)
dW i

s + 2
∫ T

t

(Y ns − Y ps ) [hs(Ws, Y
n
s , Z

n
s )− hs(Ws, Y

p
s , Z

p
s ] ·
←−
dBs

+
∫ T

t

|hs(Ws, Y
n
s , Z

n
s )− hs(Ws, Y

p
s , Z

p
s )|2ds.

(28)

By standard calculation one deduces that

E Em
∫ T

t

|Zns − Zps |2ds ≤ cE Em
∫ T

t

|Y ns − Y ps |2 + 4E Em
∫ T

t

(Y ns − Ss)
−
dKp

s

+ 4E Em
∫ T

t

(Y ps − Ss)
−
dKn

s

(29)

Therefore from Lemma 7, (27) and (29) one gets

E Em
∫ T

0

|Y nt − Y
p
t |2dt+ E Em

∫ T

0

|Znt − Z
p
t |2dt −→ 0 as n, p→∞. (30)

The rest of the proof is the same as in El Karoui et al ([12] p.721-722), in particular we get that
there exists a pair (Z,K) of progressively measurable processes with values in Rd × R such that

E Em
[

sup
0≤s≤T

|Y nt − Yt|2 +
∫ T

0

|Znt − Zt|2dt+ sup
0≤t≤T

|Kn
t −Kt|2

]
−→ 0 as n→∞.

It is obvious that (Kt)t∈[0,T ] is an increasing continuous process. On the other hand since from
Lemma 7 we have limn→∞ E Em

[
sup

0≤t≤T
((Y nt − St)−)2

]
= 0 , then, P⊗ Pm−a.s.,

Yt ≥ St, ∀ t ∈ [0, T ], (31)

which yields that
∫ T
0

(Ys − Ss)dKs ≥ 0. Finally we also have
∫ T
0

(Ys − Ss)dKs = 0 since on the
other hand the sequences (Y n)n≥0 and (Kn)n≥0 converge uniformly (at least for a subsequence)
respectively to Y and K and∫ T

0

(Y ns − Ss)dKn
s = −n

∫ T

0

((Y ns − Ss)−)2ds ≤ 0.

�

As a consequence of the last proof we obtain the following generalization of the RBSDE introduced
in [12] :
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Corollary 2. The limiting triple of processes (Yt, Zt,Kt)t∈[0,T ] is a solution of the following re-
flected backward doubly stochastic differential equation (in short RBDSDE) :

Yt = Φ (WT ) +

T∫
t

fr (Wr, Yr, Zr) dr +KT −Kt +
1
2

T∫
t

gr (Wr, Yr, Zr) ∗ dW

+

T∫
t

hr (Wr, Yr, Z
n
r ) ·
←−
dBr −

∑
i

T∫
t

Zi,rdW
i
r

(32)

with Yt ≥ St, ∀ t ∈ [0, T ], (Kt)t∈[0,T ] is an increasing continuous process, K0 = 0 and∫ T

0

(Ys − Ss)dKs = 0. (33)

Proof of Theorem 4 : Since∫ T

0

(∥∥unt − upt∥∥2

2
+
∥∥∇unt −∇upt∥∥2

2
dt = Em

∫ T

0

(∣∣Y nt − Y pt ∣∣2 +
∣∣Znt − Zpt ∣∣2 ) dt,

by the preceding lemma one deduces that the sequence
(
un
)
n∈N is a Cauchy sequence in L2

(
Ω×

[0, T ];H1(Rd)
)
and hence has a limit u in this space. Also from the preceding lemma it follows

that dKn
t weakly converges to dKt, P⊗ Pm-a.e. This implies that

lim
n

∫ T

0

∫
Rd

n
(
un − v

)−
ϕ(t, x) dtdx = lim

n
Em

∫ T

0

ϕt(Wt) dKn
t =

∫ T

0

∫
Rd

ϕ(t, x) ν
(
dtdx

)
,

where ν is the regular measure defined by∫ T

0

∫
Rd

ϕ(t, x) ν
(
dtdx

)
= Em

∫ T

0

ϕt(Wt) dKt.

Writing the equation (15) in the weak form and passing to the limit one obtains the equation (14)
with u and this ν. The arguments we have explained after Definition 4 ensure that u admits a
quasicontinuous version ū. Then one deduces that

(
ūt(Wt)

)
t∈[0,T ]

should coincide with (Yt)t∈[0,T ],
P ⊗ Pm-a.e. Therefore the inequality Yt ≥ St implies u ≥ v, dt ⊗ P ⊗ dx-a.e. and the relation∫ T
0

(
Yt − St

)
dKt = 0 implies the relation (iv) of Definition 4. �

4 Some technical lemmas
Lemma 9. Let f ∈ L2

(
[0, T ]× Rd; R

)
and denote by (un)n∈N the sequence of solutions of the

equations (
∂t +

1
2

∆
)
un − nun + f = 0, ∀n ∈ N,

with final condition unT = 0. Then we have∫ T

0

‖∇unt ‖22dt ≤ c

[
1
n

∫ T

0

‖ft‖22dt+
∫ T

0

e−2n(T−t)‖ft‖22dt

]
. (34)

Proof : It is well known that the solution (un)n∈N is expressed in terms of the semigroup Pt by

unt =
∫ T

t

e−n(s−t)Ps−tfsds.
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A direct calculation shows that one has

n

∫ T

t

e−n(s−t)Ps−tu
0
sds = u0

t − unt ,

which leads to

unt = e−n(T−t)u0
t + n

∫ T

t

e−n(s−t) (u0
t − Ps−tu0

s

)
ds. (35)

The function ūnt = e−n(T−t)u0
t is a solution of the equation

(
∂t + 1

2∆
)
ūn − nūn + f̄ = 0 where

f̄t = e(T−t)ft. Therefore one has the following estimate for the gradient of the first term in the
expression of un ∫ T

0

e−n(T−t)‖∇u0
t‖22dt ≤ c

∫ T

0

e−2n(T−t)‖ft‖22dt (36)

(see Lemma 5 of [8] for details). In order to estimate the gradient of the second term of the
expression of un we first remark that

u0
t − Ps−tu0

s =
∫ s

t

Pr−tfrdr,

so that one has∥∥∥∥∥n∇
∫ T

t

e−n(s−t) (u0
t − Ps−tu0

s

)
ds

∥∥∥∥∥
2

≤ n
∫ T−t

0

e−ns
∫ s

0

‖∇Prft+r‖2 drds

≤ nc
∫ T−t

0

e−ns
∫ s

0

1√
r
‖ft+r‖2 drds,

where we have used the well known inequality

‖∇Prϕ‖2 ≤
c√
r
‖ϕ‖2, for ϕ ∈ L2.

Then we estimate the time integral of the norm of the gradient, which is the expression we are
interested in,∫ T

0

∥∥∥∥∥n∇
∫ T

t

e−n(s−t) (u0
t − Ps−tu0

s

)
ds

∥∥∥∥∥
2

2

dt ≤ c2
∫ T

0

[∫ T−t

0

ne−ns
∫ s

0

1√
r
‖ft+r‖2 drds

]2

dt

= c2
∫ T

0

∫ s

0

∫ T

0

∫ s′

0

∫ T−s∨s′

0

ne−nsne−ns
′ 1√
r
‖ft+r‖2

1√
r′
‖ft+r′‖2 dt dr′ ds′ dr ds

≤
∫ T

0

‖ft‖22dt

(∫ T

0

1
2
√
s n e−ns ds

)2

≤ c

n

∫ T

0

‖ft‖22dt.

This estimate together with (36) imply the statement (34). �

Obviously the lemma implies that lim
n→∞

∫ T

0

‖∇unt ‖22dt = 0. We need a strengthened version of this

relation, which is presented in the next corollary whose proof is easy, so you omit it.

Corollary 3. Let f, fn,∈ L2
(
[0, T ]× Rd; R

)
, n ∈ N, be such that lim

n→∞

∫ T

0

‖fnt − ft‖22dt = 0.

Then the solutions (un)n∈N of the equations(
∂t +

1
2

∆
)
un − nun + fn = 0,

with final condition unT = 0, satisfy the relation lim
n→∞

∫ T

0

‖∇unt ‖22dt = 0.
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Corollary 4. Let gn, g ∈ L2
(
[0, T ]× Rd; Rd

)
be such that lim

n→∞

∫ T

0

‖gnt − gt‖22dt = 0. Then the

solutions (un)n∈N of the equations(
∂t +

1
2

∆
)
un − nun + div gn = 0

with final condition unT = 0, satisfy the relation lim
n→∞

∫ T

0

‖∇unt ‖22dt = 0.

Proof : We regularize g by setting gεi,t = Pεgi,t, for i = 1, . . . , d, ε > 0, t ∈ [0, T ]. Then

gεi ∈ H1
0 (Rd) and f ε = divgε is in L2

(
[0, T ]× Rd; R

)
. Moreover we have lim

ε→0

∫ T

0

‖gεt − gt‖22dt = 0.

Let uε,n be the solution of the equation(
∂t +

1
2

∆
)
uε,n − nuε,n + f ε = 0,

with final condition uε,nT = 0. By Lemma 5 of [8] one has∫ T

0

‖∇unt −∇u
ε,n
t ‖22dt ≤ c

∫ T

0

‖gnt − gεt‖22 dt ≤ c
∫ T

0

(
‖gnt − gt‖22 + ‖gεt − gt‖22

)
dt.

On the other hand, Lemma 9 implies, for ε fixed, lim
n→∞

∫ T

0

‖∇uε,nt ‖22dt = 0. From these facts one

easily concludes the proof. �

Lemma 10. Let h, hn, n ∈ N be L2(Rd; Rd1) -valued predictable processes on [0, T ] with respect
to
(
FBt,T

)
t≥0

and such that

E
∫ T

0

‖ht‖22dt <∞, E
∫ T

0

‖hnt ‖22dt <∞ and lim
n→∞

E
∫ T

0

‖hnt − ht‖22dt = 0.

Let (un)n∈N be the solutions of of the equations

dunt + [
1
2

∆unt − nunt ] dt+ hnt ·
←−
dBt = 0,

with final condition unT = 0, for each n ∈ N. Then one has lim
n→∞

∫ T

0

‖∇unt ‖22dt = 0.

Proof : We regularize the process h by setting h̄εi,t = Pεhi,t, for i = 1, . . . , d1, ε > 0, t ∈ [0, T ].

Then h̄εi,t ∈ H1
0 (Rd) and E

∫ T

0

∥∥∇h̄εt∥∥2

2
dt < ∞ and lim

ε→0
E
∫ T

0

‖h̄εt − ht‖22dt = 0. Let uε,n be the

solution of the equation

duε,nt +
1
2

∆uε,nt − nu
ε,n
t + h̄εt ·

←−
dBt = 0

with final condition uε,nT = 0, for each n ∈ N. The relation (iii) of Proposition 6 in [8] written with
respect to the Hilbert space H = H1

0 (Rd) takes the form

E
[∥∥∇uε,nt ∥∥2

2
+
∫ T

t

‖1
2

∆uε,ns ‖2ds+ n

∫ T

t

∥∥∇uε,ns ∥∥2

2
ds
]

= E
∫ T

t

∥∥∇hεs∥∥2

2
ds .

In particular one has ∫ T

t

‖∇uε,ns ‖2ds ≤
1
n

∫ T

t

∥∥∇hεs∥∥2

2
ds.
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Now we write the relation (iii) of Proposition 6 in [8] for the solution un−uε,n with respect to the
Hilbert space H = L2(Rd),

E

[
‖un0 − u

ε,n
0 ‖2 +

∫ T

0

∥∥∇uns −∇uε,ns ∥∥2

2
ds+ n

∫ T

0

‖uns − uε,ns ‖22 ds

]
= E

∫ T

0

‖h̄ns − h̄εs‖22 ds .

In particular one obtains

E
∫ T

0

‖∇uns −∇uε,ns ‖22 ds ≤ E
∫ T

0

‖h̄ns − h̄εs‖22 ds.

From this and the preceding inequality one deduces

lim sup
n→∞

E
∫ T

0

‖∇uns ‖22 ds ≤ E
∫ T

0

‖h̄s − h̄εs‖22 ds.

Letting ε→ 0, one deduces the relation from the statement. �

Lemma 11. Let v : [0, T ]× Rd −→ R be a function such that the process (vt(Wt))t∈[0,T ] admits
a version S = (St)t∈[0,T ] with continuous trajectories on [0, T ] and such that the random variable
S∗ = sup0≤t≤T St satisfies the condition Em [S∗]2 <∞. Let un be the solution of the equation

(
∂t +

1
2

∆
)
un − nun + nv = 0,

with the terminal condition unT = vT . Let Y n = (Y nt )t∈[0,T ] be a continuous version of the process
(unt (Wt))t∈[0,T ], for each n ∈ N. Then the following holds

lim
n→∞

Em
[

sup
0≤t≤T

|Y nt − St|
2

]
= 0.

Proof : Let us set ūnt = e−ntunt and observe that this function is a solution of the equation

(
∂t +

1
2

∆
)
ūn + v̄ = 0,

with v̄t = e−ntvt and terminal condition ūnT = v̄T . Writting the representation of Theorem 3 with
g = h = 0 for ūn(Wt) one obtains

ūnt (t,Wt) = e−nT vT −
d∑
i=1

T∫
t

∂iū
n
r (Wr) dW i

r + n

∫ T

t

e−nrvr(Wr)dr,

and this leads to the representation of our process Y n, given by

Y nt = Em
[
e−n(T−t)ST + n

∫ T

t

e−n(r−t)Srdr
∣∣∣Ft ] .

Then one has

|St − Yt| ≤ Em
[∣∣∣∣∣St − e−n(T−t)ST − n

∫ T

t

e−n(r−t)Srdr

∣∣∣∣∣ ∣∣∣Ft
]
.
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Let us denote by

V n = sup
0≤t≤T

∣∣∣∣∣St − e−n(T−t)ST − n
∫ T

t

e−n(r−t)Srdr

∣∣∣∣∣
Obviously one has V n ≤ 2S∗. On the other hand one has for any fixed δ > 0,

V n ≤ sup
|t−s|≤δ

|St − Ss|+ 2e−nδS∗. (37)

This follows from Lemma 12. From the inequality (37) one deduces that lim
n→∞

V n = 0, Pm-a.s.,

and hence from the dominated convergence Theorem, one gets lim
n→∞

Em [V n]2 = 0. Since

|St − Y nt | ≤ Em
[
V n
∣∣∣Ft] ,

Doob’s Theorem implies the assertion of the lemma. �

Finally, we mention the following calculus lemma.

Lemma 12. Let ϕ ∈ C ([0, 1]; R) and δ ∈ (0, T ), λ > 0. Then one has∣∣∣∣∣λ
∫ δ

0

e−λtϕ(t)dt+ e−λδϕ(δ)− ϕ(0)

∣∣∣∣∣ ≤ sup
0≤t≤δ

|ϕ(t)− ϕ(0)|.

and ∣∣∣∣∣λ
∫ T

t

e−λ(s−t)ϕ(s)ds+ e−λ(T−t)ϕ(T )− ϕ(t)

∣∣∣∣∣ ≤ sup
|s−r|≤δ,s≥0

|ϕ(s)− ϕ(r)|+ 2e−λδ‖ϕ‖∞ .

Proof : The first inequality follows from the relation λ
∫ δ

0

e−λtdt + e−λδ = 1. In order to check

the second relation one dominates the expression of the right hand side by∣∣∣λ ∫ t+δ

t

e−λ(s−t)ϕ(s)ds+ e−λδϕ(t+ δ)− ϕ(t)
∣∣∣

+ e−λδ
∣∣∣λ ∫ T

t+δ

e−λ(s−(t+δ))ϕ(s)ds+ e−λ(T−(t+δ))ϕ(T )− ϕ(t+ δ)
∣∣∣

and then apply the first relation to dominate the first term. �

5 Appendix
The next lemma is a classical result in convex analysis, known as Mazur’s Theorem (see [5], Remark
5 p. 38). We state here the result with some notation that is useful for our proof. Let X be a
Banach space and (xn)n∈N a sequence of elements in X. We call finite family of coefficients of a
convex combination a family a = {αi|i ∈ I} where I is a finite subset of N, αi > 0 for each i ∈ I
and

∑
i∈I αi = 1. The convex combination that corresponds to such a family of coefficients is the

point expressed in terms of our sequence by
∑
i∈I αixi.

Lemma 13. Let (xn)n∈N be a weakly convergent sequence of elements in X with limit x. Then
there exits a sequence (ak)k∈N of families of coefficients of convex combinations, ak = {αki

∣∣i ∈ Ik},
such that the corresponding convex combinations xk =

∑
i∈Ik

αki xi, k ∈ N, converge strongly to x
: limk→∞ ‖xk − x‖ = 0.

�
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