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Abstract

This paper studies the threshold estimation of a TAR model when the underlying
threshold parameter is a random variable. It is shown that the Bayesian estimator is
consistent and its limit distribution is expressed in terms of a limit likelihood ratio.
Furthermore, convergence of moments of the estimators is also established. The limit
distribution can be computed via explicit simulations from which testing and inference
for the threshold parameter can be conducted. The obtained results are illustrated with
numerical simulations.
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1 Introduction

Since the publication of the seminal treatise of Tong [18], the field of nonlinear time series
has been receiving considerable attention in the literature. Today, nonlinear time series has
been widely applied to subjects such as ecology, engineering, chaos, finance and econometrics.
From a statistical perspective, nonlinear time series also furnishes an exciting platform for
nonstandard statistical inference both parametrically and nonparametrically. For a compre-
hensive survey on some of these recent developments, see Fan and Yao [9].

Among many different developments in nonlinear time series, estimation and testing of the
threshold parameter constitute one of most challenging tasks. One of the main reasons of the
difficulty arises from the fact that tricky and nonstandard asymptotic techniques are required
to handle the threshold estimation, see Chan [3], Hansen [11] and [12]. A comprehensive
theory for this type of problems seems to be lacking from the literature so far, however.

On the other hand, a relative complete theory for the statistical inference for diffusion
processes in continuous time is available, see for example Kutoyants [14] and [15]. In par-
ticular, these two books demonstrate that both the maximum likelihood and the Bayesian
approaches to diffusion processes can be put under a general context and an asymptotic
theory can be developed, albeit to its non standard nature.

One of the main purposes of this paper is to make use of this general theory and apply
it to the nonlinear time series context. Related contributions to continuous time ARMA and
threshold ARMA models can be found, for example, in Brockwell [2], Chan and Tong [5],
Stramer, Brockwell and Tweedie [17], and Tong [18] and the references therein.
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Although likelihood inference for the threshold parameter of nonlinear time series was
considered by Chan [3] and Hansen [11] previously, the asymptotic machineries employed
were of special nature which cannot be easily generalized to other situations. For further
background on likelihood tests of non-linearity, see Li and Li [16]. From a Bayesian per-
spective, Geweke and Teuri [10] considered a Bayesian threshold AR model and derived the
posterior distribution of the threshold parameter. However, a detailed description of the
asymptotic properties of the Bayesian estimator and its moment convergence were lacking.

By incorporating the developments in diffusion, this paper illustrates a general method-
ology to tackle both the maximum likelihood and Bayesian estimation problems from which
simulations can be efficiently conducted. Moreover, the proposed approach is sufficiently
transparent and can be easily adopted to other nonlinear time series context.

A second but equally important goal of this study is to develop an implementable scheme
for simulating and computing the limit likelihood statistics. By linking the integral equation
of the underlying invariant density of the nonlinear time series and the intensity of the limiting
compound Commission process, one can compute the form of the limiting likelihood explicitly.
To the best of our knowledge, this has never been conducted before and results obtained in
this paper can greatly enhance the inference for the threshold parameter of a nonlinear time
series and extend its applications.

This paper is organized as follows. Background introduction together with the statement
of the problem and the main result are given in Section 2. Section 3 consists of simula-
tions. Section 4 discusses the extension to cover the usual one-sided threshold setting while
conclusions and possible extensions are given in Section 5.

2 Main result

Consider the model

Xj+1 = ρ1 Xj 1I{|Xj |<ϑ} + ρ2 Xj 1I{|Xj |≥ϑ} + εj+1, j = 0, . . . , n − 1, (1)

where εj are i.i.d. N (0, σ2
)
, ρ1 �= ρ2, |ρ1| < 1 and |ρ2| < 1. Note that model (1) appears to

be different from the standard setting, where the threshold is usually partitioned as 1I{Xj<ϑ}
and 1I{Xj≥ϑ}. We choose the current setting because it is more general and mathematically
more convenient. Our results can be easily extended to encompass the standard setting
as demonstrated in Section 4.1. We suppose that σ2 > 0, ρ1, ρ2 are known and ϑ ∈ Θ =
(α, β) is the unknown threshold parameter. Our goal is to estimate ϑ from observations
Xn = (X0,X1, . . . ,Xn) and to describe the asymptotic behavior of the estimators as n → ∞.
Recall that (Xj)j≥1 is geometrically mixing (see Chen and Tsay [6]) and denote its stationary
density function by f (ϑ, x), see also Fan and Yao [9].

In this paper, we consider both the maximum likelihood and Bayesian approaches. Recall
that the likelihood function is written as

L (ϑ,Xn) = f0 (X0)
(

1√
2πσ2

)n

exp
{
− 1

2σ2

n−1∑
j=0

(
Xj+1 − ρ1 Xj 1I{|Xj |≤ϑ}

−ρ2 Xj 1I{|Xj |>ϑ}
)2}

,
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and the maximum likelihood estimator (MLE) ϑ̂n is defined by the equation

sup
ϑ∈Θ

L (ϑ,Xn) = max
[
L
(
ϑ̂n+,Xn

)
, L
(
ϑ̂n−,Xn

)]
. (2)

If this equation has many solutions, we can, for example, call the MLE to be the value which
is at the center of the gravity. Note that the function L (ϑ,Xn) , ϑ ∈ Θ has jumps at the
points

ϑl = |Xj | ∈ Θ, l = 1, . . . , L,

where L ≤ n. Clearly, if Θ = R, then L = n.
To apply the Bayesian approach, suppose that the unknown parameter is a random vari-

able with a known prior density p (θ) , θ ∈ Θ, which is continuous and positive. Using the
quadratic loss function, the Bayesian estimator (which minimizes the mean squares error) is
the conditional mathematical expectation

ϑ̃n =
∫ β

α
θ p (θ)L (ϑ,Xn) dθ =

∫ β
α θ p (θ)L (ϑ,Xn) dθ∫ β
α p (θ)L (ϑ,Xn) dθ

. (3)

Properties of the least squares estimator (LSE) of ϑ were studied in Chan [3]. The LSE
coincides with the MLE for Gaussian εj . We therefore recall properties of MLE and compare
them with properties of the Bayesian estimators.

First, introduce the stochastic process

Z (u) =

⎧⎨
⎩

exp
{
−ρ2ϑ2

2σ2 N+ (u) − ρϑ
σ2

∑N+( u )
l=0 ε+

l

}
, u ≥ 0,

exp
{
−ρ2ϑ2

2σ2 N− (−u) − ρ ϑ
σ2

∑N−(−u)
l=0 ε−l

}
, u ≤ 0,

where N+ (·) and N− (·) are two independent Poisson processes of intensities λ+ = λ− =
2f (ϑ, ϑ) (f(ϑ, x) is the stationary density function of Xj) and ε+

r , ε−l are independent Gaus-
sian N (0, σ2

)
random variables. It is easy to see that

Y+ (u) = ρ2 ϑ2 N+ (u) + 2ρϑ

N+(u)∑
l=0

ε+
l =

N+(u)∑
l=0

[
ρ2 ϑ2 + 2ρ ϑ ε+

l

]
, u ≥ 0

Y− (u) = ρ2 ϑ2 N− (u) + 2ρϑ

N−(u)∑
l=0

ε−l =
N−(u)∑

l=0

[
ρ2 ϑ2 + 2ρ ϑ ε−l

]
, u ≥ 0

are compound Poisson processes.
The random process Z (·) is piecewise constant and as a result, the points u∗ of the

maximum of the process Z (·) is defined by

sup
u

Z (u) = Z (u∗) ,

where
ûm < u∗ < ûM .
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Here ûm and ûM are two consecutive events of the process N+ (·), or of the process N− (·),
or they are respectively the first event of N+ (·) and N− (·). Simulated realizations of Z (·)
are given in Section 3. The center of gravity of the interval is given by the point

û =
um + uM

2
. (4)

Such a choice of û is explained in Section 4 below. It follows from the result of Chan [3] that
the MLE ϑ̂n is consistent and

n
(
ϑ̂n − ϑ

)
=⇒ û.

Introduce the random variable

ũ =

∫
uZ (u) du∫
Z (u) du

.

The main result is the following theorem.

Theorem 2.1. The Bayesian estimator ϑ̃n constructed by the observations Xn of the thresh-
old autoregressive process is consistent, the normalized difference n

(
ϑ̃n − ϑ

)
converges in

distribution :
n
(
ϑ̃n − ϑ

)
=⇒ ũ (5)

and for any p > 0
lim

n→∞Eϑ

∣∣∣n(ϑ̃n − ϑ
)∣∣∣p = Eϑ |ũ|p . (6)

Proof. The proof of this theorem is based on the general result by Ibragimov and Khasminskii
[13], Theorem 1.10.2. To apply it we study the normalized likelihood ratio process

Zn (u) =
L
(
ϑ + u

n ,Xn
)

L (ϑ,Xn)
, u ∈ Un = [n (α − ϑ) , n (β − ϑ)] ,

where ϑ is the true value. Recall the main steps. Write the Bayesian estimator
(
θu = ϑ + u

n

)
as

ϑ̃n =

∫ β
α θ p (θ)L (θ,Xn) dθ∫ β
α p (θ)L (θ,Xn) dθ

= ϑ +
1
n

∫
Un

u p (θu)L (θu,Xn) du∫
Un

p (θu) L (θu,Xn) du

= ϑ +
1
n

∫
Un

u p (θu) L(θu,Xn)
L(ϑ,Xn) du∫

Un
p (θu) L(θu,Xn)

L(ϑ,Xn) du
= ϑ +

1
n

∫
Un

u p (θu) Zn (u) du∫
Un

p (θu)Zn (u) du
.

Suppose that we proved the convergence of the process Zn (·) to the process Z (·) providing
the convergence of these integrals. Then

n
(
ϑ̃n − ϑ

)
=⇒

∫
uZ (u) du∫
Z (u) du

= ũ.

This convergence together with an estimate on the large deviations of the tails of the process
Zn (·) allow us to prove the convergence of the moments (6).

Now check the conditions of the Theorem 1.10.2 in [13]. We need to prove
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1. the convergence of the finite dimensional distributions of Zn (·) to the finite dimensional
distributions of Z (·), that is,

Zn (·) → Z (·) f.d.d., (7)

2. to establish the estimate:

Eϑ

[
Z1/2

n (u2) − Z1/2
n (u1)

]2
≤ C |u2 − u1| , (8)

3. and to establish the estimate: for any M > 0

EϑZ1/2
n (u) ≤ CM

|u|M . (9)

The convergence of finite-dimensional distributions follows from the Proposition 2 of [3].
Instead of repeating a technical argument as in [3], we offer a different intuitive (but rigorous)
explanation as follows. Rewrite the process (1) as

Xj+1 = ρ1 Xj + ρXj 1I{|Xj |≥ϑ} + εj+1, j = 0, . . . , n − 1, (10)

where we use 1I{|Xj |<ϑ} = 1I − 1I{|Xj |≥ϑ} and denote ρ = ρ2 − ρ1.
Put Zn (u) = exp

{− 1
2σ2 Yn (u)

}
and study the process Yn (u) for positive values of u.

Yn (u) =
n−1∑
j=0

[(
Xj+1 − ρ1 Xj − ρXj 1I{|Xj |>ϑ+ u

n}
)2

−
(
Xj+1 − ρ1 Xj − ρXj 1I{|Xj |>ϑ}

)2
]

=
n−1∑
j=0

(
ρXj

[
1I{|Xj |>ϑ} − 1I{|Xj |>ϑ+ u

n}
])

×
(
2Xj+1 − 2ρ1 Xj − ρXj

[
1I{|Xj |>ϑ} + 1I{|Xj |>ϑ+ u

n}
])

.

Note that
1I{|Xj |>ϑ} − 1I{|Xj |>ϑ+ u

n} = 1I{ϑ<|Xj |<ϑ+ u
n}.

Hence,

Yn (u) =
n−1∑
j=0

ρXj [2Xj+1 − 2ρ1 Xj − ρXj ] 1I{ϑ<|Xj |<ϑ+ u
n}

=
n−1∑
j=0

(
ρ2 X2

j + 2ρXj εj+1

)
1I{ϑ<|Xj |<ϑ+ u

n}. (11)

Next introduce another process

Y ◦
n (u) =

n−1∑
j=0

(
ρ2ϑ2 + 2ρϑ sgn (Xj) εj+1

)
1I{ϑ<|Xj |<ϑ+ u

n} (12)
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and put 1I{ϑ<|Xj |<ϑ+ u
n} = 1I{Bj(u)}. We show that this process is asymptotically equivalent

to the process Yn (u). We have

Eϑ |Yn (u) − Y ◦
n (u)| ≤ ρ2

n−1∑
j=0

Eϑ

∣∣X2
j − ϑ2

∣∣ 1I{Bj(u)}

+ 2ρ
n−1∑
j=0

Eϑ |Xj − ϑ sgn (Xj)| |εj+1| 1I{Bj(u)}.

For the first term we write

Eϑ

∣∣X2
j − ϑ2

∣∣ 1I{Bj(u)} =
∫

ϑ≤|x|≤ϑ+ u
n

∣∣x2 − ϑ2
∣∣ f (ϑ, x) dx

≤ 2
(
ϑ +

u

n

)(u

n

)2
max

ϑ<|x|<ϑ+ u
n

f (ϑ, x) ≤ C
(u

n

)2
.

The second term is (recall that Xj and εj+1 are independent)

Eϑ |Xj − ϑ sgn (Xj)| |εj+1| 1I{Bj(u)}
= Eϑ |Xj − ϑ sgn (Xj)| 1I{Bj(u)}Eϑ |εj+1|

=

√
2
π

σ Eϑ |Xj − ϑ sgn (Xj)| 1I{Bj(u)}

= 2

√
2
π

σ

∫
ϑ≤x≤ϑ+ u

n

|x − ϑ| f (ϑ, x) dx ≤ C
(u

n

)2
.

Hence,

Eϑ |Yn (u) − Y ◦
n (u)| ≤ C

u2

n
−→ 0

for any fixed u. Therefore, it is sufficient to study the limit distribution of the random
function Y ◦

n (u) and to show the convergence

Y ◦
n (u) =⇒ Y+ (u) =

N+(u)∑
l=0

[
ρ2 ϑ2 + 2ρ ϑ ε+

l

]
. (13)

To see that the limit of Y ◦
n (u) is a compound Poisson process, first note that the charac-

teristic function

Φ (v) = EϑeivY+(u) = Eϑeiv
∑N+(u)

l=0 [ρ2 ϑ2+2ρ ϑ ε+
l ]

= EϑEϑ

(
eiv
∑N+(u)

l=0 [ρ2 ϑ2+2ρ ϑ ε+
l ]
∣∣∣∣FN+

)

= Eϑe[ivρ2 ϑ2−2v2ρ2 ϑ2 σ2]N+(u)

= exp
{
u
(
eivρ2 ϑ2−2v2ρ2 ϑ2 σ2 − 1

)
2f (ϑ, ϑ)

}
, (14)
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where we denote FN+ to be the σ-algebra related to the Poisson process and make use of the
independence of ε+

l and N+ (·). The desired convergence will be proved if the convergence of
the characteristic function of the process Y ◦

n (·) to (14) is established.
Fix u > 0, then as n → ∞ the band

[
ϑ, ϑ + u

n

]
becomes narrower and the events, when

|Xjl
| ∈ [ϑ, ϑ + u

n

]
, become more rare. This means that the distance between two consecutive

events |Xjl
| ∈ [ϑ, ϑ + u

n

]
and

∣∣Xjl+1

∣∣ ∈ [ϑ, ϑ + u
n

]
tends to infinity. As the process (Xj)j≥1 is

geometrically mixing, these events become asymptotically independent. Under such circum-
stances, the characteristic function Φn (v) = EϑeivY ◦

n (u) can be calculated explicitly as

Φn (v) = Eϑ

⎛
⎝Eϑ exp

⎧⎨
⎩

n−1∑
j=0

iv
(
ρ2ϑ2 + 2ρϑ sgn (Xj) εj+1

)
1I{Bj(u)}

⎫⎬
⎭
∣∣∣∣∣∣FX

⎞
⎠

= Eϑ exp

⎧⎨
⎩

n−1∑
j=0

(
ivρ2ϑ2 − 2v2ρ2 ϑ2 σ2

)
1I{Bj(u)}

⎫⎬
⎭

=
(
Eϑ exp

{(
ivρ2ϑ2 − 2v2ρ2 ϑ2 σ2

)
1I{B1(u)}

})n
.

Further,

Eϑ exp
{(

ivρ2ϑ2 − 2v2ρ2 ϑ2 σ2
)

1I{B1(u)}
}

=
∫

e(ivρ2ϑ2−2v2ρ2 ϑ2 σ2)1I{B1(u)}f (ϑ, x) dx

=

(∫ −ϑ− u
n

−∞
+
∫ ∞

ϑ+ u
n

+
∫ ϑ

−ϑ

)
f (ϑ, x) dx

+

(∫ −ϑ

−ϑ− u
n

+
∫ ϑ+ u

n

ϑ

)
eivρ2ϑ2−2v2ρ2 ϑ2 σ2

f (ϑ, x) dx

= 1 − 2
u

n
f (ϑ, ϑ) + 2

u

n
eivρ2ϑ2−2v2ρ2 ϑ2 σ2

f (ϑ, ϑ) + o
(u

n

)
.

Hence,

lnΦn (v) = n ln
(
1 +

u

n

(
eivρ2ϑ2−2v2ρ2 ϑ2 σ2 − 1

)
2f (ϑ, ϑ) + o

(u

n

))
−→ u

(
eivρ2ϑ2−2v2ρ2 ϑ2 σ2 − 1

)
2f (ϑ, ϑ) = ln Φ (v) .

That is, it coincides with (14) and as a result, (7) is proved. �
To establish conditions (8) and (9) we need the following two lemmas.

Lemma 2.1. There exists a constant C > 0 such that for all values u1, u2 ∈ (n (α − ϑ) , n (β − ϑ))
we have the inequality

Eϑ

(
Z1/2

n (u2) − Z1/2
n (u1)

)2 ≤ C |u2 − u1| .
Proof. The first step is

Eϑ

(
Z1/2

n (u2) − Z1/2
n (u1)

)2
= 2 − 2 Eϑ [Zn (u2) Zn (u1)]

1/2

= 2 − 2 Eϑ+
u1
n

[
Zn (u2)
Zn (u1)

]1/2

,
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where the measure is changed from Pϑ to Pϑ+
u1
n

. We have (u2 ≥ u1 > 0)

Eϑ+
u1
n

[
Zn (u2)
Zn (u1)

]1/2

= Eϑ1 exp

⎧⎨
⎩− 1

4σ2

n−1∑
j=0

[
ρ2 X2

j + 2ρXj εj+1

] [
1I{Bj(u2)} − 1I{Bj(u1)}

]⎫⎬
⎭ .

Note that
1I{Bj(u2)} − 1I{Bj(u1)} = 1I{ϑ+

u1
n
≤|Xj |≤ϑ+

u2
n } ≡ 1I{Cj}.

Further as 1 − e−x ≤ x,

Eϑ

∣∣∣Z1/2
n (u2) − Z1/2

n (u1)
∣∣∣2

= 2 − 2Eϑ1 exp

⎧⎨
⎩− 1

4σ2

n−1∑
j=0

[
ρ2 X2

j + 2ρXj εj+1

]
1I{Cj}

⎫⎬
⎭

≤ 1
2σ2

Eϑ1

⎧⎨
⎩

n−1∑
j=0

[
ρ2 X2

j + 2ρXj εj+1

]
1I{Cj}

⎫⎬
⎭

=
nρ2

2σ2
Eϑ1 X2

j 1I{Cj} =
nρ2

2σ2

∫
Cj

x2 f
(
ϑ +

u1

n
, x
)

dx

=
nρ2

2σ2

(
ϑ +

u2

n

)2 u2 − u1

n

[
f
(
ϑ +

u1

n
, ϑ̃+

)
+ f

(
ϑ +

u1

n
, ϑ̃−
)]

≤ C |u2 − u1| . (15)

We see that (8) is fulfilled. �

Lemma 2.2. For any p > 0 there exists a constant C = C (p) > 0 such that for all values
u ∈ (n (α − ϑ) , n (β − ϑ)) we have the inequality

EϑZ1/2
n (u) ≤ C

|u|p .

Proof. We have to study the following expectation

EϑZ1/2
n (u) = Eϑ exp

⎧⎨
⎩− 1

4σ2

n−1∑
j=0

[
ρ2 X2

j + 2ρXj εj+1

]
1I{Bj(u)}

⎫⎬
⎭ .

Start with the probability

Pϑ {ln Zn (u) > −c |u|} = Pϑ

{
− 1

4σ2
Yn (u) > −c |u|

}

= Pϑ

⎧⎨
⎩− 1

4σ2

n−1∑
j=0

[
ρ2 X2

j + 2ρXj εj+1

]
1I{Bj(u)} > −c |u|

⎫⎬
⎭ .
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Write

Pϑ

{
− 1

8σ2
Yn (u) > − c

2
|u|
}

= Pϑ

⎧⎨
⎩− 3

32σ2

n−1∑
j=0

ρ2 X2
j 1I{Bj(u)}

− 1
32σ2

n−1∑
j=0

ρ2 X2
j 1I{Bj(u)} −

1
4σ2

n−1∑
j=0

ρXj εj+1 1I{Bj(u)} > − c

2
|u|
⎫⎬
⎭

≤ Pϑ

⎧⎨
⎩− 3

32σ2

n−1∑
j=0

ρ2 X2
j 1I{Bj(u)} > −3c

2
|u|
⎫⎬
⎭

+ Pϑ

⎧⎨
⎩− 1

32σ2

n−1∑
j=0

ρ2 X2
j 1I{Bj(u)} −

1
4σ2

n−1∑
j=0

ρXj εj+1 1I{Bj(u)} > c |u|
⎫⎬
⎭ .

For the last probability, by Markov inequality we have

Pϑ

⎧⎨
⎩− 1

32σ2

n−1∑
j=0

ρ2 X2
j 1I{Bj(u)} −

1
4σ2

n−1∑
j=0

ρXj εj+1 1I{Bj(u)} > c |u|
⎫⎬
⎭ ≤ e−c|u|

because

Eϑ exp

⎧⎨
⎩− 1

32σ2

n−1∑
j=0

ρ2 X2
j 1I{Bj(u)} −

1
4σ2

n−1∑
j=0

ρXj εj+1 1I{Bj(u)}

⎫⎬
⎭ = 1.

The last equality follows from the following property of the conditional expectation

Eϑ

(
exp
{
− ρ2

32σ2
X2

n−11I{Bn−1(u)} −
ρ

4σ2
Xn−1 εn 1I{Bn−1(u)}

}∣∣∣∣Fn−1

)

= exp

{
−ρ2X2

n−11I{Bn−1(u)}
32σ2

}
Eϑ

(
exp
{
−ρXn−11I{Bn−1(u)}

4σ2
εn

}∣∣∣∣Fn−1

)
= 1.

Hence, it is sufficient to study the probability

Pϑ

⎧⎨
⎩−

n−1∑
j=0

X2
j 1I{Bj(u)} > −c1 |u|

⎫⎬
⎭ ,

where c1 = 16 c σ2 ρ−2.
Fix some κ ∈ (0, 1) and consider first the local values u satisfying the condition |u| < nκ.
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Suppose that u > 0 (for u < 0 the consideration is similar). Then we have

Pϑ

⎧⎨
⎩

n−1∑
j=0

[
ϑ2 − X2

j

]
1I{Bj(u)} − ϑ2

n−1∑
j=0

1I{Bj(u)} ≥ −c1 u

⎫⎬
⎭

= Pϑ

⎧⎨
⎩

n−1∑
j=0

[
X2

j − ϑ2
]
1I{Bj(u)} + ϑ2

n−1∑
j=0

1I{Bj(u)} ≤ c1 u

⎫⎬
⎭

≤ Pϑ

⎧⎨
⎩

n−1∑
j=0

1I{Bj(u)} ≤ c2 u

⎫⎬
⎭ , c2 =

c1

ϑ2
,

because
[
X2

j − ϑ2
]
1I{Bj(u)} ≥ 0. Recall that the sum

∑n−1
j=0 1I{Bj(u)} converges to the Poisson

process of intensity λ = 2f (ϑ, ϑ), hence the last probability has to be small for the values
c2 < λ. Let Yj = 1I{Bj(u)} − Eϑ1I{Bj(u)} and note that

Eϑ1I{Bj(u)} =
∫

ϑ≤|x|≤ϑ+ u
n

f (ϑ, x) dx =
u

n

[
f
(
ϑ,−ϑ̃1

)
+ f

(
ϑ, ϑ̃2

)]

= 2
u

n
f (ϑ, ϑ) (1 + o (1)) ≥ u

n
f (ϑ, ϑ) ,

where the last inequality holds for n ≥ n1. Recall that the function f (ϑ, x) is even and
f (ϑ,−ϑ) = f (ϑ, ϑ). Further,

Pϑ

⎧⎨
⎩

n−1∑
j=0

1I{Bj(u)} ≤ c2 u

⎫⎬
⎭ ≤ Pϑ

⎧⎨
⎩
∣∣∣∣∣∣
n−1∑
j=0

Yj

∣∣∣∣∣∣ ≥ (f (ϑ, ϑ) − c2) u

⎫⎬
⎭

= Pϑ

⎧⎨
⎩
∣∣∣∣∣∣
n−1∑
j=0

Yj

∣∣∣∣∣∣ ≥ c3 u

⎫⎬
⎭ ≤

Eϑ

∣∣∣∑n−1
j=0 Yj

∣∣∣2p

c2p
3 u2p

,

where we chose such c that c3 = f (ϑ, ϑ)−16cσ2ρ−2ϑ−2 > 0. To estimate the last expectation
we apply the inequality of Dedeker and Doukhan (see (8.1) in [7]):

Eϑ

∣∣∣∣∣∣
n−1∑
j=0

Yj

∣∣∣∣∣∣
2p

≤
⎛
⎝4 p n

n−1∑
j=0

[Eϑ |Y0 Eϑ (Yj| F0)|p]
1
p

⎞
⎠

p

. (16)

Write

Eϑ (Yj| F0) = Eϑ (Eϑ (Yj | Fj−1)| F0)

10



and let g (x) = ρ1 x1I{|x|<ϑ} + ρ2 x1I{|x|≥ϑ}, then

Eϑ (Yj| Fj−1) = Eϑ

(
1I{Bj(u)}

∣∣∣Fj−1

)
− Eϑ1I{Bj(u)}

= Eϑ

(
1I{ϑ≤|g(Xj−1)+εj |≤ϑ+ u

n}
∣∣∣Fj−1

)
− Eϑ1I{Bj(u)}

=
∫

ϑ≤|g(Xj−1)+x|≤ϑ+ u
n

ϕ (x) dx +
∫

ϑ≤|x|≤ϑ+ u
n

f (ϑ, x) dx

=
u

n

[
ϕ

(
ϑ − g (Xj−1) +

ũ

n

)
+ ϕ

(
ϑ + g (Xj−1) −

˜̃u
n

)]

+
u

n

[
f
(
ϑ, ϑ +

ū

n

)
+ f

(
ϑ, ϑ − ¯̄u

n

)]
=

u

n
A (Xj−1) ,

where ϕ (·) is the density function of the Gaussian r.v. εj , i.e., ϕ (·) ∼ N (0, σ2
)
). Note that

the function A (x) defined by the last equality is bounded and EϑA (Xj−1) = 0.
Hence

Eϑ (Yj| F0) =
u

n
Eϑ (A (Xj−1)| F0)

and

n−1∑
j=0

[Eϑ |Y0 Eϑ (Yj| F0)|p]
1
p =

u

n

n−1∑
j=0

[Eϑ |Y0 Eϑ (A (Xj−1)| F0)|p]
1
p

≤ C
u

n

n−1∑
j=0

α (j − 1) = C
u

n

n−1∑
j=0

γj−1 ≤ C
u

n
,

where we used the geometrical ergodicity of (Xj)j≥1: α (j) ≤ γj, 0 < γ < 1 (see [6]) and the
inequality of Ibragimov

‖Eϑ (A (Xj)| F0) − EϑA (Xj)‖p

≤ C ‖Eϑ (A (Xj)| F0) − EϑA (Xj)‖1/p
1 ≤ C α (j)1/p

(see Bradley [1], Theorem 4.4, (a2)).
Finally, we obtain (for |u| ≤ nκ) the estimate

Pϑ

⎧⎨
⎩

n−1∑
j=0

1I{Bj(u)} ≤ c2 |u|
⎫⎬
⎭ ≤ C

|u|p .

Consider now the case |u| > nκ. Of course, |u| ≤ (β − α) n. We have

Pϑ

⎧⎨
⎩−

n−1∑
j=0

1I{Bj(u)} > −c1 |u|
⎫⎬
⎭

≤ Pϑ

⎧⎨
⎩
∣∣∣∣∣∣
n−1∑
j=0

(
X2

j 1I{Bj(u)} − EϑX2
j 1I{Bj(u)}

)∣∣∣∣∣∣ ≥ c1 |u|
⎫⎬
⎭ , (17)

11



because

EϑX2
j 1I{Bj(u)} =

∫
ϑ<|x|<ϑ+ |u|

n

x2f (ϑ, x) dx ≥ α2 |u|
n

inf
α≤x≤β

f (ϑ, x) ≥ c4

n
|u| ,

and the constant c is chosen such that c4 > 2c1. The last probability in (17) can be estimated
with the help of the following lemma.

Lemma 2.3. (Rosenthal’s moment inequality) Let (Zj)j≥1 be zero mean mixing series sat-
isfying the condition: there exist ε > 0 and c ∈ 2N, c > 2p > 2, such that

∞∑
r=1

(r + 1)c−2 [α (r)]
ε

c+ε < ∞, (18)

where α (r) is the α-mixing coefficient, then

E

∣∣∣∣∣∣
n∑

j=1

Zj

∣∣∣∣∣∣
2p

≤ C

[
n
(
E |Z1|2p+ε

) 2p
2p+ε + np

(
EZ2+ε

1

) 2p
2+ε

]
. (19)

For the proof see [8], p.26.
As the process Xj is geometrically mixing (see [9], Theorem 2.4), hence condition (18) is

fulfilled with any c > 0 and ε > 0. We apply (19) with

Zj = X2
j 1I{Bj(u)} − EϑX2

j 1I{Bj(u)}.

Obviously, en (u) ≡ EϑX2
j 1I{Bj(u)} ≤ β2 and en (u) ≤ C |u|

n . We suppose for simplicity that
u > 0,

Eϑ |Z1|2p+ε =
∫

ϑ<|x|<ϑ+ u
n

∣∣x2 − en (u)
∣∣2p+ε

f (ϑ, x) dx

+ en (u)2p+ε

(
1 −
∫

ϑ<|x|<ϑ+ u
n

f (ϑ, x) dx

)

≤ C1
u

n
+ C2

∣∣∣u
n

∣∣∣2p+ε

and similarly

Eϑ |Z1|2+ε ≤ C3
u

n
+ C4

∣∣∣u
n

∣∣∣2+ε
.

Hence,

Eϑ

∣∣∣∣∣∣
n−1∑
j=0

(
X2

j 1I{Bj(u)} − EϑX2
j 1I{Bj(u)}

)∣∣∣∣∣∣
2p

≤ C

(
n
∣∣∣u
n

∣∣∣ 2p
2p+ε + n

∣∣∣u
n

∣∣∣2p
+ np

∣∣∣u
n

∣∣∣ 2p
2+ε + np

∣∣∣u
n

∣∣∣2p
)

C

(
n

ε
2p+ε |u|1− ε

2p+ε + n1−2p |u|2p + n
pε

2+ε |u|p− ε
2+ε +

|u|2p

np

)

≤ C
(
|u| ε

κ(2p+ε)
+1− ε

2p+ε + |u| 1−2p
κ

+2p + |u|
pε

κ(2+ε)
+p− pε

2+ε + |u|p
)
≤ C |u|p ,

12



where we have used the relations n < |u|1/κ, |u| ≤ (β − α) n and have chosen sufficiently
small ε (or sufficiently large p).

By Chebyshev inequality

Pϑ

⎧⎨
⎩
∣∣∣∣∣∣
n−1∑
j=0

(
X2

j 1I{Bj(u)} − EϑX2
j 1I{Bj(u)}

)∣∣∣∣∣∣ ≥ c1 |u|
⎫⎬
⎭ ≤ C

|u|p .

The estimates obtained above allow us to write the following expression: for any p > 1
and all u ∈ (n (α − ϑ) , n (β − ϑ)), there exist constants c > 0 and C > 0 such that

Pϑ

{
Zn (u) > e−c|u|

}
≤ C

|u|p . (20)

For the expectation, note that

EϑZ1/2
n (u) = EϑZ1/2

n (u) 1I{
Z

1/2
n (u)≥e−

c
2 |u|} + EϑZ1/2

n (u) 1I{
Z

1/2
n (u)<e−

c
2 |u|}

≤
(
EϑZn (u)Pϑ

{
Zn (u) > e−c|u|

})1/2
+ e−

c
2
|u| ≤ C

|u|p/2
.

Recall that this estimate is valid for any p > 1, hence (9) is verified. Therefore the required
conditions are fulfilled and the Bayesian estimate satisfied all of the properties stipulated in
Theorem 1 (see Theorem 1.10.2, [13]). �

3 Simulations

We obtain the density functions of limit distributions of the MLE and Bayesian estimators
by the following simulations. The limit likelihood ratio is

Z (u) = exp

⎧⎨
⎩−ρ2ϑ2

2σ2
N+ (u) − ρϑ

σ2

N+(u)∑
l=0

ε+
l

⎫⎬
⎭ .

for u ≥ 0 and

Z (u) = exp

⎧⎨
⎩−ρ2ϑ2

2σ2
N− (−u) − ρϑ

σ2

N−(−u)∑
l=0

ε−l

⎫⎬
⎭ .

for u ≤ 0. Here N+ (·) and N− (·) are independent Poisson processes of intensity λ = 2f (ϑ, ϑ)
and the Gaussian random variables ε+

l , ε−l ∼ N (0, σ2
)

are independent, ε±0 = 0.
Denote

γ =
(ρ2 − ρ1)ϑ

σ
, ε±l =

−ε±l
σ

, u =
v

λ
, ν± (v) = N±

(v

λ

)
.

Then the Poisson processes ν+ (v) , v ≥ 0 and ν− (v) ,≥ 0 have intensity 1 and the limit
likelihood ratio

Zγ (v) =

⎧⎨
⎩

exp
{
γ
∑ν−(−v)

l=0 ε−l − γ2

2 ν− (−v)
}

, if v ≤ 0,

exp
{
γ
∑ν+(v)

l=0 ε+
l − γ2

2 ν+ (v)
}

, if v > 0.
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Now the limit process Zγ (v) only depends on one parameter (γ) and the limit random
variables û and ũ can be written as

û =
ûγ

λ
, ũ =

ũγ

λ
, ũγ =

∫∞
−∞ v Zγ (v) dv∫∞
−∞ Zγ (v) dv

,

in obvious notation.
The next problem is to find the function f (ϑ, x), where f (ϑ, x) is the stationary density

function of Xj. As
Xj+1 = ρ1 Xj + ρXj 1I{|Xj |>ϑ} + εj+1

where Xj and εj+1 are independent, we obtain the convolution equation

f (ϑ, y) =
1√

2πσ2

∫ ∞

−∞
g (ϑ, x) e−1/2σ2(y−x)2dx .

Herein, we denote the density function of ρ1 Xj + ρXj 1I{|Xj |>ϑ} by g (ϑ, x). This density can
be expressed as a function of f (·), which is a solution to a corresponding integral equation,
see also Chan and Tong [4]. Specifically, observe that

g (ϑ, x) =
1
ρ1

f

(
ϑ,

x

ρ1

)
1I{ |x|

ρ1
<ϑ
} +

1
ρ2

f

(
ϑ,

x

ρ2

)
1I{ |x|

ρ2
≥ϑ
}.

Hence, the integral equation is

f (ϑ, y) =
∫ ∞

−∞

[
1
ρ1

f

(
ϑ,

x

ρ1

)
1I{ |x|

ρ1
<ϑ
}

+
1
ρ2

f

(
ϑ,

x

ρ2

)
1I{ |x|

ρ2
≥ϑ
}
]

ϕ (y − x) dx

=
∫ ∞

−∞
f (ϑ, x)

[
ϕ (y − xρ1) 1I{|x|<ϑ} + ϕ (y − xρ2) 1I{|x|≥ϑ}

]
dx. (21)

Solution to this equation at the point ϑ is the intensity λ = 2f (ϑ, ϑ) of the corresponding
Poisson processes. Therefore the value f (ϑ, ϑ) satisfies the integral equation

f (ϑ, ϑ) =
∫ ∞

−∞
f (ϑ, x)

[
ϕ (ϑ − xρ1) 1I{|x|<ϑ} + ϕ (ϑ − xρ2) 1I{|x|≥ϑ}

]
dx ,

where ϕ (·) is Gaussian N (0, σ2
)

density. We see that f (ϑ, ϑ) > 0. To visualize the properties
of the sample path Z(u) and the invariant density f(θ, ϑ), we conduct a simulation experiment
by taking ε±l to be i.i.d. standard normal random variables. The parameters used are
ϑ = 2, ρ1 = 0.15, ρ2 = 0.95, σ = 1 and λ = 0.5. A Gaussian kernel is used to estimate the
form of f(θ, ϑ) based on 50, 000 observations of Xt generated from model (10) with εt being
i.i.d. N (0, 1) random variables. The plots of Z(u) and f(θ, ϑ) are given in Figures 1 and 2
respectively.

Figure 1.
Figure 2.
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For the maximum likelihood estimate, note that the maximum values of Z (u) form an
interval [ûm, ûM ] with length |ûM − ûm| = η, where η is an exponential random variable with
probability density 2fϑe−2fϑ x, x ≥ 0, fϑ = f (ϑ, ϑ). We can take any value of u from this
interval, the middle point û = ûM+ûm

2 , say. To have its density function we only need to
simulate the exponential and the Gaussian independent random variables which will generate
û1, . . . ûN . The historgram of û based on 20, 000 simulated values of û is plotted in Figure 3.
As can be seen clearly, the MLE performs reasonably well and converges to zero very fast.
The sample mean of the simulated û is 0.01 with a standard deviation 0.033.

For the Bayesian estimators we first calculate the integral

J+ =
∫ ∞

0
uZ (u) du =

∞∑
l=0

∫ ul+1

ul

u e−
ρ2ϑ2

2σ2 l− ρϑ

σ2

∑l
r=0 εrdu

=
1
2

∞∑
l=0

e−
ρ2ϑ2

2σ2 l− ρϑ

σ2

∑l
r=0 εr

(
u2

l+1 − u2
l

)
.

Here εr ∼ N (0, σ2
)

and ul =
∑l

r=0 ηr. By a similar way we have

I+ =
∫ ∞

0
Z (u) du =

∞∑
l=0

e−
ρ2ϑ2

2σ2 l− ρϑ

σ2

∑l
r=0 εr (ul+1 − ul) .

The limit random variable is
ũ =

J− + J+

I− + I+
,

with obvious notation. To understand the behavior of the Bayesian estimator, we simulate
the Bayesian estimator for 20, 000 times with the histogram of ũ given in Figure 4. From this
figure, it is clearly seen that the Bayesian estimator converges to the expected value zero.
The sample mean is −0.0026 with a standard deviation 0.028. It is interesting to see that
this simulation results are consistent with the theory that the limit variances of the MLE and
BE

d2
MLE ∼ 1

N

N∑
q=1

û2
q and d2

BE ∼ 1
N

N∑
q=1

ũ2
q

satisfy
d2

MLE > d2
BE .

Note that it follows from the symmetry of the limit process, the random variables û and ũ
satisfy Eϑû = 0 = Eϑũ.

For 20,000 simulated estimators, we obtain the limit variances as d2
MLE = 22.83 ± 0.68

and d2
BE = 16.79 ± 0.39. These values concur with the theoretical results that the Bayesian

estimator outperforms the MLE.

Figure 3.
Figure 4.

To examine the finite sample performance of the test statistics, we computed the critical
values of the limit distributions based on the MLE and the BE using the same set of param-
eters as given in Figures 3. The sizes are chosen for commonly used test statistics and the
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0.025 0.05 0.075 0.1 0.90 0.925 0.95 0.975
MLE −9.66 −6.64 −5.28 −4.46 4.46 5.38 6.87 9.84
BE −8.44 −6.29 −5.07 −4.27 4.21 5.09 6.26 8.43

Simulated Values −9.70 −6.88 −5.48 −4.64 4.90 5.85 7.55 10.28

Table 1: Critical values for λ = 0.5, θ = 2, σ = 1, ρ1 = 0.95 and ρ2 = 0.15.

limiting values are given in the first two rows of Table 1. As can be seen, both the MLE
and BE procedures perform reasonably well and are in close agreement. Furthermore, the
numbers in the last row of Table 1 are the critical values computed from the test statistics
in (5), which are directly simulated from model (1) using the same set of parameters. It is
seen that the critical values generated from the simulated statistics agree remarkably well
with the critical values computed from the limit distributions in Table 1 based on MLE. In
summary, Table 1 demonstrates the usefulness of the limit distributions in computing the
critical values. If one needs to conduct a test for another set of parameters, then a similar
table can be computed and the programming code is available from the authors upon request.

4 One-sided threshold

In the nonlinear time series literature, the threshold AR model usually takes the form (see,
e.g., [3], [11] and [18])

Xj+1 = ρ1Xj1I{Xj<ϑ} + ρ2Xj1I{Xj≥ϑ}εj+1 (22)

Note that the study of these one-sided threshold models is no more complicated than (1)
because the log-likelihood ratio

ln Zn (u) =
L
(
ϑ + u

n ,Xn
)

L (ϑ,Xn)
= − 1

2σ2
Yn (u)

depends on the stochastic process (for fixed u > 0)

Yn (u) =
n−1∑
j=0

(
ρ2X2

j + 2ρXjεj+1

)
1I{ϑ<Xj<ϑ+ u

n}

(see (11)), which is approximated by the process

Y ◦
n (u) =

n−1∑
j=0

(
ρ2ϑ2 + 2ρϑεj+1

)
1I{ϑ<Xj<ϑ+ u

n}.

Here we use the same notations as before and add the condition that |ρ1| < 1. Comparison
with (12) shows that the factor sgn (Xj) no longer exists and this simplifies matters much in
the application of the limit theorems. Specifically, similar to (13), the corresponding limit
for Y ◦

n (u) becomes

Y ◦
n (u) =⇒ Y+ (u) =

N+(u)∑
l=0

[
ρ2ϑ2 + 2ρϑε+

l

]
,
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the only difference is: instead of 2f (ϑ, θ), the intensity of the Poisson process N+ (u) is
λ+ = f (ϑ, ϑ).

The inequalities for the process Zn (u) obtained in Lemmas 2.1 and 2.2 can be obtained for
Zn (u) of the process (22) exactly the same way as in this paper. Consequently, the asymptotic
behavior of the Bayesian estimator ϑ̃n for model (22) is the same as that described in the
Theorem 2.1 with the slightly difference due to the form of the limit likelihood ratio Z (u),
where the intensity of the Poisson process is now f (ϑ, ϑ), not 2f (ϑ, θ).

5 Discussion

Let us explain heuristically why the choice (4) for the MLE is better than other types of
the form ûγ = γum + (1 − γ)uM with γ �= 1/2, γ ∈ [0, 1]. The interval [um, uM ] can be on
the positive, negative parts of R or it can be

[
u−

1 , u+
1

]
, where u−

1 and u+
1 are the first event

of the Poisson processes N− (·) and N+ (·) respectively. If [um, uM ] =
[
u−

1 , u+
1

]
, then the

random variables −u−
1 = ζ1 and u+

1 = ζ2 are independent exponential with the parameter
λ = 2f (ϑ, ϑ).

If this interval is on the negative part, then
[
u−

l̂+1
, u−

l̂

]
(u−

l is the l-th event of the Poisson

process N− (·)) has random length l̂ and

ûγ = γu−
l̂+1

+ (1 − γ)u−
l̂

= γ
(
u−

l̂
− ζ
)

+ (1 − γ) u−
l̂

= u−
l̂
− γζ,

where ζ is exponential random variable with parameter λ. For the positive part

ûγ = γu+

l̂
+ (1 − γ)u+

l̂+1
= γu+

l̂
+ (1 − γ)

(
u+

l̂
+ ζ
)

= u+

l̂
+ (1 − γ) ζ.

Denote p0 to be the probability that the maximum of the random process Z (·) is on the inter-
val
[
u−

1 , u+
1

]
. The positive and negative intervals are equiprobable, hence their probabilities

p−, p+ satisfy the relations p− = p+ = (1 − p0) /2 ≡ p. We then write

Eϑû2
γ = p− Eϑ

(
u−

l̂
− γζ

)2
+ p0 Eϑ (γζ1 − (1 − γ) ζ2)

2

+ p+ Eϑ

(
u+

l̂
+ (1 − γ) ζ

)2
= 2pEϑ

(
u+

l̂

)2
+ 2pEϑ

(
u+

l̂

)
Eϑζ

+
2 p

λ2

(
2γ2 − 2γ + 1

)
+

2 p0

λ2

(
4γ2 − 4γ + 1

)
and direct calculations show

min
γ∈[0,1]

Eϑ (ûγ)2 = Eϑ (û)2 .

Note that in this problem of parameter estimation, it is possible to introduce the notion
of asymptotic efficiency of estimators. The lower bound on the risk of all estimators ϑ̄n for
the quadratic loss function is as follows:

lim
δ→0

lim
n→∞

sup
|ϑ−ϑ0|<δ

n2 Eϑ

(
ϑ̄n − ϑ

)2 ≥ Eϑ0 (ũ)2 . (23)

This bound follows from the results of the Section 1.9 in [13]. We just note that the
second moment Eϑ (ũ)2 is a continuous function of ϑ.
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As Eϑ (ũ)2 is the limit of the Bayesian estimator, we can think of these estimators having
smaller limit error than the MLE (as in singular estimation problems). To prove this asymp-
totic efficiency of the Bayesian estimators, we need to show that the convergence of the second
moments is uniform in ϑ on compacts. The corresponding uniform estimates on the process
Zn (·) can be easily verified and what remains to be done is to establish the uniform version
of the convergence of finite dimensional distributions, which can also be verified.

Another possible generalization is to consider the case where {εj}j≥1 are independent
random variables with a known density function satisfying some regularity conditions. Then
the estimator ϑ̂n (defined by (2)) becomes the least squares estimator and ϑ̃n (defined by (3))
is no longer Bayesian, but becomes another estimator having desirable asymptotic properties.
The behaviour of these estimators can be similarly studied and their limit distributions can
be defined via the corresponding limit process Z (·) when ε±l are no longer Gaussian.

Note that a continuous-time analogue of TAR model is prescribed by the following stochas-
tic differential equation

dXt = −�1 Xt 1I{|Xt|<ϑ}dt − �2 Xt 1I{|Xt|≥ϑ}dt + σ dWt, 0 ≤ t ≤ T,

where �1 �= �2 > 0. This model can be called Threshold Ornstein-Uhlenbeck (TOU) process
and it can be considered as a continuous-time approximation of the discrete time model (1).
The properties of the MLE and BE of the threshold ϑ can be studied with the help of the
technique developed in [15].
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Figure 1: The kernel density function of f(θ).
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Figure 2: A sample path of Z(u).
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Figure 3: Histogram of the MLE û.
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Figure 4: Histogram of the Bayesian estimator ũ.

23


	short title
	short title
	short title
	short title
	short title

