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Abstract

We consider the problem of optimal multiple switching in finite horizon, when the state of the

system, including the switching costs, is a general adapted stochastic process. The problem is

formulated as an extended impulse control problem and solved using probabilistic tools such as the

Snell envelop of processes and reflected backward stochastic differential equations. Finally, when

the state of the system is a Markov process, we show that the associated vector of value functions

provides a viscosity solution to a system of variational inequalities with inter-connected obstacles.
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1 Introduction

Optimal control of multiple switching models arise naturally in many applied disciplines. The pioneer-

ing work by Brennan and Schwartz [4], proposing a two-modes switching model for the life cycle of

an investment in the natural resource industry, is probably first to apply this special case of stochas-

tic impulse control to questions related to the structural profitability of an investment project or an

industry whose production depends on the fluctuating market price of a number of underlying com-

modities or assets. Within this discipline, Carmona and Ludkosvki [5] and Deng and Xia [8] suggest a

multiple switching model to price energy tolling agreements, where the commodity prices are modeled
∗Department of Mathematics, The Royal Institute of Technology, S-100 44 Stockholm, Sweden. e-mail:

boualem@math.kth.se
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as continuous time processes, and the holder of the agreement exercises her managerial options by

controlling the production modes of the assets. Target tracking in aerospace and electronic systems

(cf. Doucet and Ristic [12]) is another class of problems, where these models are very useful. These are

often formulated as a hybrid state estimation problem characterized by a continuous time target state

and a discrete time regime (mode) variables. All these applications seem agree that reformulating

these problems in a multiple switching dynamic setting is a promising (if not the only) approach to

fully capture the interplay between profitability, flexibility and uncertainty.

The optimal two-modes switching problem is probably the most extensively studied in the literature

starting with above mentioned work by Brennan and Schwartz [4], and Dixit [10] who considered a

similar model, but without resource extraction - see Dixit and Pindyck [11] and Trigeorgis [33] for an

overview, extensions of these models and extensive reference lists. Brekke and Øksendal [2] and [3],

Shirakawa [30], Knudsen, Meister and Zervos [26], Duckworth and Zervos [13] and [14] and Zervos

[34] use the framework of generalized impulse control to solve several versions and extensions of this

model, in the case where the decision to start and stop the production process is done over an infinite

time horizon and the market price process of the underlying commodity is a diffusion process, while

Trigeorgis [32] models the market price process of the commodity as a binomial tree. Hamadène and

Jeanblanc [23] consider a finite horizon optimal two-modes switching problem in the case of Brownian

filtration setting while Hamadène and Hdhiri [24] extend the set up of the latter paper to the case

where the processes of the underlying commodities are adapted to a filtration generated by a Brownian

motion and an independent Poisson process. Porchet et al. [29] also study the same problem, where

they assume the payoff function to be given by an exponential utility function and allow the manager

to trade on the commodities market. Finally, let us mention the work by Djehiche and Hamadène

[9] where it is shown that including the possibility of abandonment or bankruptcy in the two-modes

switching model over a finite time horizon, makes the search for an optimal strategy highly nonlinear

and is not at all a trivial extension of previous results.

An example of the class of multiple switching models discussed in Carmona and Ludkovski [5] is

related to the management strategies to run a power plant that converts natural gas into electricity

(through a series of gas turbines) and sells it in the market. The payoff rate from running the plant

is roughly given by the difference between the market price of electricity and the market price of gas

needed to produce it.

Suppose that besides running the plant at full capacity or keeping it completely off (the two-modes

switching model), there also exists a total of q−2 (q ≥ 3) intermediate operating modes, corresponding

to different subsets of turbines running.
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Let `ij and Ψi denote respectively the switching costs from state i to state j, to cover the required

extra fuel and various overhead costs and the payoff rate in mode i. A management strategy for the

power plant is a combination of two sequences:

(i) a nondecreasing sequence of stopping times (τn)n≥1, where, at time τn, the manager decides to

switch the production from its current mode to another one ;

(ii) a sequence of indicators (ξn)n≥1 taking values in {1, . . . , q} of the state the production is

switched to. At τn for n ≥ 1, the station is switched from its current mode ξn−1 to ξn. The value ξ0

is deterministic and is the state of the station at time 0.

When the power plant is run under a strategy S = ((τn)n≥1, (ξn)n≥1), over a finite horizon [0, T ],

the total expected profit up to T for such a strategy is

J(S, i) = E

∫ T

0

∑
n≥0

(
Ψξn(s)11(τn,τn+1](s)

)
ds−

∑
n≥1

`ξn−1,ξn (τn)11[τn<T ]


where we set τ0 = 0 and ξ0 = i. The optimal switching problem we will investigate is to find a

management strategy S∗ such that J(S∗, i) = supS J(S, i).

Using purely probabilistic tools such as the Snell envelop of processes and backward stochastic

differential equations (BSDEs for short), inspired by the work by Hamadène and Jeanblanc [23], Car-

mona and Ludkovski [5] suggest a powerful robust numerical scheme based on Monte Carlo regressions

to solve this optimal switching problem when the payoff rates are given as deterministic functions of

a diffusion process. They also list a number of technical challenges, such as the continuity of the

associated value function, that prevent a rigorous proof of the existence and a characterization of an

optimal solution of this problem.

The objective of this work is to fill in this gap by providing a solution to the optimal multiple

switching problem, using the same framework. We are able to prove existence and provide a character-

ization of an optimal strategy of this problem, when the payoff rates Ψi and the switching costs `i,j are

only adapted to the filtration generated by a Brownian motion. The generalization, e.g. to a filtration

generated by a Brownian motion and an independent Poisson measure is more or less straightforward

and can be done as in Hamadène and Hdhiri [24].

We first provide a Verification Theorem that shapes the problem, via the Snell envelope of pro-

cesses. We show that if the Verification Theorem is satisfied by a vector of continuous processes

(Y 1, . . . , Y q) such that, for each i ∈ {1, . . . , q},

Y i
t = ess sup

τ≥t
E
[∫ τ

t
Ψi(s)ds+ max

j 6=i
(−`ij(τ) + Y j

τ )1[τ<T ]

∣∣Ft] , (1)
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then each Y i
t is the value function of the optimal problem when the system is in mode i at time t:

Y i
t = ess sup

S∈Ait
E

∫ T

t

∑
n≥0

(
Ψξn(s)11(τn,τn+1](s)

)
ds−

∑
n≥1

`ξn−1,ξn (τn)11[τn<T ]

∣∣Ft
 .

where Ait is the set of admissible strategies such that τ1 ≥ t a.s. and ξ0 = i. An optimal strategy S∗

is then constructed using the relation (1). Moreover, it holds that Y i
0 = supS J(S, i), provided that

the system is in mode i at time t = 0.

The unique solution for the Verification Theorem is obtained as the limit of sequences of processes

(Y i,n)n≥0, where for any t ≤ T , Y i,n
t is the value function (or the optimal yield) from t to T , when

the system is in mode i at time t and only at most n switchings after t are allowed. This sequence of

value functions will be defined recursively (see (15) and (16)).

Finally, if the processes Ψi are given by ψi(t,Xt) where X is an Itô diffusion and ψi are deterministic

functions and if each `ij(t) is a deterministic function of t, we prove existence of q deterministic

continuous functions v1(t, x), . . . , vq(t, x) such that for any i ∈ {1, . . . , q}, Y i
t = vi(t,Xt). Moreover the

vector (v1, . . . , vq) is a viscosity solution of a system of q variational inequalities with inter-connected

obstacles (see (20)). This result improves the one by Tang and Yong (1993) proved under rather

restrictive assumptions.

The organization of the paper is as follows. In Section 2, we give a formulation of the problem and

provide some preliminary results. Sections 3 and 4 are devoted to establish the Verification Theorem

and provide an optimal strategy to our problem. In Section 5, we show that in the case when Ψi are

deterministic functions of an Itô process and `ij are deterministic function of t, the vector of value

functions of the switching problem provides a viscosity solution of a system of variational inequalities

with inter-connected obstacles. This system is the deterministic version of the Verification Theorem.

Finally in Section 6 we address the issue of numerical simulations of the solution of this switching

problem.

2 Formulation of the problem, assumptions and preliminary results

Throughout this paper (Ω,F ,P) will be a fixed probability space on which is defined a standard d-

dimensional Brownian motion B = (Bt)0≤t≤T whose natural filtration is (F0
t := σ{Bs, s ≤ t})0≤t≤T .

Let F = (Ft)0≤t≤T be the completed filtration of (F0
t )0≤t≤T with the P-null sets of F . Hence F

satisfies the usual conditions, i.e. it is right continuous and complete.

Furthermore, let:

- P be the σ-algebra on [0, T ]× Ω of F-progressively measurable sets ;
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- Mp be the set of P-measurable and R-valued processes w = (wt)t≤T such that

E
[∫ T

0
|ws|pds

]
<∞

and Sp be the set of P-measurable, continuous, R-valued processes w = (wt)t≤T such that

E
[
sup0≤t≤T |wt|p

]
<∞ (p > 1 is fixed).

- For any stopping time τ ∈ [0, T ], Tτ denotes the set of all stopping times θ such that τ ≤ θ ≤ T ,

P-a.s.. Next for τ ∈ T0, we denote by Fτ the σ-algebra of events prior to τ , i.e. the set

{A ∈ F , A ∩ τ ≤ t ∈ Ft, ∀t ≤ T}.

The finite horizon multiple switching problem can be formulated as follows. First assume w.l.o.g

that the plant is in production mode 1 at t = 0 and let J := {1, ..., q} be the set of all possible activity

modes of the production of the commodity. A management strategy of the project consists, on the one

hand, of the choice of a sequence of nondecreasing F-stopping times (τn)n≥1 (i.e. τn ≤ τn+1) where

the manager decides to switch the activity from its current mode, say i, to another one from the set

J −i ⊆ {1, . . . , i− 1, i+ 1, . . . , q}. On the other hand, it consists of the choice of the mode ξn to which

the production is switched at τn from the current mode i. Therefore, we assume that for any n ≥ 1,

ξn is a r.v. Fτn-measurable with values in J .

Assume that a strategy of running the plant S := ((τn)n≥1, (ξn)n≥1) is given. We denote by (ut)t≤T

its associated indicator of the production activity mode at time t ∈ [0, T ]. It is given by:

ut = 11[0,τ1](t) +
∑
n≥1

ξn11(τn,τn+1](t). (2)

Note that τ := (τn)n≥1 and the sequence ξ := (ξn)n≥1 determine uniquely u and conversely, the

left continuous with right limits process u determine uniquely τ and ξ. Therefore a strategy for our

multiple switching problem will be simply denoted by u. A strategy u =: ((τn)n≥1, (ξn)n≥1) will be

called admissible if it satisfies

lim
n→∞

τn = T P− a.s.

and the set of admissible strategies is denoted by A.

Now for i ∈ J , let Ψi := (Ψi(t))0≤t≤T be a stochastic process which belongs toMp. In the sequel,

it stands for the payoff rate per unit time when the plant is in state i. On the other hand, for i ∈ J

and j ∈ J −i let `ij := (`ij(t))0≤t≤T be a continuous process of Sp. It stands for the switching cost

of the production at time t from its current mode i to another mode j ∈ J −i. For completeness we

adopt the convention that `ij ≡ +∞ for any i ∈ J and j ∈ J − J −i (j 6= i). This convention is set

in order to exclude the switching from the state i to another state j which does not belong to J −i.
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Moreover we suppose that there exists a real constant γ > 0 such that for any i, j ∈ J , and any t ≤ T ,

`ij(t) ≥ γ.

When a strategy u := ((τn)n≥1, (ξn)n≥1) is implemented the optimal yield is given by

J(u) = J(1, u) = E

∫ T

0
Ψus(s)ds−

∑
n≥1

`uτn−1 ,uτn
(τn)11[τn<T ]

 .
We can now formulate the multi-regime starting and stopping problem as follows.

Problem 1 Find a strategy u∗ ≡ ((τ∗n)n≥1, (ξ∗n)n≥1) ∈ A such that

J(u∗) = sup
u∈A

J(u).

An admissible strategy u is called finite if, during the time interval [0, T ], it allows the manager

to make only a finite number of decisions, i.e. P[ω, τn(ω) < T, for all n ≥ 0] = 0. Hereafter the set

of finite strategies will be denoted by Af . The next proposition tells us that the supremum of the

expected total profit can only be reached over finite strategies .

Proposition 1 The suprema over admissible strategies and finite strategies coincide:

sup
u∈A

J(u) = sup
u∈Af

J(u). (3)

Proof. If u is an admissible strategy which does not belong to Af , then J(u) = −∞. Indeed, let

B = {ω, τn(ω) < T, for all n ≥ 0} and Bc be its complement. Since u ∈ A \ Af , then P(B) > 0.

Recall that the processes Ψi belong to Mp ⊂M1. Therefore,

J(u) ≤ E
[∫ T

0
max
i∈J
|Ψi(s)| ds

]

−E

∑
n≥1

`uτn−1 ,uτn
(τn)

 11B +

∑
n≥1

`uτn−1 ,uτn
(τn)11[τn<T ]]

 11Bc

 = −∞,

since for any t ≤ T and i, j ∈ J , `ij(t) ≥ γ > 0. This implies that J(u) = −∞ and then (3) is proved.

We finish this section by introducing the key ingredient of the proof of the main result, namely

the notion of Snell envelope of processes and its properties. We refer to El Karoui [16], Cvitanic and

Karatzas [6], Appendix D in Karatzas and Shreve [25] or Hamadène [22] for further details.
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2.1 The Snell Envelope

In the following proposition we summarize the main results on the Snell envelope of processes used in

this paper.

Proposition 2 Let U = (Ut)0≤t≤T be an F-adapted R-valued càdlàg process that belongs to the class

[D], i.e. the set of random variables {Uτ , τ ∈ T0} is uniformly integrable. Then, there exists an F-

adapted R-valued càdlàg process Z := (Zt)0≤t≤T such that Z is the smallest super-martingale which

dominates U , i.e, if (Z̄t)0≤t≤T is another càdlàg supermartingale of class [D] such that for all 0 ≤

t ≤ T , Z̄t ≥ Ut, then Z̄t ≥ Zt for any 0 ≤ t ≤ T . The process Z is called the Snell envelope of U .

Moreover it enjoys the following properties:

(i) For any F-stopping time θ we have:

Zθ = ess sup
τ∈Tθ

E[Uτ |Fθ] (and then ZT = UT ). (4)

(ii) The Doob-Meyer decomposition of Z implies the existence of a martingale (Mt)0≤t≤T and two

nondecreasing processes (At)0≤t≤T and (Bt)0≤t≤T which are respectively continuous and purely

discontinuous predictable such that for all 0 ≤ t ≤ T ,

Zt = Mt −At −Bt (with A0 = B0 = 0).

Moreover, for any 0 ≤ t ≤ T , {∆tB > 0} ⊂ {∆tU < 0} ∩ {Zt− = Ut−}.

(iii) If U has only positive jumps then Z is a continuous process. Furthermore, if θ is an F-stopping

time and τ∗θ = inf{s ≥ θ, Zs = Us} ∧ T then τ∗θ is optimal after θ, i.e.

Zθ = E[Zτ∗θ |Fθ] = E[Uτ∗θ |Fθ] = ess sup
τ≥θ

E[Uτ |Fθ]. (5)

(iv) If (Un)n≥0 and U are càdlàg and of class [D] and such that the sequence (Un)n≥0 converges

increasingly and pointwisely to U then (ZU
n
)n≥0 converges increasingly and pointwisely to ZU ;

ZUn and ZU are the Snell envelopes of respectively Un and U . Finally, if U belongs to Sp then

ZU belongs to Sp.

For the sake of completeness, we give a proof of the stability result (iv), as we could not find it in

the standard references mentioned above.

Proof of (iv). Since, for any n ≥ 0, Un converges increasingly and pointwisely to U , it follows that

for all t ∈ [0, T ], ZUnt ≤ ZUt P-a.s. Therefore, P-a.s., for any t ∈ [0, T ], lim
n→∞

ZUnt ≤ ZUt . Note that the

process
(

lim
n→∞

ZU
n

t

)
0≤t≤T

is a càdlàg supermartingale of class [D], since it is a limit of a nondecreasing
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sequence of supermartingales (see e.g. Dellacherie and Meyer [7], pp.86). But Un ≤ ZUn implies

that P-a.s., for all t ∈ [0, T ], Ut ≤ lim
n→∞

ZU
n

t . Thus, ZUt ≤ lim
n→∞

ZU
n

t since the Snell envelope of U is

the lowest supermartingale that dominates U . It follows that P-a.s., for any t ≤ T , lim
n→∞

ZU
n

t = ZUt ,

whence the desired result.

Assume now that U belongs to Sp. Since, for any 0 ≤ t ≤ T ,

−E

[
sup

0≤s≤T
|Us|

∣∣∣∣Ft
]
≤ Ut ≤ E

[
sup

0≤s≤T
|Us|

∣∣∣∣Ft
]
,

using the Doob-Meyer inequality, it follows that ZU also belongs to Sp.

3 A verification Theorem

In terms of a verification theorem, we show that Problem 1 is reduced to the existence of q continuous

processes Y 1, . . . , Y q solutions of a system of equations expressed via Snell envelopes. The process

Y i
t , for i ∈ J , will stand for the optimal expected profit if, at time t, the production activity is in the

state i. So for τ an F-stopping time and (ζt)0≤t≤T , (ζ ′t)0≤t≤T two continuous F-adapted and R−valued

processes let us set:

Dτ (ζ = ζ ′) := inf{s ≥ τ, ζs = ζ ′s} ∧ T.

We have the following:

Theorem 1 (Verification Theorem)

Assume there exist q Sp-processes (Y i := (Y i
t )0≤t≤T , i = 1, . . . , q) that satisfy (1). Then Y 1, . . . , Y q

are unique. Furthermore :

(i)

Y 1
0 = sup

v∈A
J(v). (6)

(ii) Define the sequence of F-stopping times (τn)n≥1 by

τ1 = D0

(
Y 1 = max

j∈J−1
(−`1j + Y j)

)
(7)

and, for n ≥ 2,

τn = Dτn−1

(
Y uτn−1 = max

k∈J−τn−1
(−`τn−1k + Y k)

)
, (8)

where,

• uτ1 =
∑
j∈J

j11{maxk∈J−1 (−`1k(τ1)+Y kτ1 )=−`1j(τ1)+Y jτ1}
;

• for any n ≥ 1 and t ≥ τn, Y uτn
t =

∑
j∈J

11[uτn=j]Y
j
t ;
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• for n ≥ 2, uτn = l on the set

{
max

k∈J−uτn−1

(−`uτn−1k
(τn) + Y k

τn) = −`uτn−1 l
(τn) + Y l

τn

}
, where

`uτn−1k
(τn) =

∑
j∈J

11[τn−1=j]`jk(τn) and J −uτn−1 =
∑
j∈J

11[τn−1=j]J −j .

Then, the strategy u = ((τn)n≥1, (ξn)n≥1) is optimal i.e. J(u) ≥ J(v) for any v ∈ A.

Proof. The proof consists essentially in showing that each process Y i, as defined by (1), is nothing

but the expected total profit or the value function of the optimal problem, given that the system is in

mode i at time t. More precisely,

Y i
t = ess sup

u∈Af,it

E

∫ T

t
Ψus(s)ds−

∑
j≥1

`uτj−1uτj
(τj)11[τj<T ]

∣∣∣∣Ft
 , (9)

where Af,it is the set of finite strategies such that τ1 ≥ t, P-a.s. and ut = i (at time t the system

is in mode i). This characterization implies in particular that the processes Y 1, . . . , Y q are unique.

Moreover, thanks to a repeated use of the characterization of the Snell envelope (Proposition 2, (iii)),

the strategy u defined recursively by (7) and (8), is shown to be optimal.

Indeed assuming that at time t = 0 the system is in mode 1, it holds true that for any 0 ≤ t ≤ T ,

Y 1
t +

∫ t

0
Ψ1(s)ds = ess sup

τ≥t
E
[∫ τ

0
Ψ1(s)ds+ max

j∈J−1
(−`1j(τ) + Y j

τ )11[τ<T ]

∣∣∣∣Ft] . (10)

But, Y 1
0 is F0-measurable. Therefore it is P-a.s. constant and then Y 1

0 = E[Y 1
0 ].

On the other hand, according to Proposition 2, (iii), τ1 as defined by (7) is optimal, and

uτ1 =
∑
j∈J

j11{maxk∈J−1 (−`1k(τ1)+Y kτ1 )=−`1j(τ1)+Y jτ1}
.

Therefore,

Y 1
0 = E

[∫ τ1

0
Ψ1(s)ds+ max

j∈J−1
(−`1j(τ1) + Y j

τ1)11[τ1<T ]

]
= E

[∫ τ1

0
Ψ1(s)ds+ (−`1uτ1 (τ1) + Y

uτ1
τ1 )11[τ1<T ]

]
. (11)

Next, we claim that P-a.s. for every τ1 ≤ t ≤ T,

Y
uτ1
t = ess sup

τ≥t
E

[∫ τ

t
Ψuτ1

(s)ds+ max
j∈J−uτ1

(−`uτ1j(τ) + Y j
τ )11[τ<T ]

∣∣∣∣Ft
]
. (12)

To see this, remark that Equation (1) means that the process
{
Y i
t +

∫ t
0 Ψi(s)ds, 0 ≤ t ≤ T

}
is a

supermartingale which dominates{∫ t

0
Ψi(s)ds+ max

j∈J−i
(−`ij(t) + Y j

t )11[t<T ], 0 ≤ t ≤ T
}
.

9



Since J is finite, the process
∑

i∈J 11[uτ1=i]

(
Y i
t +

∫ t
τ1

Ψi(s)ds
)

, for t ≥ τ1, is a supermartingale which

dominates
∑

i∈J 11[uτ1=i]

(∫ t
τ1

Ψi(s)ds+ maxj∈J−i(−`ij(t) + Y j
t )11[t<T ]

)
. Thus the process

Y
uτ1
t +

∫ t
τ1

Ψuτ1
(s)ds, for t ≥ τ1, is a supermartingale which is greater than∫ t

τ1

Ψuτ1
(s)ds+ max

j∈J−uτ1
(−`uτ1j(t) + Y j

t )11[t<T ]. (13)

To complete the proof it remains to show that it is the smallest one which has this property and use

the characterization of the Snell envelope given in Proposition 2.

Indeed, let (Zt)t∈[0,T ] be a supermartingale of class [D] such that for any t ≥ τ1,

Zt ≥
∫ t

τ1

Ψuτ1
(s)ds+ max

j∈J−uτ1
(−`uτ1j(t) + Y j

t )11[t<T ].

It follows that for every t ≥ τ1,

Zt11[uτ1=i] ≥ 11[uτ1=i]

(∫ t

τ1

Ψi(s)ds+ max
j∈J−i

(−`ij(t) + Y j
t )11[t<T ]

)
.

But the process (Zt11[uτ1=i])t∈[0,T ] is a supermartingale for t ≥ τ1 since 11[uτ1=i] is Ft-measurable and

non-negative. With again (1) it follows that for every t ≥ τ1,

11[uτ1=i]Zt ≥ 11[uτ1=i]

(
Y i
t +

∫ t

τ1

Ψi(s)ds
)
.

Summing over i, we get for every t ≥ τ1,

Zt ≥ Y
uτ1
t +

∫ t

τ1

Ψuτ1
(s)ds.

Hence, the process Y uτ1
t +

∫ t
τ1

Ψuτ1
(s)ds, t ≥ τ1, is the Snell envelope of∫ t

τ1

Ψuτ1
(s)ds+ max

j∈J−uτ1
(−`uτ1j(t) + Y j

t )11[t<T ],

whence Eq. (12).

Now from (12) and the definition of τ2 in Eq. (8), we have

Y
uτ1
τ1 = E

[∫ τ2

τ1

Ψuτ1
(s)ds+ max

j∈J−uτ1
(−`uτ1j(τ2) + Y j

τ2)11[τ2<T ]

∣∣∣∣Fτ1
]

= E
[∫ τ2

τ1

Ψuτ1
(s)ds+ (−`uτ1uτ2 (τ2) + Y

uτ2
τ2 )11[τ2<T ]

∣∣∣∣Fτ1] .
Setting this characterization of Y uτ1

τ1 in (11) and noting that 11[τ1<T ] is Fτ1-measurable, it follows that

Y 1
0 = E

[∫ τ1

0
Ψ1(s)ds− `1uτ1 (τ1)11[τ1<T ]

]
+E

[∫ τ2

τ1

Ψuτ1
(s)ds.11[τ1<T ] − `uτ1uτ2 (τ2)11[τ2<T ] + Y

uτ2
τ2 11[τ2<T ]

]
= E

[∫ τ2

0
Ψus(s)ds− `1uτ1 (τ1)11[τ1<T ]]− `uτ1uτ2 (τ2)11[τ2<T ] + Y

uτ2
τ2 11[τ2<T ]

]
,

10



since [τ2 < T ] ⊂ [τ1 < T ].

Repeating this procedure n times, we obtain

Y 1
0 = E

∫ τn

0
Ψus(s)ds−

n∑
j=1

`uτj−1uτj
(τj)11[τj<T ] + Y uτn

τn 11[τn<T ]

 . (14)

But the strategy (τn)n≥1 is finite, otherwise Y 1
0 would be equal to −∞ since `ij ≥ γ > 0 contradicting

the assumption that the processes Y j belong to Sp. Therefore, taking the limit as n→∞ we obtain

Y 1
0 = J(u).

To complete the proof it remains to show that J(u) ≥ J(v) for any other finite admissible strategy

v ≡ ((θn)n≥1, (ζn)n≥1). The definition of the Snell envelope yields

Y 1
0 ≥ E

[∫ θ1

0
Ψ1(s)ds+ max

j∈J−1
(−`1j(θ1) + Y j

θ1
)11[θ1<T ]

]
≥ E

[∫ θ1

0
Ψ1(s)ds+ (−`1vθ1 (θ1) + Y

vθ1
θ1

)11[θ1<T ]

]
.

But once more using a similar characterization as (12), we get

Y
vθ1
θ1

≥ E

[∫ θ2

θ1

Ψvθ1
(s)ds+ max

j∈J−vθ1
(−`vθ1j(θ2) + Y j

θ2
)11[θ2<T ]

∣∣∣∣Fθ1
]

≥ E
[∫ θ2

θ1

Ψvθ1
(s)ds+ (−`vθ1vθ2 (θ2) + Y

vθ2
θ2

)11[θ2<T ]

∣∣∣∣Fθ1] .
Therefore,

Y 1
0 ≥ E

[∫ θ1

0
Ψ1(s)ds− `1vθ1 (θ1)11[θ1<T ]

]
+E

[
11[θ1<T ]

∫ θ2

θ1

Ψvθ1
(s)ds− `vθ1vθ2 (θ2)11[θ2<T ] + Y

vθ2
θ2

11[θ2<T ]

]
= E

[∫ θ2

0
Ψvs(s)ds− `1vθ1 (θ1)11[θ1<T ] − `vθ1vθ2 (θ2)11[θ2<T ] + Y

vθ2
θ2

11[θ2<T ]

]
.

Repeat this argument n times to obtain

Y 1
0 ≥ E

∫ θn

0
Ψvs(s)ds−

n∑
j=1

`vθn−1
vθn

(θn)11[θn<T ] + Y
vθn
θn

11[θn<T ]

 .
Finally, thanks to the dominated convergence theorem, taking the limit as n→∞ yields

Y 1
0 ≥ E

∫ T

0
Ψvs(s)ds−

∑
j≥1

`vθn−1
vθn

(θn)11[θn<T ]

 = J(v)

since the strategy v is finite. Hence, the strategy u is optimal. The proof is now complete. �
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4 Existence of the processes (Y 1, . . . , Y q).

We will now establish existence of the processes (Y 1, . . . , Y q). They will be obtained as a limit of a

sequence of processes (Y 1,n, . . . , Y q,n)n≥0 defined recursively defined by means of the Snell envelope

notion as follows:

For i ∈ J , let us set, for any 0 ≤ t ≤ T ,

Y i,0
t = E

[∫ T

0
Ψi(s)ds

∣∣∣∣Ft]− ∫ t

0
Ψi(s)ds, (15)

and for n ≥ 1,

Y i,n
t = ess sup

τ≥t
E
[∫ τ

0
Ψi(s)ds+ max

k∈J−i
(−`ik(τ) + Y k,n−1

τ )11[τ<T ]

∣∣∣∣Ft]− ∫ t

0
Ψi(s)ds. (16)

In the next proposition we collect some useful properties of Y 1,n, . . . , Y q,n. In particular we show

that, as n → ∞, the limit processes Ỹ i := lim
n→∞

Y i,n exist and are only càdlàg but have the same

characterization (1) as the Y i’s. Thus the existence proof of the Y i’s will consist in showing that Ỹ i’s

are continuous and hence satisfy the Verification Theorem. This will be done in Theorem 2, below.

Proposition 3 (i) For each n ≥ 0, the processes Y 1,n, . . . , Y q,n are continuous and belong to Sp.

(ii) For any i ∈ J , the sequence (Y i,n)n≥0 converges increasingly and pointwisely P -a.s. for any

0 ≤ t ≤ T and in Mp to a càdlàg processes Ỹ i. Moreover these limit processes Ỹ i = (Ỹ i
t )0≤t≤T ,

i = 1, . . . , q, satisfy

(a) E

[
sup

0≤t≤T

∣∣∣Ỹ i
t

∣∣∣p] <∞, i ∈ J .

(b) For any 0 ≤ t ≤ T we have,

Ỹ i
t = ess sup

τ≥t
E
[∫ τ

t
Ψi(s)ds+ max

k∈J−i
(−`ik(τ) + Ỹ k

τ )11[τ<T ]

∣∣∣∣Ft] .
Proof. (i) Let us show by induction that for any n ≥ 0 and every i ∈ J Y i,n ∈ Sp. For n = 0 the

property holds true since we can written Y i,0 as the sum of a continuous process and a martingale w.r.t.

to the Brownian filtration. Therefore Y i,0 is continuous and since the process (Ψi(s))0≤s≤T belongs

to Mp, using Doob’s inequality, we obtain that Y i,0 belongs to Sp. Suppose now that the property

is satisfied for some n. By Proposition 2, for every i ∈ J and up to a term, Y i,n+1 is the Snell

envelope of the process
(∫ t

0
Ψi(s)ds+ max

k∈J−i
(−`ik(t) + Y k,n

t )11[t<T ]

)
0≤t≤T

and verifies Y i,n+1
T = 0.

Since max
k∈J−i

(−`ik(t) + Y k,n
t )∣∣

t=T

< 0, this process is continuous on [0, T ) and have a positive jump at

T . Hence Y i,n+1 is continuous (Proposition 2-(iii)) and belongs to Sp. This shows that, for every

i ∈ J , Y i,n ∈ Sp for any n ≥ 0.

12



(ii) Let us now set Ai,nt = {u ∈ A, such that u0 = i, τ1 ≥ t and τn+1 = T}. Using the same

arguments as the ones of the Verification Theorem 1 the following characterization of the processes

Y i,n holds true.

Y i,n
t = ess sup

u∈Ai,nt

E

∫ T

t
Ψus(s)ds−

n∑
j=1

`uτj−1uτj
(τj)11[τj<T ]

∣∣∣∣Ft
 . (17)

Since Ai,nt ⊂ A
i,n+1
t , we have P -a.s. for all t ∈ [0, T ], Y i,n

t ≤ Y i,n+1
t thanks to the continuity of Y i,n.

Using once more (17) and since `ij ≥ γ > 0, we obtain for each i ∈ J ,

∀ 0 ≤ t ≤ T, Y i,n
t ≤ E

[∫ T

t
max
i=1,...,q

|Ψi(s)| ds
∣∣∣∣Ft] . (18)

Therefore, for every i ∈ J , the sequence (Y i,n)n≥0 is convergent and then let us set Ỹ i
t := lim

n→∞
Y i,n
t ,

for t ≤ T . The process Ỹ i satisfies:

Y i,0
t ≤ Ỹ i

t ≤ E
[∫ T

t
max
i=1,...,q

|Ψi(s)| ds
∣∣∣∣Ft] , 0 ≤ t ≤ T. (19)

Let us now show that Ỹ i is càdlàg . Actually, for each i ∈ J and n ≥ 1, by Eq. (16), the process(
Y i,n
t +

∫ t
0 Ψi(s)ds

)
0≤t≤T

is a continuous supermartingale. Hence its limit process
(
Ỹ i
t +

∫ t
0 Ψi(s)ds

)
0≤t≤T

is càdlàg as a limit of increasing sequence of continuous supermartingales (see Dellacherie and Meyer

[7], pp.86). Therefore, Ỹ i is càdlàg . Next using (19), the Lp-properties of Ψi and Doob’s Maximal

Inequality yield, for each i ∈ J ,

E

[
sup

0≤t≤T

∣∣∣Ỹ i
t

∣∣∣p] <∞.
By the Lebesgue Dominated Convergence Theorem, the sequence (Y i,n)n≥0 also converges to Ỹ i in

Mp.

Finally, the càdlàg processes Ỹ 1, . . . , Ỹ q satisfy Eq. (1), since they are limits of the increasing sequence

of processes Y i,n, i ∈ J , that satisfy (16). We use Proposition 2-(iv) to conclude.

We will now prove that the processes Ỹ 1, . . . , Ỹ q are continuous and satisfy the Verification The-

orem 1.

Theorem 2 The limit processes Ỹ 1, . . . , Ỹ q satisfy the Verification Theorem.

Proof. Recall from Proposition 3 that the processes Ỹ 1, . . . , Ỹ q are càdlàg , uniformly Lp-integrable

and satisfy (1). It remains to prove that they are continuous.

Indeed note that, for i ∈ J , the process
(
Ỹ i
t +

∫ t
0 Ψi(s)ds

)
0≤t≤T

is the Snell envelope of

(∫ t

0
Ψi(s)ds+ max

k∈J−i
(−`ik(t) + Ỹ k

t )11[t<T ]

)
0≤t≤T

.
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Of course the processes
(∫ t

0
Ψi(s)ds

)
0≤t≤T

are continuous. Therefore from the property of the jumps

of the Snell envelope (Proposition 2-(ii)), when there is a (necessarily negative) jump of Ỹ i at t, there

is a jump, at the same time t, of the process (maxk∈J−i(−`ik(s)+ Ỹ k
s ))0≤s≤T . Since `ij are continuous,

there is j ∈ J −i such that ∆tỸ
j < 0 and Ỹ i

t− = −`ij(t) + Ỹ j
t−.

Suppose now there is an index i1 ∈ J for which there exists t ∈ [0, T ] such that ∆tỸ
i1 < 0. This

implies that there exists another index i2 ∈ J −i1 such that ∆tỸ
i2 < 0 and Ỹ i1

t− = −`i1i2(t) + Ỹ i2
t−. But

given i2, there exists an index i3 ∈ J −i2 such that ∆tỸ
i3 < 0 and Ỹ i2

t− = −`i2i3(t) + Ỹ i3
t−. Repeating

this argument many times, we get a sequence of indices i1, . . . , ij , . . . ∈ J that have the property that

ik ∈ J −ik−1 , ∆tỸ
ik < 0 and Ỹ

ik−1

t− = −`ik−1ik(t) + Ỹ ik
t−.

Since J is finite there exist two indices m < r such that im = ir and im, im+1, ..., ir−1 are mutually

different. It follows that:

Ỹ im
t− = −`imim+1(t) + Ỹ

im+1

t− = −`imim+1(t)− `im+1im+2(t) + Ỹ
im+2

t−

= · · · = −`imim+1(t)− · · · − `ir−1ir(t) + Ỹ ir
t−.

As im = ir we get

−`imim+1(t)− · · · − `ir−1ir(t) = 0

which is impossible since for any i 6= j, all 0 ≤ t ≤ T , `ij(t) ≥ γ > 0. Therefore there is no i ∈ J

for which there is a t ∈ [0, T ] such that ∆tỸ
i < 0. This means that the processes Ỹ 1, . . . , Ỹ q are

continuous. Since they satisfy (1), then by uniqueness, Y i = Ỹ i, for any i ∈ J . Thus, the Verification

Theorem 1 is satisfied by Y 1, . . . , Y q.

We end this section by the following convergence result of the sequences (Y i,n)n≥0 to Y i’s.

Proposition 4 It holds true that for any i ∈ J ,

E

[
sup
s≤T

∣∣Y i,n
s − Y i

s

∣∣p]→ 0 as n→ +∞.

Proof. By Proposition 3, we know that P-a.s. for any n ≥ 1, the function t 7→ Y i,n
t (ω) is continuous

and for any 0 ≤ t ≤ T the sequence (Y i,n
t (ω))n≥1 converges increasingly to Y i

t (ω). As the function

t 7→ Y i
t (ω) is continuous then thanks to Dini’s Theorem it holds true that:

P− a.s. lim
n→∞

sup
0≤t≤T

|Y i,n
t (ω)− Y i

t (ω)| = 0.

The result now follows from the Lebesgue Dominated Convergence Theorem.
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5 Connection with systems of variational inequalities

In this section we will assume that the switching processes `ij are deterministic functions of the time

variable. An example of such a family of switching costs is

`ij(t) = e−rtaij ,

where, aij are constant costs and r > 0 is some discounting rate. We moreover assume that the

payoff rates are given by Ψi(ω, t) = ψi(t,Xt) where ψi are deterministic functions and X = (Xt)t≥0

is a vector of stochastic processes that stands for the market price of the underlying commodities

and other financial assets that influence the production of energy. When the underlying market price

process X is Markov, the classical methods of solving impulse problems (cf. Brekke and Øksendal

[3], Guo and Pham [21], and Tang and Yong [31]) formulates a Verification Theorem suggesting that

the value function of our optimal switching problem is the unique viscosity solution of the following

system of quasi-variational inequalities (QVI) with inter-connected obstacles.
min{vi(t, x)− max

j∈J−i
(−`ij(t) + vj(t, x)),−∂tvi(t, x)−Avi(t, x)− vi(t, x)} = 0,

vi(T, x) = 0, i ∈ J ,
(20)

where A is the infinitesimal generator of the driving process X.

By means of yet another characterization of the Snell envelope in terms of systems of reflected

backward SDEs, due to El Karoui et al. [17] (Theorems 7.1 and 8.5), we are able to show that the

vector of value processes (Y 1, . . . , Y q) of our switching problem provides a viscosity solution of the

system (20). Actually we show that under mild assumptions on the coefficients ψi(t, x) and `ij(t),

Y i
t = vi(t,Xt), 0 ≤ t ≤ T, i ∈ J ,

where v1(t, x), . . . , vq(t, x) are continuous deterministic functions viscosity solution of the system of

QVI with inter-connected obstacles (20). We note that there are works which deal with the same

problem in using the dynamic programming principle or/and other methods such as the stochastic

target problem [1, 31]. In [31], the solution is obtained under rather stringent assumptions than ours,

while in [1], Bouchard provides a solution for (20) in a weak sense since he faces an issue in connection

with a lack of continuity of the solution. In this section, in using the well known link between BSDEs

and variational inequalities, we obtain the existence of a continuous solution for (20) in a more general

framework as e.g. the one of [31]. However we should point out that recently the viscosity solution

approach of the switching problem is handled with weaker assumptions on the switching costs `ij in

El Asri and Hamadène [15]. Actually, they consider the case when `ij depend also on x and they show
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existence and uniqueness of a continuous solution for (20). Their proof of continuity is quite technical.

Now for (t, x) ∈ [0, T ]× Rk, let (Xt,x
s )s≤T be the solution of the following Itô diffusion:

dXt,x
s = b(s,Xt,x

s )ds+ σ(s,Xt,x
s )dBs, t ≤ s ≤ T ; Xt,x

s = x for s ≤ t, (21)

where the functions b and σ, with appropriate dimensions, satisfy the following standard conditions:

there exists a constant C ≥ 0 such that

|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|) and |σ(t, x)− σ(t, x′)|+ |b(t, x)− b(t, x′)| ≤ C|x− x′| (22)

for any t ∈ [0, T ] and x, x′ ∈ Rk.

These properties of σ and b imply in particular that the process Xt,x := (Xt,x
s )0≤s≤T , solution of

(21), exists and is unique. Its infinitesimal generator A is given by

A =
1
2

k∑
i,j=1

(σ.σ∗)ij(t, x)∂2
ij +

k∑
i=1

bi(t, x)∂i. (23)

Moreover the following estimates hold true (see e.g. Revuz and Yor [28] for more details).

Proposition 5 The process Xt,x satisfies the following estimates:

(i) For any θ ≥ 2, there exists a constant C such that

E

[
sup

0≤s≤T

∣∣Xt,x
s

∣∣θ] ≤ C(1 + |x|θ). (24)

(ii) There exists a constant C such that for any t, t′ ∈ [0, T ] and x, x′ ∈ Rk,

E

[
sup

0≤s≤T

∣∣∣Xt,x
s −Xt′,x′

s

∣∣∣2] ≤ C(1 + |x|2)(|x− x′|2 + |t− t′|). (25)

Let us now introduce the following assumption on the payoff rates ψi and the switching cost

functions `ij .

Assumption [H].

(H1) The running costs ψi, i = 1, . . . , q, (of Subsection 2.1) are jointly continuous and are of polyno-

mial growth, i.e. there exist some positive constants C and δ such that for each i ∈ J ,

|ψi(t, x)| ≤ C(1 + |x|δ), ∀(t, x) ∈ [0, T ]× Rk.

(H2) For any i, j ∈ J , the switching costs `ij are deterministic continuous functions of t and there

exists a real constant γ > 0 such for any 0 ≤ t ≤ T , min{`ij(t), i, j ∈ J , i 6= j} ≥ γ.
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Taking into account Proposition 5, the processes (ψi(s,X
t,x
s ))0≤s≤T belong to M2. A condition

we will need to establish a characterization of the value processes of our optimal problem with a class

of reflected backward SDEs.

Recall the notion of viscosity solution of the system (20).

Definition 1 Let (v1, . . . , vq) be a vector of continuous functions on [0, T ]×Rk with values in Rq and

such that (v1, . . . , vq)(T, x) = 0 for any x ∈ Rk. The vector (v1, . . . , vq) is called:

(i) a viscosity supersolution (resp. subsolution) of the system (20) if for any (t0, x0) ∈ [0, T ] ×

Rk and any q-uplet functions (ϕ1, . . . , ϕq) ∈ (C1,2([0, T ] × Rk))q such that (ϕ1, . . . , ϕq)(t0, x0) =

(v1, . . . , vq)(t0, x0) and for any i ∈ J , (t0, x0) is a maximum (resp. minimum) of ϕi − vi then we

have: for any i ∈ J ,

min{vi(t0, x0)− max
j∈J−i

(−`ij(t0) + vj(t0, x0)),−∂tϕi(t0, x0)−Aϕi(t0, x0)− ψi(t0, x0)} ≥ 0 (resp. ≤ 0)

(26)

(ii) a viscosity solution of the system (20) if it is both a viscosity supersolution and subsolution.

Let now (Y 1;t,x
s , . . . , Y q;t,x

s )0≤s≤T be the vector of value processes which satisfies the Verification

Theorem 1 associated with (ψi(s,X
t,x
s ))s≤T and (`ij(s))s≤T . The vector (Y 1;t,x, . . . , Y q;t,x) exists

through Theorem 2 combined with the estimates of Xt,x of Proposition 5 and Assumption [H].

The following theorem is the main result of this section.

Theorem 3 Under Assumption [H], there exist q deterministic functions v1(t, x), . . . , vq(t, x) defined

on [0, T ]× Rk and R-valued such that:

(i) v1, . . . , vq are continuous in (t, x), are of polynomial growth and satisfy, for each t ∈ [0, T ] and

for every s ∈ [t, T ],

Y i;t,x
s = vi(s,Xt,x

s ), for every i ∈ J .

(ii) The vector of functions (v1, . . . , vq) is a viscosity solution for the system of variational inequalities

(20).

Proof. The proof is obtained through the three following steps.

Step 1. An approximation scheme

For n ≥ 0, let (Y 1,n;t,x
s )0≤s≤T , . . . , (Y

q,n;t,x
s )0≤s≤T be the continuous processes defined recursively

by Eqs. (15)-(16). Using Assumption [H], the estimate (24) for Xt,x and Proposition 3, the processes

Y 1,n;t,x, . . . , Y q,n;t,x belong to S2. Therefore, using the representation theorem of solutions of standard
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BSDEs (Pardoux and Peng [27]) there exist deterministic functions v1,0, . . . , vq,0 defined on [0, T ]×Rk,

continuous and with polynomial growth such that for every (t, x) ∈ [0, T ]× Rk and every i ∈ J ,

Y i,0;t,x
s = vi,0(s,Xt,x

s ), t ≤ s ≤ T.

Using an induction argument, and applying Theorem 8.5 in El-Karoui et al. [17] at each step, yields

the existence of deterministic functions v1,n, . . . , vq,n defined on [0, T ] × Rk, that are continuous and

with polynomial growth such that, for every (t, x) ∈ [0, T ]× Rk and every i ∈ J ,

Y i,n;t,x
s = vi,n(s,Xt,x

s ), t ≤ s ≤ T.

Since the sequences of processes (Y i,n;t,x)n≥0 is nondecreasing in n, then for any i ∈ J , the sequences

of deterministic functions (vi,n)n≥0 is also nondecreasing.

Moreover, we have

vi,n(t, x) ≤ Y i;t,x
t ≤ E

[∫ T

t
max
i=1,...,q

∣∣ψi(s,Xt,x
s )
∣∣ ds∣∣∣∣Ft] ≤ E

[∫ T

t
max
i=1,...,q

∣∣ψi(s,Xt,x
s )
∣∣ ds] (27)

where the last inequality is obtained after taking expectations, since vi,n(t, x) is a deterministic func-

tion. It follows that for any i ∈ J , the sequence (vi,n)n≥0 converges pointwisely to a deterministic

function vi and the last inequality in Eq. (27) implies that vi is of at most polynomial growth through

ψi and the estimates (24) for Xt,x. Furthermore, for any (t, x) ∈ [0, T ]×Rk we have

Y i;t,x
s = vi(s,Xt,x

s ), t ≤ s ≤ T. (28)

Step 2. L2-continuity of the value functions (t, x) −→ Y i;t,x.

Let (t, x) and (t′, x′) be elements of [0, T ]× Rk. Using the representation (9) we will show that

E

[
sup

0≤s≤T

∣∣∣Y i;t′,x′
s − Y i;t,x

s

∣∣∣2]→ 0 as (t′, x′)→ (t, x) for any i ∈ J .

Indeed, recall that, by (9), we have, for any i ∈ J and s ∈ [0, T ]

Y i;t′,x′
s = ess sup

u∈Ais
E

∫ T

s
ψur(r,X

t′,x′
r )dr −

∑
j≥1

`uτj−1uτj
(τj)11[τj<T ]

∣∣∣∣Fs
 ,

where Ais is the set of finite strategies such that τ1 ≥ s, P-a.s. and u0 = i. Therefore, taking into

account of the fact that `ij does not depend on x, we have:

Y i;t,x
s − Y i;t′,x′

s ≤ ess sup
u∈Ais

E
[∫ T

s
ψur(r,X

t,x
r )− ψur(r,Xt′,x′

r )dr
∣∣∣∣Fs]

≤ ess sup
u∈Ais

E
[∫ T

s

∣∣∣ψur(r,Xt,x
r )− ψur(r,Xt′,x′

r )
∣∣∣ dr∣∣∣∣Fs]

≤ E

[∫ T

0

(
q∑
i=1

∣∣∣ψi(r,Xt,x
r )− ψi(r,Xt′,x′

r )
∣∣∣) dr∣∣∣∣Fs

]
.
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Note that if `ij depend on x the deduction of the previous inequality would have been not correct.

Hence we have ∣∣∣Y i;t,x
s − Y i;t′,x′

s

∣∣∣ ≤ E

[∫ T

0

(
q∑
i=1

∣∣∣ψi(r,Xt,x
r )− ψi(r,Xt′,x′

r )
∣∣∣) dr∣∣∣∣Fs

]
.

Now, using Doob’s Maximal Inequality (see e.g. [28]) and taking expectation, there exists a constant

C ≥ 0 such that:

E

[
sup

0≤s≤T

∣∣∣Y i;t,x
s − Y i;t′,x′

s

∣∣∣2] ≤ CE

∫ T

0

(
q∑
i=1

∣∣∣ψi(r,Xt,x
r )− ψi(r,Xt′,x′

r )
∣∣∣)2

dr

 . (29)

But using continuity and polynomial growth of ψi and estimates Estimates (24)-(25), one can show

that the right-hand side of (29) converges to 0 as (t′, x′) tends to (t, x). Therefore the left-hand side

of the same inequality converges also to 0 as (t′, x′)→ (t, x). Thus, we get the desired result.

Step 3. the functions v1, . . . , vq are continuous in (t, x) and the vector of functions (v1, . . . , vq) is a

viscosity solution of the system of variational inequalities (20).

Thanks to the result obtained in Step 2, for any i ∈ J , the function (s, t, x) 7→ Y i;t,x
s is continuous

from [0, T ]2 × Rk into L2(Ω). Indeed, this follows from the fact that

|Y i;t′,x′

s′ − Y i;t,x
s | ≤ |Y i;t′,x′

s′ − Y i;t,x
s′ |+ |Y

i;t,x
s′ − Y i;t,x

s | ≤ sup
0≤r≤T

(|Y i;t′,x′
r − Y i;t,x

r |) + |Y i;t,x
s′ − Y i;t,x

s |.

Therefore the function (t, t, x) 7→ Y i;t,x
t is also continuous. From the result obtained in Step 1 the

function vi is continuous in (t, x). The deterministic functions vi, i ∈ J , being continuous and of

polynomial growth, by Theorem 8.5 in El-Karoui et al.[17], these functions are viscosity solutions for

the system (20).

Remark 1 The viscosity solution (v1, . . . , vq) is unique in the class of continuous functions with

polynomial growth (cf. [15], Theorem 4).

6 A numerical scheme

In this section we assume p = 2. Using the result by El Karoui et al. ([17], Proposition 5.1) which

characterizes a Snell envelope as a solution of a one barrier reflected BSDE we deduce that the q-uplet

of processes (Y 1, . . . , Y q) solution of the Verification Theorem 1 satisfies also:

For any i ∈ J , there exists a pair of Ft-adapted processes (Zi,Ki) with value in Rd × R+ such
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that: 

Y i, Ki ∈ S2 and Zi ∈M2,d; Ki is nondecreasing and Ki
0 = 0,

Y i
s =

∫ T

s
Ψi(u)du−

∫ T

s
ZiudBu +Ki

T −Ki
s, for all 0 ≤ s ≤ T,

Y i
s ≥ maxj∈J−i{−`ij(s) + Y j

s }, for all 0 ≤ s ≤ T,∫ T

0
(Y i
u − max

j∈J−i
{−`ij(u) + Y j

u })dKi
u = 0.

(30)

Now we know that the solution of a reflected BSDE can be obtained as a limit of sequence of solutions

of standard BSDE by approximation via penalization. Therefore, for any n ∈ N, let us define the

following system:

∀i ∈ J , ∀t ∈ [0, T ], Y i,n
t =

∫ T

t
Ψi(s)ds+ n

∫ T

t
(Li,ns − Y i,n

s )+ds−
∫ T

t
Zi,ns dBs (31)

where for every i ∈ J ,

∀t ∈ [0, T ], Li,nt = max
k∈J−i

(−`ik(t) + Y k,n
t ).

Remark that if we define the generator f := (f1, . . . , f q) : [0, T ]× Rq → Rq by

∀i ∈ J , f i(s, y) = Ψi(s) + n( max
k∈J−i

(−`ik(s) + yk)− yi)+,

then f is a Lipschitz function w.r.t. y uniformly w.r.t. t and the Rq-valued process Y n = (Y 1,n, . . . , Y q,n)

satisfies the following BSDE:

∀t ∈ [0, T ], Y n
t =

∫ T

t
f(s, Y n

s )ds−
∫ T

t
Zns dBs. (32)

Now, from Gobet et al. [19] and [20], we know that the multidimensional BSDE (32) can be solved

numerically. Therefore, if the sequence (Y i,n)n converges to Y i, for any i ∈ J , this provides a way to

simulate the value function Y i. Therefore in the sequel of this section we focus on this convergence.

Proposition 6 For every i ∈ J and all t ∈ [0, T ], the sequence (Y i,n
t )n∈N is non decreasing and a.s.

Y i,n
t ≤ Y i

t .

Proof. For n ∈ N, and k ∈ N∗, let us introduce the following scheme: for every i ∈ J

∀t ∈ [0, T ], Y i,n,k
t =

∫ T

t
Ψi(s)ds+ n

∫ T

t
( max
j∈J−i

(−`ij(t) + Y j,n,k−1
t )− Y i,n,k

s )+ds−
∫ T

t
Zi,n,ks dBs (33)

and Y i,n,0
t = E[

∫ T
t Ψi(u)du|Ft], t ≤ T. From El-Karoui et al. [18], we know that Y i,n,k converges to

Y i,n when k goes to infinity. Next let us prove by induction on k that for any k ≥ 0 for any n ≥ 0 we

have:

∀i ∈ J , ∀t ∈ [0, T ], Y i,n,k
t ≤ Y i,n+1,k

t .
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For k = 0, the property holds obviously. Suppose now that for some k ≥ 1 we have for any n ≥ 0,

i ∈ J , t ∈ [0, T ], Y i,n,k−1
t ≤ Y i,n+1,k−1

t . But for any k, n, i and t ∈ [0, T ] we have:

Y i,n+1,k
t =

∫ T

t
Ψi(s)ds+ (n+ 1)

∫ T

t
( max
j∈J−i

(−`ij(s) + Y j,n+1,k−1
s )− Y i,n+1,k

s )+ds−
∫ T

t
Zi,n+1,k
s dBs

and

Y i,n,k
t =

∫ T

t
Ψi(s)ds+ n

∫ T

t
( max
j∈J−i

(−`ij(s) + Y j,n,k−1
s )− Y i,n,k

s )+ds−
∫ T

t
Zi,n,ks dBs.

So thanks to the induction hypothesis we have

( max
j∈J−i

(−`ij(s) + Y j,n+1,k−1
s )− y)+ ≥ ( max

j∈J−i
(−`ij(s) + Y j,n,k−1

s )− y)+, s ∈ [0, T ], y ∈ R,

therefore the result follows from comparison theorem for standard BSDEs (see [18]). Thus we have

P -a.s. for any t ∈ [0, T ], Y i,n+1,k
t ≥ Y i,n,k

t for any k, n ≥ 0 and i ∈ J . Taking now the limit w.r.t. k

we obtain that for any n ≥ 0, i ∈ J , Y i,n ≤ Y i,n+1 which is the desired result.

We now focus on the second inequality. It is enough to show that for any k ≥ 0, n ≥ 0 and

i ∈ J , Y i,n,k ≤ Y i. Once more we use induction on k. For k = 0 the property holds since the

process Ki of (30) is non-decreasing. Suppose now that the property is valid for some k, i.e., for

any n ≥ 0 and i ∈ J we have Y i,n,k ≤ Y i. Therefore for any n ≥ 0, i ∈ J and t ≤ T we have

Y i
t ≥ maxj∈J−i(−`ij(t) + Y j,n,k

t ) thanks to the inequality in (30). It follows that for any i ∈ J , Y i

satisfies:

Y i
t =

∫ T

t
Ψi(s)ds+ n

∫ T

t

(
max
j∈J−i

(−`ij(t) + Y j,n,k
t )− Y i

s

)+

ds+Ki
T −Ki

t −
∫ T

t
ZisdBs.

As Ki is a non decreasing process, then with the comparison theorem for standard BSDEs we obtain

that Y i,n,k+1 ≤ Y i for any n ≥ 0. Finally taking the limit as k →∞ to complete the proof.

Theorem 4 For every i ∈ J

E[sup
t≤T
|Y i,n
t − Y i

t |2]→ 0 as n→∞.

Proof. It is enough to show that for any t ≤ T , Y i,n
t ↗ Y i

t and to use the same argument as in

Proposition 4. For every i ∈ J and all t ∈ [0, T ], Y i,n
t ≤ Y i,n+1

t . Therefore there exists a process Ȳ i

such that

∀t ∈ [0, T ], lim
n→+∞

Y i,n = Ȳ i
t ≤ Y i

t .

Moreover from (31) we deduce that

Y i,n
t = ess sup

τ≥t
E
[∫ τ

t
Ψi(s)ds+ (Li,nτ ∧ Y i,n

τ )1[τ<T ]

∣∣∣∣Ft] .
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This is due to the link between reflected BSDEs and the Snell envelope of processes since the process

Ki,n
t =

∫ t
0 n(Li,nt − Y

i,n
t )+dt, t ≤ T , is non-decreasing and∫ T

0
(Y i,n
t − Li,nt ∧ Y

i,n
t )n(Li,nt − Y

i,n
t )+dt = 0.

Hence, up to a continuous term which does not depend on n, Y i,n is a continuous supermartingale

which converges to a process Ȳ i which is also càdlàg. Then from From Proposition 2-(iv), we deduce

that:

Ȳ i
t = ess sup

τ≥t
E
[∫ τ

t
Ψi(s)ds+ (L̄iτ ∧ Ȳ i

τ )1[τ<T ]

∣∣∣∣Ft] (34)

with L̄it = max
k∈J−i

(−`ik(t) + Ȳ k
t ) is the non-decreasing limit of Li,n. Going back now to (31), dividing

both hand-sides by n, taking expectation and finally the limit w.r.t. n to obtain:

E[
∫ T

0
(L̄it − Ȳ i

t )+dt] = 0.

It implies that L̄i ≤ Ȳ i since those processes are càdlàg and L̄iT ≤ 0 = Ȳ i
T . Going back now to (34)

we have:

Ȳ i
t = ess sup

τ≥t
E
[∫ τ

t
Ψi(s)ds+ L̄iτ1[τ<T ]

∣∣∣∣Ft] .
Now we can argue as in proof of Theorem 2 to deduce that Ȳ i are continuous. Finally uniqueness of

the solution of the Verification Theorem implies that Ȳ i = Y i which ends the proof. .

Remark 2 (i) It seems to be difficult to obtain a convergence rate in Theorem 4. Hamadène and

Jeanblanc ([23], Proposition 4.2) give such a convergence rate because the lower barrier is constant

and negative.

(ii) Numerical results can be obtained when q = 2 (see Hamadène and Jeanblanc [23] or Porchet

et al. [29]). For q ≥ 3, Carmona and Ludkovski [5] suggest a numerical scheme when the switching

costs are constant. The case of non-constant switching costs seems out of reach.
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