On compound Poisson type limiting likelihood ratio processes.

(joint work with I. Negri)

Sergueï DACHIAN
Université Blaise Pascal
Clermont-Ferrand, France
Parameter estimation
Observation: $X^{(n)}$ (or $X^{(T)}$, or $X^{(\varepsilon)}$, ...).
Parameter estimation

Observation: $X^{(n)}$ (or $X^{(T)}$, or $X^{(e)}$, ...).

Law: $X^{(n)}$ is distributed according to some law $P^{(n)}_{\theta}$.
Parameter estimation

Observation: $X^{(n)}$ (or $X^{(T)}$, or $X^{(E)}$, ...).

Law: $X^{(n)}$ is distributed according to some law $P^{(n)}_{\theta}$.

Problem: estimation of the parameter $\theta \in \Theta \subset \mathbb{R}$.
Parameter estimation

Observation: \(X^{(n)} \) (or \(X^{(T)} \), or \(X^{(\varepsilon)} \), \ldots).

Law: \(X^{(n)} \) is distributed according to some law \(P_{\theta}^{(n)} \).

Problem: estimation of the parameter \(\theta \in \Theta \subset \mathbb{R} \).

Asymptotics: \(n \to \infty \) (or \(T \to \infty \), or \(\varepsilon \to 0 \), \ldots).
Parameter estimation

Observation: $X^{(n)}$ (or $X^{(T)}$, or $X^{(\varepsilon)}$, …).

Law: $X^{(n)}$ is distributed according to some law $P^{(n)}_\theta$.

Problem: estimation of the parameter $\theta \in \Theta \subset \mathbb{R}$.

Asymptotics: $n \to \infty$ (or $T \to \infty$, or $\varepsilon \to 0$, …).

Likelihood: density $L^{(n)}_\theta$ of $P^{(n)}_\theta$ (its Radon-Nikodym derivative w.r.t. some reference measure) evaluated in $X^{(n)}$, that is, $L_n(\theta) = L^{(n)}_\theta (X^{(n)})$.
Parameter estimation

Observation: \(X^{(n)} \) (or \(X^{(T)} \), or \(X^{(\varepsilon)} \), \ldots).

Law: \(X^{(n)} \) is distributed according to some law \(P^{(n)}_{\theta} \).

Problem: estimation of the parameter \(\theta \in \Theta \subset \mathbb{R} \).

Asymptotics: \(n \rightarrow \infty \) (or \(T \rightarrow \infty \), or \(\varepsilon \rightarrow 0 \), \ldots).

Likelihood: density \(L^{(n)}_{\theta} \) of \(P^{(n)}_{\theta} \) (its Radon-Nikodym derivative w.r.t. some reference measure) evaluated in \(X^{(n)} \), that is, \(L_n(\theta) = L^{(n)}_{\theta}(X^{(n)}) \).

Maximum likelihood estimator: \(\hat{\theta}_n = \arg\sup_{\theta \in \Theta} L_n(\theta) \).
Parameter estimation

Observation: $X^{(n)}$ (or $X^{(T)}$, or $X^{(\varepsilon)}$, ...).

Law: $X^{(n)}$ is distributed according to some law $P^{(n)}_{\theta}$.

Problem: estimation of the parameter $\theta \in \Theta \subset \mathbb{R}$.

Asymptotics: $n \to \infty$ (or $T \to \infty$, or $\varepsilon \to 0$, ...).

Likelihood: density $L^{(n)}_{\theta}$ of $P^{(n)}_{\theta}$ (its Radon-Nikodym derivative w.r.t. some reference measure) evaluated in $X^{(n)}$, that is, $L_{n}(\theta) = L^{(n)}_{\theta}(X^{(n)})$.

Maximum likelihood estimator: $\hat{\theta}_{n} = \operatorname{arg\,sup}_{\theta \in \Theta} L_{n}(\theta)$.

Bayesian estimators (for quadratic loss function):

$$\tilde{\theta}_{n} = \frac{\int_{\Theta} \theta p(\theta) L_{n}(\theta) \, d\theta}{\int_{\Theta} p(\theta) L_{n}(\theta) \, d\theta} \quad \text{where } p \text{ is some prior density.}$$
Likelihood ratio analysis

First find a renormalization rate

\[\varphi_n \downarrow 0, \]

First find a renormalization rate

\[\varphi_n \downarrow 0, \]

such that the renormalized likelihood ratio (process)

\[Z_n(u) = \frac{L_n(\theta + u \varphi_n)}{L_n(\theta)} = \frac{dP_{\theta+u\varphi_n}^{(n)}}{dP_{\theta}^{(n)}}(X^{(n)}), \quad u \in \mathbb{R}, \]
Likelihood ratio analysis

First find a renormalization rate

\[\varphi_n \downarrow 0, \]

such that the renormalized likelihood ratio (process)

\[Z_n(u) = \frac{L_n(\theta + u \varphi_n)}{L_n(\theta)} = \frac{dP^{(n)}_{\theta+u \varphi_n}(X^{(n)})}{dP^{(n)}_{\theta}}(X^{(n)}), \quad u \in \mathbb{R}, \]

converges weekly (in a suitable functional space) to some non-degenerate limiting likelihood ratio (process)

\[Z(u), \quad u \in \mathbb{R}. \]
Likelihood ratio analysis
Then deduce
Then deduce that the MLE and the BEs are consistent;
Then deduce that the MLE and the BEs

- are **consistent**;
- converge at rate φ_n and have **limiting distributions** given by

$$
\xi = \arg\sup_{u \in \mathbb{R}} Z(u) \quad \text{and} \quad \zeta = \frac{\int_{\mathbb{R}} u Z(u) \, du}{\int_{\mathbb{R}} Z(u) \, du}
$$
Then deduce that the MLE and the BEs

- are consistent;
- converge at rate \(\varphi_n \) and have limiting distributions given by

\[
\xi = \operatorname{argsup}_{u \in \mathbb{R}} Z(u) \quad \text{and} \quad \zeta = \frac{\int_{\mathbb{R}} u Z(u) \, du}{\int_{\mathbb{R}} Z(u) \, du},
\]

that is,

\[
\varphi_n^{-1}(\hat{\theta}_n - \theta) \Rightarrow \xi \quad \text{and} \quad \varphi_n^{-1}(\tilde{\theta}_n - \theta) \Rightarrow \zeta;
\]
Then deduce that the MLE and the BEs

- are consistent;
- converge at rate φ_n and have limiting distributions given by

$$\xi = \arg\sup_{u \in \mathbb{R}} Z(u) \quad \text{and} \quad \zeta = \frac{\int_{\mathbb{R}} u Z(u) \, du}{\int_{\mathbb{R}} Z(u) \, du},$$

that is,

$$\varphi_n^{-1} (\hat{\theta}_n - \theta) \quad \Rightarrow \quad \xi \quad \text{and} \quad \varphi_n^{-1} (\tilde{\theta}_n - \theta) \quad \Rightarrow \quad \zeta;$$

- the convergence of moment also holds
Then deduce that the MLE and the BEs

- are consistent;
- converge at rate φ_n and have **limiting distributions** given by

$$
\xi = \arg\sup_{u \in \mathbb{R}} Z(u) \quad \text{and} \quad \zeta = \frac{\int_{\mathbb{R}} u Z(u) \, du}{\int_{\mathbb{R}} Z(u) \, du},
$$

that is,

$$
\varphi_n^{-1}(\hat{\theta}_n - \theta) \xrightarrow{\text{d}} \xi \quad \text{and} \quad \varphi_n^{-1}(\tilde{\theta}_n - \theta) \xrightarrow{\text{d}} \zeta;
$$

- the convergence of moment also holds, that is,

$$
\varphi_n^{-k} \mathbb{E}(\hat{\theta}_n - \theta)^k \to \mathbb{E}\xi^k \quad \text{and} \quad \varphi_n^{-k} \mathbb{E}(\tilde{\theta}_n - \theta)^k \to \mathbb{E}\zeta^k
$$
Then deduce that the MLE and the BEs

- are consistent;
- converge at rate φ_n and have limiting distributions given by

$$
\xi = \text{argsup}_{u \in \mathbb{R}} Z(u) \quad \text{and} \quad \zeta = \frac{\int_{\mathbb{R}} u Z(u) \, du}{\int_{\mathbb{R}} Z(u) \, du},
$$

that is,

$$
\varphi_n^{-1} (\hat{\theta}_n - \theta) \implies \xi \quad \text{and} \quad \varphi_n^{-1} (\tilde{\theta}_n - \theta) \implies \zeta;
$$

- the convergence of moment also holds, that is,

$$
\varphi_n^{-k} \mathbb{E}(\hat{\theta}_n - \theta)^k \rightarrow \mathbb{E}\xi^k \quad \text{and} \quad \varphi_n^{-k} \mathbb{E}(\tilde{\theta}_n - \theta)^k \rightarrow \mathbb{E}\zeta^k
$$

and, in particular, the LMSEs are $M = \mathbb{E}\xi^2$ and $B = \mathbb{E}\zeta^2$;
Then deduce that the MLE and the BEs

- are **consistent**;
- converge at rate φ_n and have **limiting distributions** given by

$$\xi = \arg\sup_{u \in \mathbb{R}} Z(u) \quad \text{and} \quad \zeta = \frac{\int_{\mathbb{R}} u Z(u) \, du}{\int_{\mathbb{R}} Z(u) \, du},$$

that is,

$$\varphi_n^{-1}(\hat{\theta}_n - \theta) \Rightarrow \xi \quad \text{and} \quad \varphi_n^{-1}(\tilde{\theta}_n - \theta) \Rightarrow \zeta;$$

- the convergence of moment also holds, that is,

$$\varphi_n^{-k} \mathbb{E}(\hat{\theta}_n - \theta)^k \rightarrow \mathbb{E}\xi^k \quad \text{and} \quad \varphi_n^{-k} \mathbb{E}(\tilde{\theta}_n - \theta)^k \rightarrow \mathbb{E}\zeta^k$$

and, in particular, the **LMSEs** are $M = \mathbb{E}\xi^2$ and $B = \mathbb{E}\zeta^2$;

- the Bayesian estimators are **asymptotically efficient**.
Likelihood ratio analysis

Regular models.
Regular models.

- Renormalization rate is usually $\varphi_n = 1/\sqrt{n}$.
Regular models.

- Renormalization rate is usually $\varphi_n = 1/\sqrt{n}$.
- Limiting likelihood ratio is universal (*LAN property*):
 $$\ln Z(u) = u\Delta - u^2 I_{\theta}/2 \quad \text{where} \quad \Delta \sim \mathcal{N}(0, I_{\theta}).$$
Likelihood ratio analysis

Regular models.

- Renormalization rate is usually $\varphi_n = 1/\sqrt{n}$.
- Limiting likelihood ratio is universal (LAN property):
 \[\ln Z(u) = u\Delta - u^2 I_{\theta}/2 \quad \text{where} \quad \Delta \sim \mathcal{N}(0, I_{\theta}). \]
- We have $\xi = \zeta = \Delta/I_{\theta}$ and, in particular, $M = B = 1/I_{\theta}$.
Regular models.

- Renormalization rate is usually $\varphi_n = 1/\sqrt{n}$.
- Limiting likelihood ratio is universal (LAN property):
 \[
 \ln Z(u) = u\Delta - u^2 I_\theta/2 \quad \text{where} \quad \Delta \sim \mathcal{N}(0, I_\theta).
 \]
- We have $\xi = \zeta = \Delta/I_\theta$ and, in particular, $M = B = 1/I_\theta$.

Non-regular models.
Regular models.

- Renormalization rate is usually $\varphi_n = 1/\sqrt{n}$.
- Limiting likelihood ratio is universal (LAN property):
 \[\ln Z(u) = u\Delta - u^2I_\theta/2 \quad \text{where} \quad \Delta \sim \mathcal{N}(0, I_\theta). \]
- We have $\xi = \zeta = \Delta/I_\theta$ and, in particular, $M = B = 1/I_\theta$.

Non-regular models.

- Rate is better (for change-point type models usually $\varphi_n = 1/n$).
Likelihood ratio analysis

Regular models.

- Renormalization rate is usually $\varphi_n = 1/\sqrt{n}$.
- Limiting likelihood ratio is universal (LAN property):
 $$\ln Z(u) = u\Delta - u^2 I_\theta/2 \quad \text{where} \quad \Delta \sim \mathcal{N}(0, I_\theta).$$
- We have $\xi = \zeta = \Delta/I_\theta$ and, in particular, $M = B = 1/I_\theta$.

Non-regular models.

- Rate is better (for change-point type models usually $\varphi_n = 1/n$).
- Limiting likelihood ratio depends on the model.
Likelihood ratio analysis

Regular models.

- Renormalization rate is usually $\varphi_n = 1/\sqrt{n}$.
- Limiting likelihood ratio is universal (LAN property):
 \[\ln Z(u) = u\Delta - u^2 I_\theta / 2 \quad \text{where} \quad \Delta \sim \mathcal{N}(0, I_\theta). \]
- We have $\xi = \zeta = \Delta / I_\theta$ and, in particular, $M = B = 1/I_\theta$.

Non-regular models.

- Rate is better (for change-point type models usually $\varphi_n = 1/n$).
- Limiting likelihood ratio depends on the model.
- We have, in general, $\xi \neq \zeta$ and $M \neq B$.
Regular models.

- Renormalization rate is usually $\varphi_n = 1/\sqrt{n}$.
- Limiting likelihood ratio is universal (LAN property):
 \[\ln Z(u) = u\Delta - u^2 I_\theta/2 \quad \text{where} \quad \Delta \sim \mathcal{N}(0, I_\theta). \]
- We have $\xi = \zeta = \Delta/I_\theta$ and, in particular, $M = B = 1/I_\theta$.

Non-regular models.

- Rate is better (for \textit{change-point} type models usually $\varphi_n = 1/n$).
- Limiting likelihood ratio depends on the model.
- We have, in general, $\xi \neq \zeta$ and $M \neq B$.
- $E = B/M$ is the \textit{asymptotic (relative) efficiency} of the MLE.
Limiting likelihood ratio process Z_0
The process Z_0 on \mathbb{R} defined by

$$\ln Z_0(x) = W(x) - \frac{1}{2} |x|$$

where W is a standard two-sided Brownian motion.
The process Z_0 on \mathbb{R} defined by

$$\ln Z_0(x) = W(x) - \frac{1}{2} |x|$$

where W is a standard two-sided Brownian motion.

The random variables

$$\xi_0 = \arg\sup_{x \in \mathbb{R}} Z_0(x) \quad \text{and} \quad \zeta_0 = \frac{\int_{\mathbb{R}} x Z_0(x) \, dx}{\int_{\mathbb{R}} Z_0(x) \, dx}.$$
The process Z_0 on \mathbb{R} defined by

$$\ln Z_0(x) = W(x) - \frac{1}{2} |x|$$

where W is a standard two-sided Brownian motion.

The random variables

$$\xi_0 = \operatorname{arg}
\vspace{-0.5cm}
sup_{x \in \mathbb{R}} Z_0(x) \quad \text{and} \quad \zeta_0 = \frac{\int_{\mathbb{R}} x Z_0(x) \, dx}{\int_{\mathbb{R}} Z_0(x) \, dx}.$$

The quantities $M_0 = \mathbb{E}\xi_0^2$, $B_0 = \mathbb{E}\zeta_0^2$ and $E_0 = B_0 / M_0$.
Models with limiting likelihood ratio Z_0
Discontinuous signal in a white Gaussian noise:
Ibragimov and Khasminskii (1975) and (1981, Chapter 7.2);
Models with limiting likelihood ratio Z_0

Discontinuous signal in a white Gaussian noise:
Ibragimov and Khasminskii (1975) and (1981, Chapter 7.2);

Change-point type models of dynamical systems with small noise:
Kutoyants (1980) and (1994, Chapter 5);
Discontinuous signal in a white Gaussian noise:
Ibragimov and Khasminskii (1975) and (1981, Chapter 7.2);

Change-point type models of dynamical systems with small noise:
Kutoyants (1980) and (1994, Chapter 5);

A change-point type model of delay equations:
Küchler and Kutoyants (2000);
Models with limiting likelihood ratio Z_0

Discontinuous signal in a white Gaussian noise:
Ibragimov and Khasminskii (1975) and (1981, Chapter 7.2);

Change-point type models of dynamical systems with small noise:
Kutoyants (1980) and (1994, Chapter 5);

A change-point type model of delay equations:
Küchler and Kutoyants (2000);

Change-point type models of ergodic diffusion processes:
Kutoyants (2004, Chapter 3);
Models with limiting likelihood ratio Z_0

Discontinuous signal in a white Gaussian noise: Ibragimov and Khasminskii (1975) and (1981, Chapter 7.2);

Change-point type models of dynamical systems with small noise: Kutoyants (1980) and (1994, Chapter 5);

A change-point type model of delay equations: Küchler and Kutoyants (2000);

Change-point type models of ergodic diffusion processes: Kutoyants (2004, Chapter 3);

Discontinuous periodic signal in a time inhomogeneous diffusion: Höpfner and Kutoyants (2009); ...
Observations: the process X on $[0, 1]$ satisfying

$$dX(t) = \frac{1}{\varepsilon} S(t - \theta) \, dt + dW(t).$$
Observations: the process X on $[0, 1]$ satisfying

$$dX(t) = \frac{1}{\varepsilon} S(t - \theta) \, dt + dW(t).$$

Problem: estimation of $\theta \in]\alpha, \beta[,$ $0 < \alpha < \beta < 1.$
Observations: the process \(X \) on \([0, 1]\) satisfying

\[
dX(t) = \frac{1}{\varepsilon} S(t - \theta) \, dt + dW(t).
\]

Problem: estimation of \(\theta \in]\alpha, \beta[, \; 0 < \alpha < \beta < 1 \).

Non-regularity: \(S \) has a bounded derivative on \(]-1, 0[\cup]0, 1[\) and

\[
\lim_{t \uparrow 0} S(t) - \lim_{t \downarrow 0} S(t) = r \neq 0.
\]
Example

Observations: the process X on $[0, 1]$ satisfying

$$dX(t) = \frac{1}{\varepsilon} S(t - \theta) \, dt + dW(t).$$

Problem: estimation of $\theta \in]\alpha, \beta[, 0 < \alpha < \beta < 1.$

Non-regularity: S has a bounded derivative on $]-1, 0[\cup]0, 1[$ and

$$\lim_{t \uparrow 0} S(t) - \lim_{t \downarrow 0} S(t) = r \neq 0.$$

Asymptotics: $\varepsilon \to 0.$
The normalized likelihood ratio process:

\[Z_\varepsilon(u) = \frac{dP^{(\varepsilon)}_{\theta+\varepsilon^2u}(X)}{dP^{(\varepsilon)}_\theta(X)} \]

\[= \exp \left\{ \frac{1}{\varepsilon} \int_0^1 \left[S(t - \theta - \varepsilon^2u) - S(t - \theta) \right] dW(t) \right. \]

\[\left. - \frac{1}{2\varepsilon^2} \int_0^1 \left[S(t - \theta - \varepsilon^2u) - S(t - \theta) \right]^2 dt \right\} . \]
The normalized likelihood ratio process:

\[Z_\varepsilon(u) = \frac{dP_{\theta+\varepsilon^2u}^{(\varepsilon)}}{dP_{\theta}^{(\varepsilon)}}(X) \]

\[= \exp \left\{ \frac{1}{\varepsilon} \int_0^1 \left[S(t - \theta - \varepsilon^2u) - S(t - \theta) \right] dW(t) \right. \]

\[- \left. \frac{1}{2\varepsilon^2} \int_0^1 \left[S(t - \theta - \varepsilon^2u) - S(t - \theta) \right]^2 dt \right\}. \]

It converges weakly in the space \(C_0(-\infty, +\infty) \) to \(Z_0(r^2u) \).
The normalized likelihood ratio process:

\[Z_{\varepsilon}(u) = \frac{dP_{\theta+\varepsilon^2u}^{(\varepsilon)}}{dP_{\theta}^{(\varepsilon)}}(X) \]

\[= \exp\left\{ \frac{1}{\varepsilon} \int_{0}^{1} \left[S(t - \theta - \varepsilon^2u) - S(t - \theta) \right] dW(t) \right\} \]

\[- \frac{1}{2 \varepsilon^2} \int_{0}^{1} \left[S(t - \theta - \varepsilon^2u) - S(t - \theta) \right]^2 dt \} \].

It converges weakly in the space \(C_0(-\infty, +\infty) \) to \(Z_0(r^2u) \).

Limiting distributions of the MLE and of the BEs: \(r^{-2}\xi_0 \) and \(r^{-2}\zeta_0 \).
The normalized likelihood ratio process:

\[Z_\varepsilon(u) = \frac{dP^{(\varepsilon)}_{\theta+\varepsilon^2 u}(X)}{dP^{(\varepsilon)}_\theta} = \exp\left\{ \frac{1}{\varepsilon} \int_0^1 \left[S(t - \theta - \varepsilon^2 u) - S(t - \theta) \right] dW(t) \right. \]

\[\left. - \frac{1}{2 \varepsilon^2} \int_0^1 \left[S(t - \theta - \varepsilon^2 u) - S(t - \theta) \right]^2 dt \right\}. \]

It converges weakly in the space \(C_0(-\infty, +\infty) \) to \(Z_0(r^2 u) \).

Limiting distributions of the MLE and of the BEs: \(r^{-2} \xi_0 \) and \(r^{-2} \zeta_0 \).

LMSEs and AE: \(r^{-4} M_0 \), \(r^{-4} B_0 \) and \(E_0 \).
About ξ_0, ζ_0, M_0, B_0 and E_0
About ξ_0, ζ_0, M_0, B_0 and E_0

Terent’yev (1968):
Terent’yev (1968):
- Laplace transform of $\mathbb{P}(|\xi_0| > t)$ and calculation of $M_0 = 26$.
About ξ_0, ζ_0, M_0, B_0 and E_0

Terent’yev (1968):
- Laplace transform of $P(|\xi_0| > t)$ and calculation of $M_0 = 26$.

About ξ_0, ζ_0, M_0, B_0 and E_0

Terent’yev (1968):
- Laplace transform of $P(|\xi_0| > t)$ and calculation of $M_0 = 26$.

- explicit density of ξ_0.
About ξ_0, ζ_0, M_0, B_0 and E_0

Terent’yev (1968):
- Laplace transform of $P(|\xi_0| > t)$ and calculation of $M_0 = 26$.

- explicit density of ξ_0.

Ibragimov and Khasminskii (1981, Chapter 7.3):
About \(\xi_0, \zeta_0, M_0, B_0 \) and \(E_0 \)

Terent’yev (1968):
- Laplace transform of \(P(\vert \xi_0 \vert > t) \) and calculation of \(M_0 = 26 \).

- explicit density of \(\xi_0 \).

Ibragimov and Khasminskii (1981, Chapter 7.3):
- numerical simulation of \(B_0 = 19.5 \pm 0.5 \), so \(E_0 = 0.73 \pm 0.03 \).
About ξ_0, ζ_0, M_0, B_0 and E_0

Terent’yev (1968):
- Laplace transform of $P(|\xi_0| > t)$ and calculation of $M_0 = 26$.

- explicit density of ξ_0.

Ibragimov and Khasminskii (1981, Chapter 7.3):
- numerical simulation of $B_0 = 19.5 \pm 0.5$, so $E_0 = 0.73 \pm 0.03$.

Golubev (1979):
About ξ_0, ζ_0, M_0, B_0 and E_0

Terent’yev (1968):
- Laplace transform of $P(|\xi_0| > t)$ and calculation of $M_0 = 26$.

- explicit density of ξ_0.

Ibragimov and Khasminskii (1981, Chapter 7.3):
- numerical simulation of $B_0 = 19.5 \pm 0.5$, so $E_0 = 0.73 \pm 0.03$.

Golubev (1979):
- B_0 in terms of the second derivative of an improper integral of a composite function of modified Hankel and Bessel functions.
About ξ_0, ζ_0, M_0, B_0 and E_0

Terent’yev (1968):
- Laplace transform of $P(|\xi_0| > t)$ and calculation of $M_0 = 26$.

- Explicit density of ξ_0.

Ibragimov and Khasminskii (1981, Chapter 7.3):
- Numerical simulation of $B_0 = 19.5 \pm 0.5$, so $E_0 = 0.73 \pm 0.03$.

Golubev (1979):
- B_0 in terms of the second derivative of an improper integral of a composite function of modified Hankel and Bessel functions.

Rubin and Song (1995):
About ξ_0, ζ_0, M_0, B_0 and E_0

Terent’yev (1968):
- Laplace transform of $P(|\xi_0| > t)$ and calculation of $M_0 = 26$.

- explicit density of ξ_0.

Ibragimov and Khasminskii (1981, Chapter 7.3):
- numerical simulation of $B_0 = 19.5 \pm 0.5$, so $E_0 = 0.73 \pm 0.03$.

Golubev (1979):
- B_0 in terms of the second derivative of an improper integral of a composite function of modified Hankel and Bessel functions.

Rubin and Song (1995):
- exact values $B_0 = 16 \zeta(3)$ and $E_0 = 8 \zeta(3)/13$, where ζ is Riemann’s zeta function.
Limiting likelihood ratio processes $Z_{\gamma,f}$
The process $Z_{\gamma,f}$ on \mathbb{R} defined by

$$
\ln Z_{\gamma,f}(x) = \begin{cases}
\sum_{k=1}^{\Pi_+(x)} \ln \frac{f(\epsilon^+_k + \gamma)}{f(\epsilon^+_k)}, & \text{if } x \geq 0, \\
\sum_{k=1}^{\Pi_-(x)} \ln \frac{f(\epsilon^-_k - \gamma)}{f(\epsilon^-_k)}, & \text{if } x \leq 0,
\end{cases}
$$

where $\gamma > 0$, f is a strictly positive density of some random variable ϵ with mean 0 and variance 1, Π_+ and Π_- are two independent Poisson processes of intensity 1 on \mathbb{R}_+, and ϵ^\pm_k are i.i.d. random variables with density f which are also independent of Π_\pm.

Limiting likelihood ratio processes $Z_{\gamma,f}$
Limiting likelihood ratio processes $Z_{\gamma,f}$

The process $Z_{\gamma,f}$ on \mathbb{R} defined by

$$
\ln Z_{\gamma,f}(x) = \begin{cases}
\sum_{k=1}^{\Pi_+(x)} \ln \frac{f(\varepsilon_k^+ + \gamma)}{f(\varepsilon_k^+)} , & \text{if } x \geq 0, \\
\sum_{k=1}^{\Pi_-(x)} \ln \frac{f(\varepsilon_k^- - \gamma)}{f(\varepsilon_k^-)} , & \text{if } x \leq 0,
\end{cases}
$$

where $\gamma > 0$, f is a strictly positive density of some random variable ε with mean 0 and variance 1, Π_+ and Π_- are two independent Poisson processes of intensity 1 on \mathbb{R}_+, and ε^\pm_k are i.i.d. random variables with density f which are also independent of Π_\pm.

An important particular case is $\varepsilon \sim \mathcal{N}(0,1)$, so

$$
\ln \frac{f(\varepsilon \pm \gamma)}{f(\varepsilon)} = \mp \gamma \varepsilon - \frac{\gamma^2}{2} \sim \mathcal{N}(-\gamma^2/2, \gamma^2).
$$
Random variables $\xi_{\gamma,f}^{\alpha}$ and $\zeta_{\gamma,f}$
Random variables $\xi_{\gamma,f}^\alpha$ and $\zeta_{\gamma,f}$

The random variables

$$\zeta_{\gamma,f} = \frac{\int_{\mathbb{R}} x Z_{\gamma,f}(x) \, dx}{\int_{\mathbb{R}} Z_{\gamma,f}(x) \, dx},$$

$$\xi_{\gamma,f}^- = \inf \left\{ z : Z_{\gamma,f}(z) = \sup_{x \in \mathbb{R}} Z_{\gamma,f}(x) \right\},$$

$$\xi_{\gamma,f}^+ = \sup \left\{ z : Z_{\gamma,f}(z) = \sup_{x \in \mathbb{R}} Z_{\gamma,f}(x) \right\},$$

$$\xi_{\gamma,f}^\alpha = \alpha \xi_{\gamma,f}^- + (1 - \alpha) \xi_{\gamma,f}^+, \quad \alpha \in [0,1].$$
Random variables $\xi_{\gamma,f}^\alpha$ and $\zeta_{\gamma,f}$

The random variables

$$\zeta_{\gamma,f} = \frac{\int_{\mathbb{R}} x Z_{\gamma,f}(x) \, dx}{\int_{\mathbb{R}} Z_{\gamma,f}(x) \, dx},$$

$$\xi_{\gamma,f}^- = \inf \left\{ z : Z_{\gamma,f}(z) = \sup_{x \in \mathbb{R}} Z_{\gamma,f}(x) \right\},$$

$$\xi_{\gamma,f}^+ = \sup \left\{ z : Z_{\gamma,f}(z) = \sup_{x \in \mathbb{R}} Z_{\gamma,f}(x) \right\},$$

$$\xi_{\gamma,f}^\alpha = \alpha \xi_{\gamma,f}^- + (1 - \alpha) \xi_{\gamma,f}^+, \quad \alpha \in [0, 1].$$

Note that $\xi_{\gamma,f}^\alpha$ is the limiting distribution of the appropriately chosen MLE (which is not unique in underlying models).
Random variables $\xi_{\gamma,f}^\alpha$ and $\zeta_{\gamma,f}$

The random variables

$$\zeta_{\gamma,f} = \frac{\int_{\mathbb{R}} x Z_{\gamma,f}(x) \, dx}{\int_{\mathbb{R}} Z_{\gamma,f}(x) \, dx},$$

$$\xi_{\gamma,f}^- = \inf \left\{ z : Z_{\gamma,f}(z) = \sup_{x \in \mathbb{R}} Z_{\gamma,f}(x) \right\},$$

$$\xi_{\gamma,f}^+ = \sup \left\{ z : Z_{\gamma,f}(z) = \sup_{x \in \mathbb{R}} Z_{\gamma,f}(x) \right\},$$

$$\xi_{\gamma,f}^\alpha = \alpha \xi_{\gamma,f}^- + (1 - \alpha) \xi_{\gamma,f}^+, \quad \alpha \in [0, 1].$$

Note that $\xi_{\gamma,f}^\alpha$ is the limiting distribution of the appropriately chosen MLE (which is not unique in underlying models).

The quantities $M_{\gamma,f}^\alpha = \mathbb{E}(\xi_{\gamma,f}^\alpha)^2$, $B_{\gamma,f} = \mathbb{E}(\zeta_{\gamma,f})^2$ and $E_{\gamma,f}^\alpha = B_{\gamma,f}/M_{\gamma,f}^\alpha$.
Models with limiting likelihood ratio $Z_{\gamma,f}$
Models with limiting likelihood ratio $Z_{\gamma,f}$

Two-phase regression models.
Models with limiting likelihood ratio $Z_{\gamma,f}$

Two-phase regression models.

Linear case:
Koul and Qian (2002).
Models with limiting likelihood ratio $Z_{\gamma,f}$

Two-phase regression models.

Linear case:
Koul and Qian (2002).

Non-linear case:
Models with limiting likelihood ratio $Z_{\gamma,f}$

Two-phase regression models.

Linear case:
Koul and Qian (2002).

Non-linear case:

Threshold autoregressive (TAR) models.
Models with limiting likelihood ratio $Z_{\gamma,f}$

Two-phase regression models.
Linear case: Koul and Qian (2002).

Threshold autoregressive (TAR) models.
Models with limiting likelihood ratio $Z_{\gamma,f}$

Two-phase regression models.

Linear case:
Koul and Qian (2002).

Non-linear case:

Threshold autoregressive (TAR) models.

Regularity assumptions on f
Regularity assumptions on f

We suppose that \sqrt{f} is continuously differentiable in L^2, that is, there exists $\psi \in L^2$ verifying

\[\int_{\mathbb{R}} \left(\sqrt{f(x + h)} - \sqrt{f(x)} - h \psi(x) \right)^2 \, dx = o(h^2) \]

and

\[\int_{\mathbb{R}} (\psi(x + h) - \psi(x))^2 \, dx = o(1), \text{ and that } \|\psi\| > 0. \]
Regularity assumptions on f

We suppose that \sqrt{f} is continuously differentiable in L^2, that is, there exists $\psi \in L^2$ verifying
\[\int_{\mathbb{R}} \left(\sqrt{f(x + h)} - \sqrt{f(x)} - h \psi(x) \right)^2 dx = o(h^2) \]
and
\[\int_{\mathbb{R}} (\psi(x + h) - \psi(x))^2 dx = o(1), \]
and that $\|\psi\| > 0$.

Remarks:
Regularity assumptions on f

We suppose that \sqrt{f} is continuously differentiable in L^2, that is, there exists $\psi \in L^2$ verifying

$$\int_{\mathbb{R}} \left(\sqrt{f(x + h)} - \sqrt{f(x)} - h \psi(x) \right)^2 \, dx = o(h^2)$$

and

$$\int_{\mathbb{R}} \left(\psi(x + h) - \psi(x) \right)^2 \, dx = o(1),$$

and that $\|\psi\| > 0$.

Remarks:

- Under this assumptions, the model of i.i.d. observations with density $f(x + \theta)$ is, in particular, LAN at $\theta = 0$ with Fisher information $I = 4 \|\psi\|^2 = 4 \int_{\mathbb{R}} \psi^2(x) \, dx$, and so

$$\lim_{\gamma \to 0} \left(E e^{it \ln \frac{f(\theta + \gamma)}{f(\theta)}} \right)^{1/\gamma^2} = e^{i \left(-\frac{I}{2} \right) t - \frac{1}{2} It^2}.$$
We suppose that \sqrt{f} is continuously differentiable in L^2, that is, there exists $\psi \in L^2$ verifying $\int_{\mathbb{R}} \left(\sqrt{f(x+h)} - \sqrt{f(x)} - h \psi(x) \right)^2 \, dx = o(h^2)$ and $\int_{\mathbb{R}} (\psi(x+h) - \psi(x))^2 \, dx = o(1)$, and that $\|\psi\| > 0$.

Remarks:

- Under this assumptions, the model of i.i.d. observations with density $f(x + \theta)$ is, in particular, LAN at $\theta = 0$ with Fisher information $I = 4 \|\psi\|^2 = 4 \int_{\mathbb{R}} \psi^2(x) \, dx$, and so
 \[
 \lim_{\gamma \to 0} \left(\mathbb{E} e^{it \ln \frac{f(\epsilon + \gamma)}{f(\epsilon)}} \right)^{1/\gamma^2} = e^{i \left(-\frac{1}{2}I\right)t - \frac{1}{2}It^2}.
 \]

- One can make any other regularity assumptions sufficient for this, e.g., assume f is differentiable and $0 < I = \int_{\mathbb{R}} \frac{(f'(x))^2}{f(x)} \, dx < \infty$.

Regularity assumptions on f

We suppose that \sqrt{f} is continuously differentiable in L^2, that is, there exists $\psi \in L^2$ verifying

$$\int_{\mathbb{R}} \left(\sqrt{f(x + h)} - \sqrt{f(x)} - h \psi(x) \right)^2 \, dx = o(h^2)$$

and

$$\int_{\mathbb{R}} (\psi(x + h) - \psi(x))^2 \, dx = o(1),$$

and that $\|\psi\| > 0$.

Remarks:

- Under this assumptions, the model of i.i.d. observations with density $f(x + \theta)$ is, in particular, LAN at $\theta = 0$ with Fisher information

$$I = 4 \|\psi\|^2 = 4 \int_{\mathbb{R}} \psi^2(x) \, dx,$$

and so

$$\lim_{\gamma \to 0} \left(\mathbb{E} e^{it \ln \frac{f(x + \gamma)}{f(x)}} \right)^{1/\gamma^2} = e^{i(-\frac{I}{2})t - \frac{1}{2} It^2}.$$

- One can make any other regularity assumptions sufficient for this, e.g., assume f is differentiable and $0 < I = \int_{\mathbb{R}} \left(\frac{f'(x)}{f(x)} \right)^2 \, dx < \infty$.

- In Gaussian case the assumptions clearly hold and $I = 1$.

Main result
Main result

Theorem.
Main result

Theorem.

- The process $Z_{\gamma,f}(y/I\gamma^2)$, $y \in \mathbb{R}$, converges weakly in the space $D_0(-\infty, +\infty)$ to the process Z_0 as $\gamma \to 0$.
Main result

Theorem.

- The process $Z_{\gamma,f}(y/I_{\gamma}^2)$, $y \in \mathbb{R}$, converges weakly in the space $\mathcal{D}_0(-\infty, +\infty)$ to the process Z_0 as $\gamma \to 0$.

- In particular ($\alpha \in [0, 1]$ below is arbitrary),

$$I_{\gamma}^2 \xi_{\gamma,f}^\alpha \implies \xi_0 \text{ and } I_{\gamma}^2 \zeta_{\gamma,f} \implies \zeta_0.$$
Main result

Theorem.

- The process $Z_{\gamma,f}(y/I\gamma^2)$, $y \in \mathbb{R}$, converges weakly in the space $D_0(-\infty, +\infty)$ to the process Z_0 as $\gamma \to 0$.
- In particular ($\alpha \in [0, 1]$ below is arbitrary),

$$I\gamma^2 \xi_{\gamma,f}^\alpha \to \xi_0 \quad \text{and} \quad I\gamma^2 \zeta_{\gamma,f} \to \zeta_0.$$

- Moreover, for any $k > 0$ we have

$$I^k \gamma^{2k} \mathbb{E}(\xi_{\gamma,f}^\alpha)^k \to \mathbb{E}\xi_0^k \quad \text{and} \quad I^k \gamma^{2k} \mathbb{E}\zeta_{\gamma,f}^k \to \mathbb{E}\zeta_0^k.$$
Main result

Theorem.

- The process $Z_{\gamma,f}(y/I_\gamma^2), y \in \mathbb{R}$, converges weakly in the space $D_0(-\infty, +\infty)$ to the process Z_0 as $\gamma \to 0$.

- In particular ($\alpha \in [0, 1]$ below is arbitrary),

$$I_\gamma^2 \xi_{\gamma,f} \rightarrow \xi_0 \text{ and } I_\gamma^2 \zeta_{\gamma,f} \rightarrow \zeta_0.$$

- Moreover, for any $k > 0$ we have

$$I_k^k \gamma^{2k} \mathbb{E}(\xi_{\gamma,f}^\alpha)^k \rightarrow \mathbb{E}\xi_0^k \text{ and } I_k^k \gamma^{2k} \mathbb{E}\zeta_{\gamma,f}^k \rightarrow \mathbb{E}\zeta_0^k.$$

- In particular, $I^2 \gamma^4 M_{\gamma,f}^\alpha \rightarrow 26$, $I^2 \gamma^4 B_{\gamma,f} \rightarrow 16 \zeta(3) \approx 19.23$ and $E_{\gamma,f}^\alpha \rightarrow 8 \zeta(3)/13 \approx 0.74$.

Asymptotical Statistics of Stochastic Processes (S.A.P.S.) VIII – p.15/21
Second possible asymptotics: $\gamma \rightarrow \infty$ (1/3)
The process $Z_{\gamma,f}$ converges weakly in the space $\mathcal{D}_0(-\infty, +\infty)$ to the process $Z_{\infty}(x) = 1\{ -\eta < x < \tau \}$, $x \in \mathbb{R}$, where η and τ are two independent exponential random variables with parameter 1.
The process $Z_{\gamma,f}$ converges weakly in the space $\mathcal{D}_0(-\infty, +\infty)$ to the process $Z_\infty(x) = 1_{\{-\eta < x < \tau\}}$, $x \in \mathbb{R}$, where η and τ are two independent exponential random variables with parameter 1.

In particular,

$$
\zeta_{\gamma,f} \Rightarrow \zeta_\infty = \frac{\int_{\mathbb{R}} x Z_\infty(x) \, dx}{\int_{\mathbb{R}} Z_\infty(x) \, dx} = \frac{\tau - \eta}{2},
$$

$$
\xi^-_{\gamma,f} \Rightarrow \xi^-_\infty = \inf\left\{ z : Z_\infty(z) = \sup_{x \in \mathbb{R}} Z_\infty(x) \right\} = -\eta,
$$

$$
\xi^+_{\gamma,f} \Rightarrow \xi^+_\infty = \sup\left\{ z : Z_\infty(z) = \sup_{x \in \mathbb{R}} Z_\infty(x) \right\} = \tau,
$$

$$
\xi^\alpha_{\gamma,f} \Rightarrow \xi^\alpha_\infty = \alpha \xi^-_\infty + (1 - \alpha) \xi^+_\infty = (1 - \alpha) \tau - \alpha \eta.
$$
Second possible asymptotics: $\gamma \to \infty$ (2/3)
Moreover, for any $k > 0$ we have

$$\mathbb{E}^{\zeta}_{\gamma,f} \rightarrow \mathbb{E}^{\zeta}_{\infty} \quad \text{and} \quad \mathbb{E}(\xi_{\gamma,f}^{\alpha})^k \rightarrow \mathbb{E}(\xi_{\infty}^{\alpha})^k.$$
Moreover, for any \(k > 0 \) we have

\[
E\zeta_{\gamma,f}^k \to E\zeta_{\infty}^k \quad \text{and} \quad E(\xi_{\gamma,f}^\alpha)^k \to E(\xi_{\infty}^\alpha)^k.
\]

In particular,

\[
B_{\gamma,f} \to B_{\infty} = E\left(\frac{\tau - \eta}{2}\right)^2 = \frac{1}{2},
\]

\[
M_{\gamma,f}^\alpha \to M_{\infty}^\alpha = E\left((1 - \alpha)\tau - \alpha\eta\right)^2 = 6\left(\alpha - \frac{1}{2}\right)^2 + \frac{1}{2},
\]

\[
E_{\gamma,f}^\alpha \to E_{\infty}^\alpha = \frac{1}{12\left(\alpha - \frac{1}{2}\right)^2 + 1}.
\]
Second possible asymptotics: $\gamma \rightarrow \infty$ (3/3)
Second possible asymptotics: $\gamma \rightarrow \infty$ (3/3)

Remarks:
Remarks:

- The process Z_∞ is the limiting likelihood ratio of the problem of estimation of the parameter θ by observation of an i.i.d. sample from the uniform law on $[\theta, \theta + 1]$.
Remarks:

- The process Z_∞ is the limiting likelihood ratio of the problem of estimation of the parameter θ by observation of an i.i.d. sample from the uniform law on $[\theta, \theta + 1]$.

- In the latter problem, the best choice of α is $\alpha = 1/2$ (which makes the MLE asymptotically efficient). This choice was also suggested in TAR models (with limiting likelihood ratio $Z_{\gamma,f}$). We see that for large values of γ this choice is confirmed, but for small values of γ the choice of α seems less important.
Numerical simulations (Gaussian f)
Numerical simulations (Gaussian f)
Numerical simulations (Gaussian f)

Obtained by simulating 10^7 trajectories of $Z_{\gamma,f}$
Numerical simulations (Gaussian f)

Obtained by simulating 10^7 trajectories of $Z_{\gamma,f}$

asymptotical Statistics of Stochastic Processes (S.A.P.S.) VIII – p.20/21
Numerical simulations (Gaussian f)
Numerical simulations (Gaussian f)

Obtained by simulating 10^7 trajectories of $Z_{\gamma,f}$
\(\alpha_\circ = 1/2 \pm \sqrt{13/(96 \zeta(3))} - 1/12 \approx 0.5 \pm 0.17\), so \(E_{\alpha_\circ} = E_0 = 8 \zeta(3)/13 \approx 0.74\).