Mixed fractional Brownian motion: the filtering perspective

Chunhao Cai ¹ Pavel Chigansky² Marina Kleptsyna¹

¹University of Le Mans, France
²University of Jerusalem, Israel

7 October 2013 / Le Mans
Mixed fBm: the filtering perspective

Cai, Chigansky, Kleptsyna

Problems statement and questions around

Historical survey

Main Tools

The Main Results

Stochastic Analysis

Semimartingale Structure of X

Drift estimation in mixed fractional noise

Auxiliary Results

Mixed fBm for $H < 1/2$

Integro-Differential Equation

The proofs

Diffusion type representation, Equivalence of measures

large sample asymptotic of MLE

Mixed fBm for $H > 1/2$
Objects of studies

\[X_t = B_t + B_t^H \]

where

- \(B_t \) — is the standard Brownian motion
- \(B_t^H \) — is an independent fractional Brownian motion
- \(H \in (0, 1] \) — is known Hurst parameter

\[Y_t = \int_0^t f(s) \, ds + X_t, \quad 0 \leq t \leq T. \]
Objects of studies

\[X_t = B_t + B_t^H \]

where

- \(B_t \) — is the standard Brownian motion
- \(B_t^H \) — is an independent fractional Brownian motion
- \(H \in (0, 1] \) — is known Hurst parameter
Objects of studies

\[X_t = B_t + B_t^H \]

where
- \(B_t \) — is the standard Brownian motion
- \(B_t^H \) — is an independent fractional Brownian motion
- \(H \in (0, 1] \) — is known Hurst parameter

\[Y_t = \int_0^t f(s) \, ds + X_t, \quad 0 \leq t \leq T. \]
fractional Brownian motion

Fractional Brownian motion

B_t^H is a fractional Brownian motion with Hurst parameter $H \in (0, 1)$, i.e. zero mean Gaussian process with the correlation function

$$K(s, t) = \mathbb{E} B_t^H(t) B_s^H(s) = \frac{1}{2} \left(|t|^{2H} + |s|^{2H} - |t - s|^{2H} \right),$$

for $s, t \in [0, T].$

B_t^H is not a semimartingale on its own filtration, unless $H = \frac{1}{2}$ or $H = 1.$
fractional Brownian motion

B^H_t is a fractional Brownian motion with Hurst parameter $H \in (0, 1)$, i.e. zero mean Gaussian process with the correlation function

$$K(s, t) = \mathbb{E} B^H(t) B^H(s) = \frac{1}{2} \left(|t|^{2H} + |s|^{2H} - |t-s|^{2H} \right),$$

$s, t \in [0, T].$

B^H is not a semimartingale on its own filtration, unless $H = \frac{1}{2}$ or $H = 1.$
Questions for discussions

- Stochastic analysis of X:
 - structure of the fundamental martingale
 - the semimartingale representation
 - the density with respect to the standard and fractional Wiener measures

- Stochastic analysis of Y: the density with respect to measure μ^X

- Potential applications; MLE asymptotic properties
2000 Patric Cheridito

\[
\sup_{\tau} \sum_{j=0}^{n-1} \mathbb{E} \left| \mathbb{E} (X_{t_{j+1}} - X_{t_{j}} \mid \mathcal{F}_{t_{j}}^{X}) \right| < \infty
\]

2003 Fabrice Boduin and David Nualart

\[X := B + V, \quad \partial^{2}K/\partial s\partial t \in L^{2}([0, T]^{2})\]

Hida-Hitsuda criterion.

2007 Harry van Zanten equivalence of \(\xi = \sum_{k=1}^{n} \alpha_{k} B^{H_{k}}\) of \(n\) independent fBm's to a single fBm. (Spectral techniques for processes with stationary increments).
Important references

- 2000 Patric Cheridito
 \[
 \sup_{\tau} \sum_{j=0}^{n-1} \mathbb{E} \left| \mathbb{E} \left(X_{t_{j+1}} - X_{t_j} \middle| \mathcal{F}_{t_j}^X \right) \right| < \infty
 \]

- 2003 Fabrice Boduin and David Nualart
 \[X := B + V, \quad \partial^2 K/\partial s \partial t \in L^2([0, T]^2)\]
 Hida-Hitsuda criterion.

- 2007 Harry van Zanten equivalence of \(\xi = \sum_{k=1}^{n} \alpha_k B^{H_k} \) of \(n \) independent fBm’s to a single fBm. (Spectral techniques for processes with stationary increments).
Important references

- **2000 Patric Cheridito**

 \[
 \sup_{\tau} \sum_{j=0}^{n-1} \mathbb{E} \left| \mathbb{E}(X_{t_{j+1}} - X_{t_j} | \mathcal{F}_{t_j}^X) \right| < \infty
 \]

- **2003 Fabrice Boduin and David Nualart**

 \[X := B + V, \partial^2 K / \partial s \partial t \in L^2([0, T]^2)\]

 Hida-Hitsuda criterion.

- **2007 Harry van Zanten**

 equivalence of \(\xi = \sum_{k=1}^{n} \alpha_k B^{H_k}\) of \(n\) independent fBm’s to a single fBm. (Spectral techniques for processes with stationary increments).
Important references

- **2000 Patric Cheridito**

 \[
 \sup_{\tau} \sum_{j=0}^{n-1} \mathbb{E} \left[\mathbb{E} \left(X_{t_{j+1}} - X_{t_j} \mid \mathcal{F}_{t_j}^X \right) \right] < \infty
 \]

- **2003 Fabrice Boduin and David Nualart**

 \[X := B + V, \ \partial^2 K/\partial s \partial t \in L^2([0, T]^2) \]

 Hida-Hitsuda criterion.

- **2007 Harry van Zanten**

 Equivalence of \(\xi = \sum_{k=1}^{n} \alpha_k B^{H_k} \) of \(n \) independent fBm’s to a single fBm. (Spectral techniques for processes with stationary increments).
Important references

- **2000 Patric Cheridito**

\[
\sup_{\tau} \sum_{j=0}^{n-1} \mathbb{E} \left| \mathbb{E}(X_{t_{j+1}} - X_{t_j} \| \mathcal{F}_t^X) \right| < \infty
\]

- **2003 Fabrice Boduin and David Nualart**

\[
X := B + V, \quad \partial^2 K/\partial s\partial t \in L^2([0, T]^2)
\]

Hida-Hitsuda criterion.

- **2007 Harry van Zanten**

equivalence of \(\xi = \sum_{k=1}^{n} \alpha_k B^{H_k} \) of \(n \) independent fBm’s to a single fBm. (Spectral techniques for processes with stationary increments).
Important references

- 2000 Patric Cheridito

\[\sup_{\tau} \sum_{j=0}^{n-1} \mathbb{E} \left| \mathbb{E}(X_{t_{j+1}} - X_{t_j} \mid \mathcal{F}_{t_j}^X) \right| < \infty \]

- 2003 Fabrice Boduin and David Nualart

\[X := B + V, \ \partial^2 K/\partial s \partial t \in L^2([0, T]^2) \]

Hida-Hitsuda criterion.

- 2007 Harry van Zanten equivalence of \(\xi = \sum_{k=1}^{n} \alpha_k B^{H_k} \)

of \(n \) independent fBm's to a single fBm. (Spectral techniques for processes with stationary increments).
Main Tools

\[\mathbb{F}^X = (\mathbb{F}_t^X) \text{ and } \mathbb{F} = (\mathbb{F}_t), \ t \in [0, T] \] —the natural filtrations of \(X \) and \((B, B^H) \) respectively.

Fundamental Martingale

\[M_t = \mathbb{E}(B_t | \mathbb{F}_t^X), \quad t \in [0, T]. \]

\(M \) encodes many of the essential features of the process \(X \), making its structure particularly transparent.
Mixed fBm: the filtering perspective

Cai, Chigansky, Kleptsyna

Problems statement and questions around Historical survey

Main Tools

The Main Results

Stochastic Analysis Semimartingale Structure of X Drift estimation in mixed fractional noise

Auxiliary Results

Mixed fBm for $H < 1/2$ Integro-Differential Equation

Main Tools

$$\mathbb{F}^X = (\mathbb{F}^X_t) \text{ and } \mathbb{F} = (\mathbb{F}_t), \ t \in [0, T]$$ —the natural filtrations of X and (B, B^H) respectively.

Fundamental Martingale

$$M_t = \mathbb{E}(B_t | \mathbb{F}^X_t), \ t \in [0, T].$$

M encodes many of the essential features of the process X, making its structure particularly transparent.
Outline

1. Problems statement and questions around
2. Historical survey
3. Main Tools
4. **The Main Results**
 - **Stochastic Analysis**
 - Semimartingale Structure of X
 - Drift estimation in mixed fractional noise
5. Auxiliary Results
 - Mixed fBm for $H < 1/2$
 - Integro-Differential Equation
 - Mixed fBm for $H > 1/2$
6. The proofs
 - Diffusion type representation, Equivalence of measures
8. Concluding Remarks
Fundamental Martingale Representation via X

Mathematical Formulation

\[M_t = \int_0^t g(s, t) dX_s, \quad \langle M \rangle_t = \int_0^t g(s, t) ds, \quad t \geq 0. \]

The kernel $g(s, t)$ solves integro-differential equation:

Equation for the Kernel

\[g(s, t) + H \frac{d}{ds} \int_0^t g(r, t) |s-r|^{2H-1} \text{sign}(s-r) dr = 1, \quad 0 < s < t \leq T. \]

The family of functions \(\{g(s, t), 0 \leq s \leq t \leq T\} \) plays the key role in our approach to analysis of the mixed fBm.
Fundamental Martingale Representation via X

Fundamental Martingale Representation

$$M_t = \int_0^t g(s, t) dX_s, \quad \langle M \rangle_t = \int_0^t g(s, t) ds, \quad t \geq 0.$$

The kernel $g(s, t)$ solves integro-differential equation:

Equation for the Kernel

$$g(s, t) + H \frac{d}{ds} \int_0^t g(r, t) |s-r|^{2H-1} \text{sign}(s-r) dr = 1, \quad 0 < s < t \leq T.$$

The family of functions $\{g(s, t), 0 \leq s \leq t \leq T\}$ plays the key role in our approach to analysis of the mixed fBm.
X is a stochastic integral w.r.t M

<table>
<thead>
<tr>
<th>Representation of X via M</th>
</tr>
</thead>
<tbody>
<tr>
<td>The following representation holds:</td>
</tr>
<tr>
<td>[X_t = \int_0^t G(s, t) dM_s, \quad t \in [0, T],]</td>
</tr>
</tbody>
</table>

where

\[G(s, t) := 1 - \frac{d}{d\langle M \rangle_s} \int_0^t g(\tau, s) d\tau, \quad 0 \leq s \leq t \leq T. \]

and, in particular, \(\mathbb{F}_t^X = \mathbb{F}_t^M \), \(P \)-a.s. for all \(t \in [0, T] \).
The fundamental Semimartingale

Let $Y = (Y_t)$ defined by

$$Y_t = \int_0^t f(s) ds + X_t, \quad t \in [0, T],$$

Then Y admits the representation

$$Y_t = \int_0^t G(s, t) dZ_s$$

The fundamental semimartingale $Z = (Z_t)$

$$Z_t = \int_0^t g(s, t) dY_s = M_t + \int_0^t \Phi(s) d\langle M \rangle_s,$$

and

$$\Phi(t) = \frac{d}{d\langle M \rangle_t} \int_0^t g(s, t) f(s) ds.$$
The measures \(\mu^X \) and \(\mu^Y \)

In particular, \(\mathbb{F}^Y_t = \mathbb{F}^Z_t \), \(P \)-a.s. for all \(t \in [0, T] \) and, if

\[
E \exp \left\{ - \int_0^T \Phi(t) \, dM_t - \frac{1}{2} \int_0^T \Phi^2(t) \, d\langle M \rangle_t \right\} = 1,
\]

then the measures \(\mu^X \) and \(\mu^Y \) are equivalent and the corresponding Radon-Nikodym density is given by

\[
\frac{d\mu^Y}{d\mu^X}(Y) = \exp \left\{ \int_0^T \hat{\Phi}(t) \, dZ_t - \frac{1}{2} \int_0^T \hat{\Phi}^2(t) \, d\langle M \rangle_t \right\},
\]

where \(\hat{\Phi}(t) = E(\Phi(t)|\mathbb{F}^Y_t) \).
Outline

1. Problems statement and questions around
2. Historical survey
3. Main Tools
4. The Main Results
 - Stochastic Analysis
 - Semimartingale Structure of X
 - Drift estimation in mixed fractional noise
5. Auxiliary Results
 - Mixed fBm for $H < 1/2$
 - Integro-Differential Equation
 - Mixed fBm for $H > 1/2$
6. The proofs
 - Diffusion type representation, Equivalence of measures
 - large sample asymptotic of MLE
7. Concluding Remarks
Let $H \in \left(\frac{3}{4}, 1\right]$. Then X is a **diffusion** type process:

$$X_t = W_t - \int_0^t \varphi_s(X)ds, \quad W_t = \int_0^t \frac{dM_s}{g(s, s)},$$

W is an F^X-Brownian motion; $\varphi_t(X) = \int_0^t \frac{\dot{g}(s, t)}{g(t, t)} dX_s$
Moreover, the measures μ^X and μ^W are equivalent and

$$\frac{d\mu^X}{d\mu^W}(X) = \exp \left\{ - \int_0^T \varphi_t(X) dX_t - \frac{1}{2} \int_0^T \varphi_t^2(X) dt \right\}.$$
Outline

1. Problems statement and questions around
2. Historical survey
3. Main Tools
4. The Main Results
 - Stochastic Analysis
 - Semimartingale Structure of X
 - Drift estimation in mixed fractional noise
5. Auxiliary Results
 - Mixed fBm for $H < 1/2$
 - Integro-Differential Equation
 - Mixed fBm for $H > 1/2$
6. The proofs
 - Diffusion type representation, Equivalence of measures
 - large sample asymptotic of MLE
7. Concluding Remarks
Drift estimation in mixed fractional noise

Let

\[Y_t = \theta t + B_t + B^H_t, \quad t \in [0, T] \]

MLE of \(\theta \)

The MLE of \(\theta \) is given by

\[
\hat{\theta}_T(Y) = \frac{\int_0^T g(s, T)dY_s}{\int_0^T g(s, T)ds},
\]

For \(H \in (0, 1) \) this estimator is strongly consistent and the corresponding estimation error is normal

\[
\hat{\theta}_T - \theta \sim N\left(0, \frac{1}{\int_0^T g(s, T)ds}\right).
\]
Drift estimation in mixed fractional noise

Asymptotic variance

With the following asymptotic variance:

- for $H > \frac{1}{2}$,

\[
\lim_{T \to \infty} T^{2-2H} \mathbb{E}(\hat{\theta}_T - \theta)^2 = \frac{2H \Gamma(H + \frac{1}{2}) \Gamma(3 - 2H)}{\Gamma(\frac{3}{2} - H)},
\]

where $\Gamma(\cdot)$ is the standard Gamma function.

- for $H < \frac{1}{2}$,

\[
\lim_{T \to \infty} T \mathbb{E}(\hat{\theta}_T - \theta)^2 = 1.
\]
Mixed fBm: the filtering perspective

Cai, Chigansky, Kleptsyna

Problems statement and questions around

Historical survey

Main Tools

The Main Results

- Stochastic Analysis
- Semimartingale Structure of X
- Drift estimation in mixed fractional noise

Auxiliary Results

- Mixed fBm for $H < 1/2$
- Integro-Differential Equation
- Mixed fBm for $H > 1/2$

The proofs

- Diffusion type representation, Equivalence of measures
 - large sample asymptotic of MLE

Concluding Remarks
Indirect approach

Reduction to the case $H > 1/2$

The trick is to transform X into

$$\tilde{X}_t = \int_0^t \tilde{\rho}(s, t) dX_s, \quad t \in [0, T],$$

where the kernel $\tilde{\rho}(s, t)$ is such that the process

$$\tilde{B}_t = \int_0^t \tilde{\rho}(s, t) dB_s^H,$$

is a standard Brownian motion.
Indirect approach, II

Reduction to the case $H > 1/2$

Then the Gaussian process

$$\tilde{U}_t = \int_0^t \tilde{\rho}(s, t) dB_s$$

has covariance function with integrable partial derivative

$$\tilde{\kappa}(s, t) := \frac{\partial^2}{\partial s \partial t} E \tilde{U}_s \tilde{U}_t = |t - s|^{-2H} \chi \left(\frac{s \land t}{s \lor t} \right), \quad s \neq t,$$

where $\chi(\cdot)$ is a continuous function, and the process $\tilde{X} = \tilde{B} + \tilde{U}$ with $H < \frac{1}{2}$ has the structure, similar to the original process X with $H > \frac{1}{2}$.
Reduction to the case $H > 1/2$

Then the Gaussian process

$$\widetilde{U}_t = \int_0^t \widetilde{\rho}(s, t) dB_s$$

has covariance function with integrable partial derivative

$$\widetilde{\kappa}(s, t) := \frac{\partial^2}{\partial s \partial t} \mathbb{E} \widetilde{U}_s \widetilde{U}_t = |t - s|^{-2H} \chi \left(\frac{s \wedge t}{s \vee t} \right), \quad s \neq t,$$

where $\chi(\cdot)$ is a continuous function, and the process $\widetilde{X} = \widetilde{B} + \widetilde{U}$ with $H < \frac{1}{2}$ has the structure, similar to the original process X with $H > \frac{1}{2}$.
Outline

1. Problems statement and questions around
2. Historical survey
3. Main Tools
4. The Main Results
 - Stochastic Analysis
 - Semimartingale Structure of X
 - Drift estimation in mixed fractional noise
5. Auxiliary Results
 - Mixed fBm for $H < 1/2$
 - Integro-Differential Equation
 - Mixed fBm for $H > 1/2$
6. The proofs
 - Diffusion type representation, Equivalance of measures
 - large sample asymptotic of MLE
7. Concluding Remarks
The kernel \(g(s, t) \) is the unique continuous solution of the following equations:

- for \(H \in (0, 1] \), the integro-differential equation:
 \[
 g(s, t) + H \frac{d}{ds} \int_0^t g(r, t) |s - r|^{2H-1} \text{sign}(s - r) \, dr = 1.
 \]

- for \(H \in (\frac{1}{2}, 1] \), the weakly singular integral equation:
 \[
 g(s, t) + H(2H - 1) \int_0^t g(r, t) |s - r|^{2H-2} \, dr = 1.
 \]
Alternative Forms, II

- for $H \in (0, 1)$, the **fractional** integro-differential equation

\[
c_H \frac{d}{ds} \int_0^s g(r, t) r^{1/2-H} (s - r)^{1/2-H} \, dr -
\]

\[
- \alpha_H s^{1-2H} \frac{d}{ds} \int_s^t g(r, t) r^{H-1/2} (r - s)^{H-1/2} \, dr
\]

\[
= c_H s^{1/2-H} (t - s)^{1/2-H}.
\]
Alternative Forms, III

For \(H \in (0, \frac{1}{2}) \), the weakly singular integral equation

\[
g(s, t) + \beta_H t^{-2H} \int_0^t g(r, t) \kappa \left(\frac{r}{t}, \frac{s}{t} \right) dr = c_H s^{1/2-H} (t-s)^{1/2-H},
\]

with the kernel

\[
\kappa(u, v) = (uv)^{1/2-H} \int_{u \vee v}^1 r^{2H-1} (r-u)^{-1/2-H} (r-v)^{-1/2-H} dr
\]
Outline

1. Problems statement and questions around
2. Historical survey
3. Main Tools
4. The Main Results
 - Stochastic Analysis
 - Semimartingale Structure of X
 - Drift estimation in mixed fractional noise
5. Auxiliary Results
 - Mixed fBm for $H < 1/2$
 - Integro-Differential Equation
 - Mixed fBm for $H > 1/2$
6. The proofs
 - Diffusion type representation, Equivalence of measures
 - large sample asymptotic of MLE
7. Concluding Remarks
Integral Equation with $H > 1/2$, I

Properties of $g(s, t)$ on the diagonal

The function $g(t, t)$, $t \in [0, T]$ satisfies the properties:

- $g(t, t)$ is continuous on $[0, T]$ with $g(0, 0) := \lim_{t \to 0} g(t, t) = 1$
- $g(t, t) > 0$ for all $t \in [0, T]$

$$\int_0^t g(s, t) ds = \int_0^t g^2(s, s) ds.$$
Integral Equation with $H > 1/2$, II

Properties of $\dot{g}(s, t) = \frac{\partial}{\partial t} g(s, t)$

The kernel $g(s, t)$ satisfies the following properties

- $g(s, t)$ is continuously differentiable at $t \in (0, T]$ for any $s > 0$, $s \neq t$;
- the derivative $\dot{g}(s, t) := \frac{\partial}{\partial t} g(s, t)$ satisfies the equation

$$\dot{g}(s, t) + H(2H - 1) \int_0^t \dot{g}(r, t)|r - s|^{2H-2} dr =$$

$$-H(2H - 1)g(t, t)|r - s|^{2H-2}, s \in (0, t).$$

- $\dot{g}(\cdot, t) \in L^2([0, t])$ for $H > 3/4$
Outline

1. Problems statement and questions around
2. Historical survey
3. Main Tools
4. The Main Results
 - Stochastic Analysis
 - Semimartingale Structure of X
 - Drift estimation in mixed fractional noise
5. Auxiliary Results
 - Mixed fBm for $H < 1/2$
 - Integro-Differential Equation
 - Mixed fBm for $H > 1/2$
6. The proofs
 - Diffusion type representation, Equivalence of measures
 - large sample asymptotic of MLE
7. Concluding Remarks
Mixed fBm: the filtering perspective

Cai, Chigansky, Kleptsyna

Problems statement and questions around

Historical survey

Main Tools

The Main Results

Stochastic Analysis

Semimartingale Structure of X

Drift estimation in mixed fractional noise

Auxiliary Results

Mixed fBm for $H < 1/2$

Integro-Differential Equation

$H > 3/4$

X is a diffusion type process

\[
M_t = \int_0^t g(s, t) dX_s = \int_0^t g(s, s) dX_s + \int_0^t \left(g(r, t) - g(r, r) \right) dX_r
\]

\[
\int_0^t g(s, s) dX_s + \int_0^t \int_r^t \dot{g}(r, s) dsdX_r =
\]

\[
\int_0^t g(s, s) dX_s + \int_0^t \int_0^s \dot{g}(r, s) dX_r ds,
\]

where the last equality holds since $\dot{g}(\cdot, s) \in L^2([0, s])$
Mixed fBm: the filtering perspective

Cai, Chigansky, Kleptsyna

Problems statement and questions around

Historical survey

Main Tools

The Main Results

Stochastic Analysis

Semimartingale Structure of X

Drift estimation in mixed fractional noise

Auxiliary Results

Mixed fBm for $H < 1/2$

Integro-Differential Equation

$H > 3/4$, II

X is a diffusion type process, II

Hence

$$W_t = \int_0^t \frac{1}{g(s, s)} dM_s = X_t + \int_0^t \int_0^s \frac{g(r, s)}{g(s, s)} dX_r ds =:$$

$$X_t + \int_0^t \varphi_s(X) ds.$$
Mixed fBm: the filtering perspective
Cai, Chigansky, Kleptsyna

Problems statement and questions around

Historical survey

Main Tools

The Main Results

Stochastic Analysis
Semimartingale Structure of X
Drift estimation in mixed fractional noise

Auxiliary Results

Mixed fBm for $H < \frac{1}{2}$
Integro-Differential Equation

$H \leq 3/4$

Singularity of Measures

\[L_t := \int_0^t g(s, t) dW_s, \]

must be a semimartingale under P. Define

\[\psi(s, t) = -\int_s^t g(r, r) \sum_{m=1}^{n_0-1} (-1)^m \kappa^{(m)}(r, s) dr, \quad 0 < s < t \leq T, \]

where n_0 is the least integer greater than $\frac{1}{4H-2}$. Then

$\psi(\cdot, t) \in L^2([0, t])$.
Singularity of Measures, II

Define

\[U_t := \int_0^t \psi(s, t) dW_s \]

\[V_t := \int_0^t (g(s, t) - g(s, s) + \psi(s, t)) dW_s. \]

Then

\[\int_0^t g(s, t) dW_s = V_t + \int_0^t g(s, s) dW_s - U_t. \]

- \(U \) has zero quadratic variation, but unbounded first variation
- \(V \) has bounded first variation.
Singular perturbations

Fix $\varepsilon > 0$ and let g_ε be the solution of the equation:

$$\varepsilon g_\varepsilon(\varphi)(u) + \int_0^1 g_\varepsilon(\varphi)(v) \kappa(u,v) dv = \varphi(u), \quad u \in [0, 1],$$

where φ is a sufficiently smooth function. Let $g(\varphi)$ be the solution of auxiliary integral equation of the first kind

$$\int_0^1 g(\varphi)(v) \kappa(u,v) dv = \varphi(u).$$
Singular perturbations

Let $\psi(u)$ be a function, such that $g^{(\psi)}$ exists, then

$$\left| \int_0^1 (g^{(\varphi)}(s) - g^{(\varphi)}(s)) \psi(s) \, ds \right| \leq$$

$$2\varepsilon \left(\int_0^1 (g^{(\psi)}(u))^2 \, du \right)^{1/2} \left(\int_0^1 (g^{(\varphi)}(u))^2 \, du \right)^{1/2}. $$

Singular perturbations

Mixed fBm: the filtering perspective

Cai, Chigansky, Kleptsyna

Problems statement and questions around

Historical survey

Main Tools

The Main Results

Stochastic Analysis

Semimartingale Structure of X

Drift estimation in mixed fractional noise

Auxiliary Results

Mixed fBm for $H < \frac{1}{2}$

Integro-Differential Equation
Concluding Remarks

Open Questions

- Pathways convergence for a singulary perturbed equations
- Boundary layer construction