

ADAPTIVE SAMPLING SCHEMES FOR DENSITY ESTIMATION

Delphine Blanke

January 2005

- Estimation with known parameters : r_0 , γ_0
- Adaptive sampling scheme : r_0 or γ_0 unknown
- Double adaptive sampling scheme : r_0 , γ_0 both unknown

DENSITY - n I.I.D. OBS.

$$X_1, \ldots, X_n$$
, i.i.d., \mathbb{R}^d -valued, $X_i \sim f$.

Regularity condition, $C^{(r_0)}$

$$\begin{cases} f \text{ is } r_0 - \text{times differentiable with either} \\ f^{(r_0)} \text{ a bounded continuous function or for} \\ j_1 + \dots + j_d = r_0 \text{ and } (\ell, \lambda) \in]0, +\infty[\times]0, 1] : \\ \left| \frac{\partial^{(r_0)} f}{\partial x_1^{j_1} \dots \partial x_d^{j_d}}(y) - \frac{\partial^{(r_0)} f}{\partial y_1^{j_1} \dots \partial y_d^{j_d}}(z) \right| \leq \ell \|y - z\|^{\lambda}. \end{cases}$$

Kernel estimator

$$f_n(x) = \frac{1}{nh_n^d(r_0)} \sum_{i=1}^n K_{(r_0)} \left(\frac{x - X_i}{h_n(r_0)} \right), \ x \in \mathbb{R}^d$$

for bandwidth $h_n(r_0)$, kernel $K_{(r_0)}$ with compact support and belonging to $\mathcal{C}_K^{(r_0)}$.

Mean-square convergence $h_n(r_0) \sim (1/n)^{\frac{1}{2r_0+d}}$

$$n^{\frac{2r_0}{2r_0+d}} \operatorname{E} \left(f_n(x) - f(x) \right)^2 \xrightarrow[n \to \infty]{} f(x) \int K_{(r_0)}^2(v) \, dv + b_{r_0}^2(x) \qquad (*)$$

with $b_{r_0}(x) =$

$$\sum_{j_1+\dots+j_d=r_0} \frac{1}{j_1!\dots j_d!} \frac{\partial^{(r_0)}f(x)}{\partial x_1^{j_1}\dots \partial x_d^{j_d}} \int_{u_1^{j_1}\dots u_d^{j_d}} K(u) \, \mathrm{d}u.$$

Motivation

- Get the result (*) for a continuous-time process sampled at n instant times, $t_{i,n} = \delta_n$.
- High rate sampling $(\delta_n \to 0, n\delta_n \to \infty)$ should be adapted to the feature of the underlying sample path.

DENSITY - SAMPLING

 $\{X_t, t \in \mathbb{R}\}: (X_t) \mathbb{R}^d$ -valued, defined on $(\Omega, \mathcal{A}, \mathcal{P})$, measurable, with same density f.

Sampling times: $0 < t_{1,n} < \cdots < t_{n,n}$ such that

$$t_{k,n} - t_{k-1,n} = \delta_n, \quad k = 2, \dots, n$$

with δ_n satisfying to $\delta_n \to 0$, $n\delta_n \to +\infty$.

Kernel estimator

$$\hat{f}_n(x) = \frac{1}{nh_n^d(r_0)} \sum_{i=1}^n K_{(r_0)} \left(\frac{x - X_{t_{i,n}}}{h_n(r_0)} \right).$$

Some references, $\delta_n \equiv \delta > 0$: Masry (83), Prakasa Rao (88), Wu (97), Vilar & Vilar (00)...

 $\delta_n \to 0$: Bosq (97, 98), Bosq & Cheze-Payaud (99), Leblanc (95, 97), Comte & Merlevède (02) ...

Question: How to choose δ_n minimal?

 \longrightarrow Minimal total time of experiment $T_n = n\delta_n$.

Assumptions 1 (A1)

(i) f bounded, continuous at x;

(ii)
$$f_{(X_s, X_t)} = f_{(X_0, X_{t-s})}$$
 for $t > s$;

(iii)
$$\exists u_1 \geq u_0 > 0 : \forall u \in [u_0, +\infty[$$

 $||g_u||_{\infty} \leq \pi(u)$ with π bounded, integrable

and \setminus over $]u_1, +\infty[$,

(iv)
$$\exists \gamma_0 > 0$$
: $f_{(X_0, X_u)}(y, z) \leq M(y, z)u^{-\gamma_0}$,

for $(y, z, u) \in \mathcal{V}_x^2 \times]0, u_0[$, with M(., .) continuous at (x, x).

Remark: If
$$Y_u := \left(\frac{X_u^{(1)} - X_0^{(1)}}{u^{\gamma_1}}, \dots, \frac{X_u^{(d)} - X_0^{(d)}}{u^{\gamma_d}}\right)$$

with $X_t^{(i)}$ *i*-th component of $\left(X_t^{(1)}, \dots, X_t^{(d)}\right)$, $0 < \gamma_i \le 1$ for $i = 1, \dots, d$; then A1(iv) can be

replaced by $f_{(X_0,Y_u)}(y,\frac{z-y}{u^{\gamma}}) \leq M(y,z)$, with

$$\gamma_0 = \sum_{i=1}^d \gamma_i$$
 and $\frac{z-y}{u^{\gamma}} := \left(\frac{z_1 - y_1}{u^{\gamma_1}}, \dots, \frac{z_d - y_d}{u^{\gamma_d}}\right)$.

- Case $\gamma_0 = \frac{1}{2}$. Homogeneous diffusions: under regularity conditions, solutions of $dX_t = m(X_t) dt + \sigma(X_t) dW_t$, $t \ge 0$ are strictly stationary and satisfy A1-(iii), A1-(iv) (with $\gamma_0 = 1/2$), see e.g. Leblanc (1997), Veretennikov (1999), Kutoyants (2003).
- Case $\gamma_0 = 1$. For example, real mean-square differentiable Gaussian processes. But also 2-dimensional homogeneous diffusion processes with independent components $X_t^{(1)}$, $X_t^{(2)}$.
- Case $\gamma_0 > 1$: e.g. d-dimensional diffusion processes, $d \geq 3$ independent components, with $\gamma_0 = \sum_{i=1}^d \gamma_i$.

MEAN-SQUARE CONVERGENCE

Theorem 1 (with Pumo, 2003)

Under Assumption A1, $f \in \mathcal{C}^{(r_0)}$, $h_n = n^{-\frac{1}{2r_0+d}}$:

$$n^{\frac{2r_0}{2r_0+d}} E(\hat{f}_n(x) - f(x))^2 \to f(x) \int K_{(r_0)}^2(u) du + b_{r_0}^2(x)$$

with δ_n such that $\frac{\delta_n}{\delta_n^*}(\gamma_0) \to \infty$ where

$$\begin{cases} \delta_{n}^{*}(\gamma_{0}) = h_{n}^{d} & \text{if } \gamma_{0} < 1, \\ \delta_{n}^{*}(\gamma_{0}) = h_{n}^{d} \ln(1/h_{n}) & \text{if } \gamma_{0} = 1, \\ \delta_{n}^{*}(\gamma_{0}) = h_{n}^{d/\gamma_{0}} & \text{if } \gamma_{0} > 1. \end{cases}$$

'Optimality?': Optimality in the following sense: if $T_n = n\delta_n^*(\gamma_0)$, then for $\gamma_0 < 1$, $\gamma_0 = 1$ and $\gamma_0 > 1$ the corresponding m.s. rates are T_n^{-1} , $\frac{\ln T_n}{T_n}$ and $T_n^{-\frac{2\gamma_0 r_0}{2\gamma_0 r_0 + d(\gamma_0 - 1)}}$.

Castellana & Leadbetter (86), Bosq (97, 98), Bosq &
 Davydov (98), Davydov (01), Kutoyants (97, 99, 03), Bl.
 & Bosq (97, 00), Sköld & Hössjer (99)...

ALMOST SURE CONVERGENCE

Theorem 2 X geometrically strong mixing proc.

(a) if $\frac{\delta_n}{\ln n} \equiv \delta$, conditions A1(i)-(iii) and $\frac{nh_n^d}{(\ln n)^3} \to \infty$ imply a.s.

$$\limsup_{n \to +\infty} \sqrt{\frac{nh_n^d}{\ln n}} \, \left| \hat{f}_n(x) - \operatorname{E} \hat{f}_n(x) \right| \le 2^{\frac{3}{2}} f^{\frac{1}{2}}(x) \, \|K\|_2 \tag{*}$$

(b) (*) also true if moreover AI(iv) is satisfied and $h_n \to 0$, $\delta_n \to 0$ such that $\frac{nh_n^d \delta_n^2}{(\ln n)^3} \to \infty$ and $\delta_n \geq \delta_n^*(\gamma_0)$ where

$$\delta_n^*(\gamma_0) = \begin{cases} h_n^d & \text{if } \gamma_0 < 1, \\ h_n^d \ln(1/h_n) & \text{if } \gamma_0 = 1, \\ h_n^{d/\gamma_0} & \text{if } \gamma_0 > 1. \end{cases}$$

Remark: $f \in \mathcal{C}^{r_0}$ and $r_0 > \frac{d}{\max(1,\gamma_0)} \rightsquigarrow$ rate $\left(\frac{\ln n}{n}\right)^{\frac{r_0}{2r_0+d}}$ for $h_n \sim \left(\frac{\ln n}{n}\right)^{\frac{1}{2r_0+d}}$ and for all $\delta_n \geq \delta_n^*(\gamma_0)$. If $r_0 \leq \frac{d}{\max(1,\gamma_0)}$, a suitable choice is $\delta_n = \frac{(\ln n)^{3/2}}{(nh_n^d)^{1/2}} \ln_p n$ with $\ln_p(n) = \underbrace{\ln \cdots \ln n}_{p-\text{times}}, p \geq 2$.

SOME SIMULATIONS

Numerical implementation in the Gaussian case (with Pumo, 03).

Criteria

$$ISE(\delta) = \frac{1}{N} \sum_{j=1}^{N} \int \left(\hat{f}_{n,\delta,j}(x) - f(x) \right)^2 dx$$

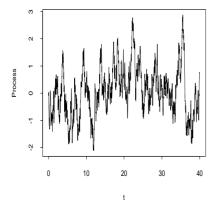
with $t_{i+1,n} - t_{i,n} = \delta$, $f \sim \mathcal{N}(0,1)$, n = 105, N = 50 and $\hat{f}_{n,\delta,j}$ estimator for the j-th simulated sample path.

• Ornstein-Uhlenbeck ($\gamma_0 = 1/2$) $dX_t = -X_t dt + \sqrt{2} dW_t$

and Wong process ($\gamma_0 = 1$)

$$X_t = \sqrt{3} \exp(-\sqrt{3}t) \int_0^{\exp(2t/\sqrt{3})} W_s \, ds,$$

both simulated at times $\tau_{m+1} - \tau_m = 0.02$.



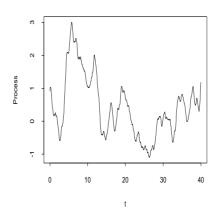
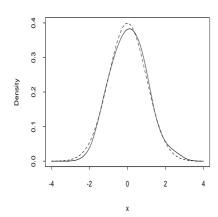


Figure 1: O.U. (left) and Wong (right) evaluated at $\, au_{i} \, = \, 0.02 \, * \, i. \,$



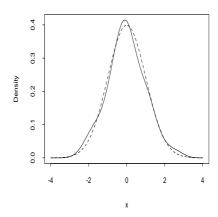


Figure 2: Estimated density (dash) $\mathcal{N}(0,1)$, n=105. O.U. (left) for $\delta_n=0.4$ and Wong (right) for $\delta_n=1.83$.

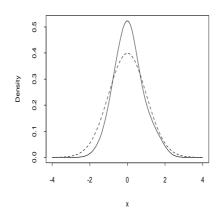
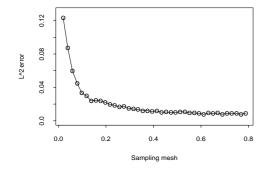


Figure 3: Estimated density (dash) $\mathcal{N}(0,1), n=105.$ Wong with $\delta_n=0.4.$



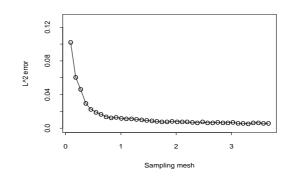


Figure 4: $ISE(\delta)$ for O.U. (left) and Wong (right).

$$ISE(\delta) = \frac{1}{50} \sum_{j=1}^{50} \int (\widehat{f}_{105,\delta,j}(x) - f(x))^2 dx$$

ADAPTIVE SAMPLING SCHEME

 $(r_0 \text{ unknown}, \gamma_0 \text{ known})$

Some references on adaptive works

- Lepski (90): white noise model, Hölder class.
- Efromovich (85): i.i.d. case, density on [0,1], Sobolev class, L^2 .
- Golubev (92): i.i.d. case, Sobolev class, L^2 .
- Butucea (00, 01): i.i.d. case, Sobolev class, L^p .
- Comte & Merlevède (02) : strong mixing process, $\gamma_0 < 1$, Besov space.

Our framework A device to be calibrated during a learning period where different choices of δ_n could be tested. Construction of an adaptive estimator (relatively to r_0 and for known γ_0) converging over the smallest possible learning period.

Grid of candidates for r_0 :

$$\Delta_n = \{1, 2, \dots, r_n\}$$

$$r_0^* = \max\{r_1 \in \Delta_n : \forall r_2 \in \Delta_n, r_2 \le r_1, \}$$

$$\left(\frac{n}{\ln n}\right)^{\frac{r_2}{2r_2+d}} |\widehat{f}_{r_2,\gamma_0}(x) - \widehat{f}_{r_1,\gamma_0}(x)| \le \widehat{\eta}(r_2,\gamma_0)$$

where $\widehat{\eta}(r, \gamma_0)$ is some random quantity to be defined,

$$\widehat{f}_{r,\gamma_0}(x) := \frac{1}{nh_n^d(r)} \sum_{i=1}^n K_{(r)} \left(\frac{x - X_{i\delta_h(r,\gamma_0)}}{h_n(r)} \right),$$

with $h_n(r) = c\left(\frac{\ln n}{n}\right)^{\frac{1}{2r+d}}$, $K_{(r)} \in \mathcal{C}_K^{(r)}$ and $\delta_h(r,\gamma)$ such that

$$\begin{cases} \delta & \text{if} \quad \gamma = \gamma_{\infty} \\ h_n^d(r) \ln_p(n) & \text{if} \quad \gamma < 1, \ r > d \\ h_n^d(r) \ln 1/h_n(r) & \ln_p(n) & \text{if} \quad \gamma = 1, \ r > d \\ h_n^{d/\gamma}(r) \ln_p(n) & \text{if} \quad \gamma > 1, \ r > d/\gamma \\ \frac{(\ln n)^3}{nh_n^d(r)} & \ln_p(n) & \text{if} \quad r \le d/\max(\gamma, 1). \end{cases}$$

Note that $\gamma_0 = \gamma_\infty$ represents the fixed design $\delta_n \equiv \delta$.

→ Adaptive estimator :

$$\widehat{f}_{r_0^*,\gamma_0}(x) = \frac{1}{nh_n^d(r_0^*)} \sum_{i=1}^n K_{(r_0^*)} \left(\frac{x - X_{i\delta_h(r_0^*,\gamma_0)}}{h_n(r_0^*)} \right)$$

with $h_n(r_0^*) = c \left(\frac{\ln n}{n}\right)^{\frac{1}{2r_0^*+d}}$. Note that by setting $\gamma_0 = \gamma_\infty$ one obtains adaptive estimation of f relatively to r_0 in the case of the fixed design $\delta_n \equiv \delta$.

Now asymptotic convergence of $\widehat{f}_{r_0^*,\gamma_0}(x)$ depends on $\widehat{\eta}(r,\gamma_0)=$

$$a(2^{3/2}c^{-d/2}\sqrt{\widetilde{f}_{r,\gamma_0}(x)} \|K_{(r)}\|_2 + c^r |\widetilde{b}_{r,\gamma_0}(x)|)$$

with a > 2 and $f_{r,\gamma_0}(x)$, $b_{r,\gamma_0}(x)$ preliminary estimators of f(x), $b_r(x)$ based on

$$X_{\delta_n(\gamma_0)},\ldots,X_{n\delta_n(\gamma_0)}.$$

Lemma 1 Under A1, X G.S.M., $f \in C^{(r_0)}$

then for all $r_k \leq r_0$, $\widehat{\eta}(r_k, \gamma_0) \xrightarrow[n \to \infty]{} a C_1(r_k)$ a.s. with $C_1(r_k) = 2^{3/2} c^{-d/2} f^{1/2}(x) ||K||_2 + c^{r_k} |b_{r_k}(x)|$ and $r_n (= \sharp \Delta_n) \to \infty$ such that $r_n = \mathcal{O}(\frac{\ln n}{(\ln \ln n)^{\nu_2}})$, $\nu_2 > 1$. Finally, we may state our main result:

Theorem 3 If conditions of Lemma 1 are fulfilled, one obtains a.s.

$$\limsup_{n \to \infty} \left(\frac{n}{\ln n} \right)^{\frac{r_0}{2r_0 + d}} \left| \widehat{f}_{r_0^*, \gamma_0}(x) - f(x) \right| \le (a+1)C_1(r_0)$$

Remarks

- Construction of $\widehat{f}_{r_0^*,\gamma_0}$ requires the sequence of observations $X^{r,n} = (X_{i\delta(r,\gamma_0)}, \ i=1,\ldots,n), \ r=\mathcal{O}(r_n).$ Since $r_n=o(\ln n)$, the loss of rate is at most logarithmic.
- Theorem 3 remains true if one works only with an upper bound for γ_0 , say $\overline{\gamma_0}$, since then $\delta_n(\overline{\gamma_0}) \geq \delta_n^*(\gamma_0)$, the minimal sampling rate. Recall that in general, $\gamma_0 = \sum_{i=1}^d \gamma_i, \gamma_i \in]0,1]$ $\rightsquigarrow \overline{\gamma_0} = d$.
- The case r_0 known but γ_0 unknown can be similarly handled (Bl., 2003).

A DOUBLE ADAPTIVE SAMPLING SCHEME

 $(r_0, \gamma_0 \text{ both unknown})$

Framework: Some device to be calibrated during a learning period where various sampling rates δ_n can be adjusted (including the fixed one $\delta_n \equiv \delta$). The goal is to keep the minimal one, say δ_n^* , satisfying to $\delta_n^* \geq \delta_n^*(\gamma_0)$ when r_0, γ_0 are both unknown.

Grid for γ_0 :

$$\Gamma_{\mathbf{n}} = \{\widetilde{\gamma_0}, \gamma_{1,n}, \gamma_{2,n}, \dots, \gamma_{N_n,n}, \gamma_{\infty}\}$$

with
$$0 < \widetilde{\gamma}_0 < 1$$
, $\gamma_{1,n} = 1$, $\gamma_{j+1,n} - \gamma_{j,n} = \tau_n$,

 γ_{∞} corresponding to $\delta_n \equiv \delta$ and

$$\begin{cases}
N_n \tau_n &= o(\ln n), \\
\text{and } \tau \ge \tau_n &\ge \frac{(\ln \ln n)^{\nu_1}}{\ln n}, \quad (\nu_1 > 1).
\end{cases}$$

Grid for
$$\mathbf{r_0}$$
: $\Delta_n = \{1, 2, \dots, r_n\}$ with $r_n = \mathcal{O}\left(\frac{\ln n}{(\ln \ln n)^{\nu_2}}\right), \nu_2 > 1.$

Procedure in 2 steps:

For $\delta_n \equiv \delta$, look at a candidate r_0^* for r_0 in

$$r_0^* = \max\{r_1 \in \Delta_n : \forall r_2 \in \Delta_n, r_2 \leq r_1, \\ (\frac{n}{\ln n})^{\frac{r_2}{2r_2+d}} | \widehat{f}_{r_2,\gamma_\infty}(x) - \widehat{f}_{r_1,\gamma_\infty}(x) | \leq \widehat{\eta}(r_2,\gamma_\infty) \}$$
 with $\widehat{\eta}(r,\gamma_\infty)$ defined as before.

Look at a candidate γ_0^* in Γ_n with the help of r_0^* :

$$\gamma_0^* = \min\{\gamma_1 \in \Gamma_n : \forall \gamma_2 \in \Gamma_n, \gamma_2 \ge \gamma_1, \\ \left(\frac{n}{\ln n}\right)^{\frac{r_0^*}{2r_0^* + d}} |\widehat{f}_{r_0^*, \gamma_2}(x) - \widehat{f}_{r_0^*, \gamma_1}(x)| \le \zeta\}$$
with $\zeta > 0$.

with $\zeta > 0$.

The adaptive estimator

$$\widehat{f}_{r_0^*, \gamma_0^*}(x) = \frac{1}{nh_n^d(r_0^*)} \sum_{i=1}^n K_{(r_0^*)} \left(\frac{x - X_{i\delta_h(r_0^*, \gamma_0^*)}}{h_n(r_0^*)} \right)$$

with $h_n(r) = c \left(\frac{\ln n}{n}\right)^{\frac{1}{2r+d}}$ and $\delta_h(r,\gamma)$ defined as follows:

$$\begin{cases} \delta & \text{if} \quad \gamma = \gamma_{\infty} \\ h_n^d(r) \ln_p(n) & \text{if} \quad \gamma < 1, r > d \\ h_n^d(r) \ln(1/h_n(r)) \ln_p(n) & \text{if} \quad \gamma = 1, r > d \\ h_n^{d/\gamma}(r) \ln_p(n) & \text{if} \quad \gamma > 1, r > d/\gamma \\ \sqrt{\frac{(\ln n)^3}{nh_n^d(r)}} \ln_p(n) & \text{if} \quad r \le d/\max(\gamma, 1). \end{cases}$$

Theorem 4 Under A1 and if X is a geometrically strongly mixing proc., for $f \in C^{r_0}$ one obtains a.s.

$$\limsup_{n \to \infty} \left(\frac{n}{\ln n} \right)^{\frac{r_0}{2r_0 + d}} \left| \widehat{f}_{r_0^*, \gamma_0^*}(x) - f(x) \right| \le (a+1)C_1 + \zeta$$

Remarks

- Observations needed for estimation $X^{s,r,n} = (X_{i\delta(r,\gamma_s)}, i=1,\ldots,n),$ $s=0,1,\ldots,N_n+1, r=1,\ldots,r_n$ with $N_n = o((\ln n)^2)$ and $r_n = o(\ln n) \leadsto$ only a logarithmic loss in relation to an estimator using the whole $N_n \times r_n \times n$ observations.
- $\tau_{j,n} \equiv \tau$, $N_n \equiv N$ is a suitable choice \leadsto the numerical implementation can be fast.
- γ_0^* quite bad estimator of γ_0 !