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e Adaptive sampling scheme : r, or ~,
unknown

\ both unknown

e [Estimation with known parameters : r,, v,

e Double adaptive sampling scheme : r,, v,
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DENSITY - n 1.1.D. OBS. '

X1,...,X,,iid., R%valued, X; ~ f.

Regularity condition, C(™)

e : : : L
f is r, — times differentiable with either

f (r0) a bounded continuous function or for
J1+ -+ ja=r, and (¢, \) €]0, +00[%x]0,1] :

L (y) — 2L (2)

. A
8x{1...8xfid ay‘zl...({?y = €||y ZH .

d

Kernel estimator

fn( nhd ZKTO) (x_)()>, ZCEIRd

for bandwidth h,, (7, ), kernel K, y with compact

support and belonging to C go)
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4 N

1
Mean-square convergence hy,(ro) ~ (1/n) 20+

WTE (fu(@)~f @)~ f(a) [ K300

with b, (z) =

(T0) . .
Z : ! 07 f(z) O/ujll ccout K (u) du.

l 9,01 J
g J1T e Jd Oxy L Oy

Motivation

e Get the result () for a continuous-time
process sampled at n instant times, t; , = 0y,.

e High rate sampling (¢,, — 0, nd,, — o)
should be adapted to the feature of the
underlying sample path.
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DENSITY - SAMPLING '

{X,, t € R} : (X;) R%valued, defined on
(2, A, P), measurable, with same density f.

Sampling times : 0 < ¢; ,, < --- <y, 5, such that
tk,n—tk_l,n:%, k:2,...,n

with 9,, satisfying to 9,, — 0, nd,, — +oc.
Kernel estimator

A 1 ik €T — Xtm
Fn(@) = Spary 22 Ko ( (o) ) ‘

1=1

Some references, 0,, = 0 > 0 : Masry (83), Prakasa
Rao (88), Wu (97), Vilar & Vilar (00)...

0, — 0: Bosq (97, 98), Bosq & Cheze-Payaud
(99), Leblanc (95, 97), Comte & Merlevede (02) ...

Question : How to choose ¢,, minimal ?

~» Minimal total time of experiment T}, = nd,,.
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Gu = [(x0.x.) — ] @ f V, : neighborhood of z

4 N

Assumptions 1 (A1)

(i) f bounded, continuous at x ;

(ii) f(x.,.x,) = J(xo,x, ) Jort > s;

(iii) Juy > ug > 0: Vu € |ug, +0|,
|gull o < m(uw) with T bounded, integrable

and “\, over |uy, +00|,
(v) 370 > 02 fixo,x,) (W, 2) < M(y, z)u™",

for (y,z,u) € V2x]0,uql, with M (., .) continuous

at (z,x).

u’1 R uYd

(1) _ x (D) x () _ 5 (d)
Remark : t'Y,, = ( u u R 0

with Xt(i) 1-th component of (Xt(l), e ,Xlt(d)) :
0<~v <1lforz=1,...,d;then Al(iv) can be
replaced by f(x, v,)(y, 55%) < M (y,2) , with

d
— : ATY . (AU 2d—Yd
Yo = > 7iand = .—( Ly )
i=1
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4 N

o Casen, = % Homogeneous diffusions :
under regularity conditions, solutions of
dX; =m(Xy)dt 4+ o(Xe)dWy, t >0
are strictly stationary and satisfy A1-(éiz),
Al-(iv) (with v, = 1/2), see e.g. Leblanc
(1997), Veretennikov (1999), Kutoyants
(2003).

e (ase 79 = 1. For example, real mean-square
differentiable Gaussian processes. But also
2-dimensional homogeneous diffusion
processes with independent components X t(l),
x?,

e C(Case g > 1: e.g. d-dimensional diffusion
processes, d > 3 independent components,

d
with v, = > ;.
1=1
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To, Yo bOth known

/ MEAN-SQUARE CONVERGENCE .

Theorem 1 (with Pumo, 2003)

~

Under Assumption Al, f € C("0), h, =n" T Td

27rq ~
W E(fu(e) ~ 1)) (@) [ KE () du
+ by, (2)

with &, such that 9,,/0" (v,) — oo where

(05 (70) = hd if 0 < 1.

$0n(v0) = heIn(1/hy)  if v =1,
* _ d/ 0 ;

\577,(’70) = hy'’ if v > 1.

‘Optimality ?° : Optimality in the following sense :
if T,, = nd} (v,), then for v, < 1,~, = 1 and

Y, > 1 the corresponding m.s. rates are 7/, 1, 21n

T
27070

T 2yarn+d —1
and T), “7070F 0071,

~~ Castellana & Leadbetter (86), Bosq (97, 98), Bosq &
Davydov (98), Davydov (01), Kutoyants (97, 99, 03), BI.

QBosq (97, 00), Skold & Hossjer (99)... /




A1GY) : fixex) (¥, 2) < M(y, 2)u™°

/ ALMOST SURE CONVERGENCE '

Theorem 2 X geometrically strong mixing proc.

~

(a) if5 = 0, conditions Al(i)-(iii) and

nh@

Tn)? — imply a.s.
. nhd | r 3 el
limsup \/ 552 |fo(@) = B fu(2) <22 f2(z) || K],

(%)
(b) (x) also true if moreover Al(iv) is satisfied and
h,, — 0, 0,, — 0 such that 8?1%7«6)% > 00 and
On = 0. (7,) where

(h% if v <1,
0 (%) = Y ha I (L/hy)  if 7o =1,
e if v, > 1.
Remark : f € C™ and r, > max(dl,q/o) ~> rate
(m#)% for h,, ~ (an)m and for all
On > 05 (7). If ry < maxé -4 suitable choice is

((lnhz))lm In, n with In, (n) = In {Z_h} n,p > 2.

On,
\ p—times




SOME SIMULATIONS '

Numerical implementation in the Gaussian case
(with Pumo, 03).

e C(Criteria

ISE(s Z/ Fusi(z) — fla ))2 dz

with ti—i—l,n — tz’,n = 5, f ~ N(O, 1), n = 105,
N = 50 and fn,(s, ; estimator for the j-th
simulated sample path.

e Ornstein-Uhlenbeck (v, = 1/2)
dXt — —Xtdt —I- \/§th

and Wong process (7, = 1)
exp(2t/V/'3)

X; = V3exp(—V/3t) / W ds,

both simulated at times 7,,, 11 — = 0.02.
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Process
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Figure 1: O.U. (left) and Wong (right) evaluated at 7; = 0.02 * 4.

Density
2

Figure 2: Estimated density (dash) A/ (0, 1), n = 105.
O.U. (left) for 84, = 0.4 and Wong (right) for 6, = 1.83.
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Figure 3: Estimated density (dash) N (0, 1), n = 105.
Wong with 6§, = 0.4.
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Figure 4: I S E (&) for O.U. (left) and Wong (right).
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ADAPTIVE SAMPLING SCHEME '

(7o unknown, 7o known)

Some references on adaptive works
e Lepski (90) : white noise model, Holder class.

e Efromovich (85) : 1.1.d. case , density on [0,1],
Sobolev class, 2.

e Golubev (92) : i.i.d. case, Sobolev class, L.
e Butucea (00, 01) : 1.1.d. case , Sobolev class, L.

e Comte & Merlevede (02) : strong mixing process,
Y, < 1, Besov space.

Our framework A device to be calibrated during a
learning period where different choices of 9,, could
be tested. Construction of an adaptive estimator
(relatively to 7, and for known -,) converging over
the smallest possible learning period.

\ /

12




Yo known, 7, unknown

4 N

Grid of candidates for r, :
A, ={1,2,....r,}

~ r¥ =max{r; € A, :Vro € Ay,re <1y,

'I”2 A~ A~ P
() 727 | frayo () = fri o (@)] < 7(r2,70) }
where 7)(r, v,) is some random quantity to be

defined,

T -~ :B_Xz T,
fra’YO (x) = ’I’Lh%(’f’) Z K('r) ( hé?fr() 0 ) )
K

with h, (1) = ¢ (lnTn) artd (r) € Cg) and

dp (7, 7y) such that

8
0 if 7=

% he (r)Iny,(n) if v<1,r>d
he(r)In 1/h,(r) Iny(n) if ~=1,r>d
hg/’y(r) In,(n) it vy>1,r>d/y

- S::%”():; 2 In,(n) if r <d/max(y,1).

Note that v, = v represents the fixed design
0y, = 0.

\ /
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Yo known, 7, unknown

ﬂ Adaptive estimator : \

~ — Xion (v 70)
o K h\Tn,70
/ o,’Yo( nhd Z (rg) ( B () )

0

1
with hy, (1)) = ¢ (!22) 270+, Note that by setting
Yo = Yoo ONE obtains adaptive estimation of f
relatively to 7, 1n the case of the fixed design

0y, = 0.

Now asymptotic convergence of ﬁ o (z) depends

on 77( 770 =

23/2 \/fm() HK(T)HerC T,Y0 )‘)

with ¢ > 2 and f, o), br,%( ) preliminary

estimators of f(x), b,-(z) based on
X5 (v)se s X

Lemma 1 Under Al, X G.SM., f € C(ro)

n(sn (’YO) '

then for all ri, < ro, N(rg,Y,) —— a C1(rk) a.s.

with Cy (i) = 2°/2¢ 42 f12(z) || K|, + ¢™ |br, (2)]
and r, (= §A,) — oo such that

= Ol > y

14




Yo known, 7, unknown

Gnally, we may state our main result : \

Theorem 3 If conditions of Lemma 1 are fulfilled,

one obtains a.s.

"0
l[imsup| —
n—oo \Inn

Remarks

P

Frio (@) = ()] < (a+1)C1 (7o)

e Construction of ﬁg ~o Tequires the sequence
of observations
X" = (X,L-(;(T,,YO), i=1,... ,n), r=0(r,).
Since r,, = o(ln n), the loss of rate 1s at most
logarithmic.

e Theorem 3 remains true if one works only
with an upper bound for ~,, say 7,, since then
On (Vo) = 6 (), the minimal sampling rate.

d
Recall that in general, v, = > v;, i €]0, 1]
i=1
~ 7, = d.

e The case r, known but ~, unknown can be

\ similarly handled (BI., 2003). /
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A DOUBLE ADAPTIVE SAMPLING SCHEME '

(T0, Yo both unknown)

Framework : Some device to be calibrated during a
learning period where various sampling rates 0,, can
be adjusted (including the fixed one 9,, = 0). The
goal is to keep the minimal one, say 0., satisfying
to 0 > 6% (~,) when r,, 7, are both unknown.
Grid for v, :

Lr = { Yo, Y1in> Yauns - - s Yi¥moms Yoo f

withO <Y < L, Y =1L, Yit1n — Vi = Tno

Yoo corresponding to d,, = 0 and

NpTn = o(lnn),

and 7 > 7, > {nkn)7
- 'n = Inn

; (Vl > 1)

Grid forr,: A, ={1,2,...,r,} with
rn:(9< In n ),V2>1.

(Inlnn)v2

\ /
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Yo, unknown, 7, unknown

G‘ocedure in 2 steps : \

%

r* — max{?"l e An :Vry € An,TQ <7y,

Yo =min{y1 €E'n: Vy2 € I'n, 72 > 71,

The adaptive estimator
-~ . 1 n CB_XM (7"*,7*)
fTS,’YS (ZU) — nhd(r}) Z; K(ré) ( hn}(Lra‘% - )

1
with hy, (r) = ¢ (222) 27 and &}, (r,v) defined as

follows :
8
0 if 7=
he (r)Iny,(n) it y<1, r>d

% fgLM(fr) In,(n) if y>1,r>d/y

nn)3 .
K % In,(n) if 7 <d/max(v, 1)/

e For 4, =4, look at a candidate 7. for r, in

JAVE

0

_rp o~ ~ R
(a7 )22 [ fra oo () = frivee (B)] S 7(12,700) }
with 7)(r, v~ ) defined as before.

e Look at a candidate v, in I',, with the help of 7 :

%
T

(1) 25 P o (z) — Py (2)] < ¢
with ¢ > 0.

e (r)In(1/hn(r))Iny(n) if =1, r>d

17



Yo, unknown, 7, unknown

4 N

Theorem 4 Under Al and if X is a geometrically

strongly mixing proc., for f € C" one obtains a.s.

lim sup| —
n—oo \ 1NN

fre v (x) = f2)| < (a+1)C14<

Remarks

e O(Observations needed for estimation
X5 = (Xi(g(r’,ys),i — 1, e o ,n),
s=0,1,.... N, +1,r=1,...,r, with
N,, = o((Inn)?) and r,, = o(lnn) ~ only a
logarithmic loss in relation to an estimator
using the whole V,, X r,, X n observations.

e 7,,=7,N, = N isasuitable choice ~~ the

numerical implementation can be fast.

e . quite bad estimator of 7, !

" /
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