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Nonlinear filtering

Given the statistical description of the Markov process (Xt, Yt)t≥0, find the
optimal in the mean square sense recursive estimate of the signal component
f(Xt) for a fixed f , given a trajectory of the observation process {Ys, s ≤ t}, for
any t ≥ 0.

In other words, find a recursive realization for

πt(f) := E
(
f(Xt)|FY

t

)
, t ≥ 0

where FY
t = σ{Ys, s ≤ t}.
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General discrete time setting

* X = (Xn)n∈Z+ is a Markov process with values in Sx ⊆ R, the transition kernel
Λ(x, du) and the initial distribution ν

P
(
Xn ∈ A|FX

n−1

)
=

∫

A

Λ(Xn−1, du), P(X0 ∈ A) = ν(A).

* Y = (Yn)n∈Z+ is an i.i.d. sequence with values in Sy ⊆ R, conditioned on X

P
(
Yn ∈ A|FX

n ∨FY
n−1

)
=

∫

A

g(Xn, u)λ(du)

The solution: Solve the filtering equation

πn(dx) =
g(u, Yn)

∫
Sx

Λ(x, du)πn−1(dx)∫
Sx

g(u, Yn)
∫
Sx

Λ(x, du)πn−1(dx)
, π0(du) = ν(du),

for the conditional distribution πn(du) and calculate

πn(f) = E
(
f(Xn)|FY

n

)
=

∫

Sx

f(u)πn(du).
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The stability problem

* take a probability distribution ν̄ on Sx, different from ν and so that the
solution of the filtering equation is well defined, if started from ν̄ (such pair
(ν̄, ν) is admissible).

* generate the solution π̄n(dx) of the filtering equation, started from ν̄ (the
observation process, driving the equation, corresponds to ν!

The following notions of stability with respect to initial conditions are usually
considered

1. limn→∞ E
(
πn(f)− π̄n(f)

)2 = 0 for any continuous and bounded f

2. limn→∞ n−1 log
∣∣πn − π̄n

∣∣ < 0, P-a.s., where | · | denotes the total variation
distance for measures (densities)

[Q]: What are the conditions on the signal/observation model pa-
rameters (transition density, etc.) for the filter to be stable ?
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Rough chronology

1971 H.Kunita

X is Markov-Feller =⇒ limt→∞ E
(
f(Xt) − πt(f)

)2 is in-
dependent of ν ∀f ∈ Cb

1996 D.Ocone & E.Pardoux ⇓

limt→∞ E
(
πt(f)− π̄t(f)

)2 = 0,∀f ∈ Cb and ν ¿ ν̄

1997 R.Atar & O.Zeitouni considered the stability index

γ = lim
t→∞

1
t

log |πt − π̄t| ≤ 0

and derived strictly negative upper bounds via:

- Oseledec’s multiplicative ergodic theorem

- Birkhoff contraction inequality for positive operators
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Rough chronology (cntd.)

1999 P. Del Moral & A.Guionnet

- bounds on γ via Dobrushin ergodic coefficient

2004 P.Baxendale, P.Ch. & R.Liptser

- spotted a serious gap in H. Kunita’s proof

- bounds on γ by ”native” filtering arguments

Remark: The chronology is rough, omitting many interesting results, which
essentially use the aforementioned methods or are applicable to very specific
settings (as Kalman-Bucy, Benes filters, etc.) Some to be mentioned as the story
unfolds.
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Generality drop diagram

x General filtering problem y

Continuous time Discrete time

... Ergodic X

... compact signal state space

... finite signal state space

The least general case turns to be rich enough to

- exhibit the main difficulties
- demonstrate the known techniques
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The study case: Hidden Markov Models

The signal: Xn takes values in S = {a1, ..., ad}, has the transition matrix Λ with
the entries λij = P(Xn = aj |Xn−1 = ai) and initial distribution ν.

The observation: Yn =
∑d

i=1 1{Xn=ai}ξn(i), where ξn are i.i.d. vectors with
independent entries and

P(ξ1(i) ∈ B) =
∫

B

gi(u)λ(du), i = 1, ..., d

The filter: The vector πn with the entries πn(i) = P(Xn = ai|FY
n ) satisfies

πn =
gj(Yn)

∑d
i=1 λijπn−1(i)∑d

j=1 gj(Yn)
∑d

i=1 λijπn−1(i)
=

G(Yn)Λ∗πn−1∣∣G(Yn)Λ∗πn−1

∣∣ , π0 = ν.

where G(y), y ∈ R is a diagonal matrix with entries gi(y).

Stability: What are the conditions on Λ, gi(u)’s and (ν̄, ν) so that
limn→∞ |πn − π̄n| = 0 is some sense ?
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Which (ν, ν̄) are admissible ?

Let
* (X̄, Ȳ ) denote a copy of (X, Y ), when X0 is sampled from ν̄

* Q and Q̄ are distributions induced by (X,Y ) and (X̄, Ȳ ) respectively
* QY and Q̄Y are Y -marginals of Q and Q̄

P
(∣∣G(Yn)Λ∗πn−1

∣∣ = 0
)

= 0 =⇒
the ”correct” filtering se-
qeunce is always well de-
fined

The ”wrong” filtering sequence may not be well defined

P
(∣∣G(Yn)Λ∗π̄n−1

∣∣ = 0
) ?= 0

Solution: if QY ¿ Q̄Y (at least when restricted to any [0, n]), then

P
(∣∣G(Ȳn)Λ∗π̄n−1

∣∣ = 0
)

= 0 =⇒ P
(∣∣G(Yn)Λ∗π̄n−1

∣∣ = 0
)

= 0

This will be the case if either of the conditions holds
1. ν ¿ ν̄

2. all entries of Λ are positive
3. the distribution of the noises are equivalent (mutually absolutely continuous)
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I. Cul-de-sac ...?

Assume for simplicity ν ∼ ν̄: by standard change of measure argument

π̄n(f) =
E

(
f(Xn)dν̄

dν (X0)|FY
n

)

E
(

dν̄
dν (X0)|FY

n

)

for any bounded f and so

E
∣∣πn(f)− π̄n(f)

∣∣ = E

∣∣∣∣∣E
(
f(Xn)|FY

n

)− E
(
f(Xn)dν̄

dν (X0)|FY
n

)

E
(

dν̄
dν (X0)|FY

n

)
∣∣∣∣∣ ≤

const.E
∣∣∣E

(dν̄

dν
(X0)|FY

n

)
E

(
f(Xn)|FY

n

)
− E

(
f(Xn)

dν̄

dν
(X0)|FY

n

)∣∣∣ ≤

const.‖f‖∞E
∣∣∣E

(dν̄

dν
(X0)|FY

n

)∣∣FY
n

)
− E

(dν̄

dν
(X0)

∣∣FY
n ∨ σ{Xn}

)∣∣∣ =

const.E
∣∣∣E

(dν̄

dν
(X0)|FY

n

)
− E

(dν̄

dν
(X0)|FY

[0,∞) ∨FX
[n,∞)

)∣∣∣

where FX
[n,∞) =

∨
m≥n σ{Xn, ..., Xm}, etc.
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By martingale convergence

lim
n→∞

E
(dν̄

dν
(X0)|FY

n

)
= E

(dν̄

dν
(X0)|FY

[0,∞)

)

lim
n→∞

E
(dν̄

dν
(X0)|FY

[0,∞) ∨FX
[n,∞)

)
= E

(dν̄

dν
(X0)

∣∣ ⋂

n≥1

FY
[0,∞) ∨FX

[n,∞)

)

so the filter would be stable if

FY
[0,∞) ∨

⋂

n≥1

FX
[n,∞)

?=
⋂

n≥1

FY
[0,∞) ∨FX

[n,∞)

For ergodic signals (originally considered by H.Kunita, 1971) with trivial tail
σ-algebra

⋂
n≥1 FX

[n,∞), this reduces to the question

FY
[0,∞)

?=
⋂

n≥1

FY
[0,∞) ∨FX

[n,∞).
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Can ∨ and ∩ be interchanged ?

No! Kaijser’s counterexample: consider a chain Xn with S = {1, 2, 3, 4} and
transition matrix (this is an ergodic chain!)

Λ =
1
2




1 1 0 0

0 1 1 0

0 0 1 1

1 0 0 1




and let Yn = 1{Xn=1} + 1{Xn=3}.

Given FY
[0,∞) all the transitions {1, 3} ⇔ {2, 4} can be recovered. If Xn is added

at some n, then the whole trajectory of X is fixed. In particular X0 is
FY

[0,∞) ∨FX
[n,∞)-measurable ∀n ≥ 1 and so

⋂
n≥0 FY

[0,∞) ∨FX
[n,∞) - measurable.

However X0 is not measurable w.r.t. FY
[0,∞) alone, since Xn can not be resolved

within the pairs {1, 3} and {2, 4}.
Remark: in this example the filter is unstable |πn − π̄n| ≥ C(ν, ν̄) > 0 for all
n ≥ 0, while the signal is ergodic!
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II. Stability as contraction of positive operators

For a pair of measures p and q on S (i.e. vectors in the simplex Sd−1), the
Hilbert projective metric h(p, q) is defined as

h(p, q) = log
maxqj>0(pj/qj)
minqi>0(pi/qi)

, when p ∼ q

and h(p, q) := ∞ for p 6∼ q.

This (pseudo) metric has the following properties:

1. h(c1p, c2q) = h(p, q) for any positive constants c1 and c2.

2. For a matrix A with nonnegative entries (Aij)

h
(
Ap,Aq

) ≤ τ(A)h
(
p, q

)

where τ(A) = 1−
√

ψ(A)

1+
√

ψ(A)
is the Birkhoff contraction coefficient with

ψ(A) = min
i,j,k,`

AikAj`

Ai`Ajk
.

3. |p− q| ≤ 2
log 3h(p, q)
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Some facts to recall

Ergodic chains

Definition: X is ergodic if the limits limn→∞ P(Xn = ai) > 0 exist and are
independent of ν.

Fact: X is ergodic if and only if Λ is r-primitive: there is an integer such that
all the entries of Λr are positive

The Zakai equation

Both πn and π̄n can be obtained by solving linear Zakai type equation,

ρn = G(Yn)Λ∗ρn−1, ρ0 = π0

and normalizing πn = ρn/|ρn| (and π̄n = ρ̄n/|ρ̄n|).
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Back to stability

h(πn, π̄n) = h(ρn, ρ̄n) ≤ τ
( n∏

m=n−r+1

G(Ym)Λ∗
)
h(ρn−r, ρ̄n−r)

and thus (note that |πn − π̄n| is a nonincreasing sequence)

lim
n→∞

1
n

log |πn − π̄n| = lim
k→∞

1
kr

log |πkr − π̄kr| ≤ lim
k→∞

1
kr

log h(πkr, π̄kr) ≤

lim
k→∞

1
k

k∑

`=1

1
r

log τ
( ∏̀

m=`−r+1

G(Ym)Λ∗
)

=
1
r
Es log τ

( r∏
m=1

G(Ym)Λ∗
)

where Es is the expectation with respect to the stationary measure of (X,Y ).

If Λr has positive entries and the densities gi(u) vanish only simultaneously, then
the entries of

∏r
m=1 G(Ym)Λ∗ are positive P-a.s. and

lim
n→∞

1
n

log |πn − π̄n| < 0.
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Limitations
1. If r = 1, i.e. if Λ has all positive entries, then

lim
n→∞

1
n

log |πn − π̄n| ≤ τ(Λ) ≤ −λ∗/λ∗, where λ∗ ≤ λij ≤ λ∗

independently of the noise densities. This mixing condition is stronger than
just ergodicity of X.

2. The Hilbert metric approach typically fails for signals with noncompact state
space: the metric can be infinite.

3. Usually requires ergodicity of the signal

Extensions
Noncompact state space can be traded for certain decay rate of the noise
densities tails: A.Budiraja & D.Ocone, (1997), LeGland & Oudjane, (2003)

Remark The method due to Del Moral & Guionnet uses Dobrushin’s ergodic
coefficient (instead of Birkhoff’s) and leads to essentially the same mixing
condition
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III. Oseledec’s Multiplicative ergodic theorem

Incomplete formulation: Let An(ω) be a stationary sequence of random d× d

matrices, such that E log+ ‖A1‖ < ∞ and let xn be the solution of

xn = Anxn−1, x0 = x ∈ Rd.

Then there are d constants −∞ ≤ λd ≤ ... ≤ λ1 < ∞ (the Lyapunov exponents)
such that

lim
n→∞

n−1 log |xn| = λi, P− a.s.

for some i, depending on the initial vector x.

Moreover the norm of exterior product xn ∧ x̄n of two solutions xn and x̄n (i.e.
area between the vectors) corresponding to the initial conditions x 6= x̄, grows
exponentially, so that

lim
n→∞

n−1 log |xn ∧ x̄n| ≤ λ1 + λ2.
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Application to filtering

The key is the inequality (used already by Delyon & Zeitouni, 1992)

|πn − π̄n| =
∣∣∣ ρn

|ρn| −
ρ̄n

|ρ̄n|
∣∣∣ =

∑d
i=1

∣∣ ∑d
j=1

(
ρn(i)ρ̄n(j)− ρ̄n(i)ρn(j)

)∣∣
|ρn||ρ̄n| ≤

∑d
i=1

∑d
j=1

∣∣ρn(i)ρ̄n(j)− ρ̄n(i)ρn(j)
∣∣

|ρn||ρ̄n| :=

∣∣ρn ∧ ρ̄n

∣∣
|ρn||ρ̄n| ,

where a ∧ b is the exterior product of vectors a, b in Rd, i.e. the matrix with the
entries (aibj − ajbi)

By the Oseledec’s MET

λ1 = lim
n→∞

1
n

log |ρn| = lim
n→∞

1
n

log |ρ̄n|, P− a.s.

where λ1 is non-random top (largest) Lyapunov exponent (of the Zakai
equation), independent of ν and ν̄.
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By the second part of the Oseledec theorem

lim
n→∞

1
n

log |ρn ∧ ρ̄n| ≤ λ1 + λ2

where λ2 is the second Lyapunov exponent (of the Zakai equation).

Conclusion: the stability is controlled by the Lyapunov spectral gap:

lim
n→∞

1
n

log |πn − π̄n| ≤ lim
n→∞

|ρn ∧ ρ̄n| − lim
n→∞

1
n

log |ρn|−

lim
n→∞

1
n

log |ρ̄n| ≤ (λ1 + λ2)− λ1 − λ1 = λ2 − λ1 ≤ 0.

The Lyapunov exponents are hard to calculate in general (vector) case!
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High signal-to-noise asymptotic (Atar & Zeitouni, 1997)

Assume X is ergodic and
Yn = h(Xn) + σξn

where ξ is a standard i.i.d. Gaussian sequence.

Then γ(σ) = limn→∞ n−1 log |πn − π̄n| has the following asymptotic

lim
σ→0

σ2γ(σ) ≤ −1
2

d∑

i=1

µi min
j 6=i

(
h(ai)− h(aj)

)2
.

The main tool: Kallianpur-Striebel representation for ρn and ρn ∧ ρ̄n (a Feynman
- Kac type formula for conditional expectations)
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Slow signal asymptotic (Ch., to appear)

For a small parameter ε > 0, let Xε
n be the Markov chain with transition

probabilities

P(Xn = aj |Xn−1 = ai) =





1− ελii, i = j

ελij , i 6= j

When ε is small, the transition frequency drops down.
Let Y ε

n =
∑d

i=1 1{Xε
n=ai}ξn(i) where ξn are i.i.d. vectors with independent

entries distributed with densities gi(u). Then

lim
ε→0

γ(ε) ≤ −
d∑

i=1

µi min
j 6=i

D(gi ‖ gj)

where D(gi ‖ gj) =
∫
R gi(u) log gi

gj
(u)λ(du) (Kullback-Leibler divergences).

The main tool: Furstenberg-Khasminskii formulae
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Limitations

1. The estimates on the Lyapunov exponents are usually impossible to calculate
exactly and the obtained results are typically asymptotic.

Extensions

1. Applicable to signals with certain noncompact state space cases: R.Atar
(1998), A. Budhiraja & D. Ocone, (1999)
2. Applicable to some nonergodic signals, A. Budhiraja & D. Ocone, (1999)
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IV. A ”native” filtering approach

The bound

E
∣∣πn(f)− π̄n(f)

∣∣ ≤

const.E
∣∣∣E

(dν̄

dν
(X0)|FY

n

)
− E

(dν̄

dν
(X0)|FY

n ∨ σ{Xn}
)∣∣∣

hints to consider the ”reversed” filtering probabilities (Ch. & Liptser, 2004)

ρij(n) = P
(
X0 = ai|FY

n , Xn = aj

)
.

These satisfy linear equations, driven by πn, n ≥ 0

ρij(n) =
∑d

i=1 λ`jρi`(n− 1)πn−1(`)∑d
i=1 λ`jπn−1(`)

, ρij(0) = δij

The filter is stable if ρij(n) becomes independent of j as n →∞, i.e. if

δi(n) := max
j

ρij(n)−min
m

ρim(n) n→∞−−−−→ 0, ∀i = 1, ..., d
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The sequence δi(n) satisfies the inequality (recall λ∗ = maxij λij)

δi(n) ≤ δi(n− 1)
(
1− 1

λ∗

d∑

j=1

πn−1(j)min
r

λjr

)

and by the law of large numbers

lim
n→∞

n−1 log |πn − π̄n| ≤ lim
n→∞

n−1 log max
i

δi(n) ≤ − 1
λ∗

d∑

j=1

µj min
r

λjr.

Note that µj > 0 and so the filter is stable if Λ has at least one row with all
positive entries (independently of the noise densities). This is a relaxed ”mixing
condition” (still mixing!).

Limitation
Does not seem to be easily extendible to nonergodic or noncompact cases in a
direct way (still can be used as a building block as in the approach due to
LeGland & Oudjane).
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Some open problems

1. T.Kaijser (1974) addressed the question of ergodicity (=stability) of πn for
the following setting

• X is an ergodic Markov chain

• Yn = h(Xn) (noiseless partial observations)

giving only sufficient conditions on Λ and h.
Remarkably the sufficient and necessary conditions for this simple setting elude
all the aforementioned methods (in a certain sense the presence of noise makes
the problem easier!)

2. What is the weakest condition on Λ, so that the filter is stable, regardless of
the noise densities? ({ergodic X} + {minr λjr > 0 for some j}, is the weakest
known, but not necessary ...?)

3. The noncompact state space: {ergodic X} + {nowhere vanishing noise
densities (or equivalent densities)} imply (non-exponential?) stability

4. Non-ergodic signals are still mysterious ...
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