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Abstract. We show how the dynamical Bayesian approach can
be used in the initial enlargement of filtrations theory. We use this
approach to obtain new proofs and results for Lévy processes. We
apply the Bayesian approach to some problems concerning asym-
metric information in pricing models, including so-called weak in-
formation approach introduced by Baudoin, as well as some other
approaches. We give also Bayesian interpretation of utility gain
related to asymmetric information.

1. Introduction

The initial enlargement of filtrations is an important topic in the theory
of stochastic processes, and it is studied in the fundamental works of
Jeulin [20], Jacod [18], Stricker and Yor [23] and Yor [24, 25] and others.
Recent interest to this question comes from pricing models in stochastic
finance, where the enlargement of filtrations theory is an important tool
in modelling of asymmetric information between different agents and
the possible additional gain due to this information (see Amendinger
et. al. [1], Imkeller et. al. [16] Baudoin [3, 4], Elliot and Jeanblanc
[13] and others). For an approach based on anticipating calculus see
[21] and others.
The initial enlargement of filtration consists of the following. Let
(Ω,F,F, P ) be a filtered probability space with the filtration F =
(Ft)t≥0 satisfying usual conditions and let X be a semimartingale with
the (P,F)- triplet T = (B,C, ν) of predictable characteristics of the
semimartingale (we refer to [19] and the section 2 for more details on
semimartingales). Suppose that we are given a random variable ϑ on
(Ω,F) such that σ(ϑ)  F0. Define now Gt := Ft ∨ σ(ϑ) and then
G = (Gt)t≥0 is the initially enlarged filtration. The main problems
studied are: is the (X,F) semimartingale still a semimartingale with
respect to the filtration G and if this is true, what is the new triplet
T ϑ = (Bϑ, Cϑ, νϑ) with respect to (P,G)?
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Surprising at the first glance [and very natural at the second glance]
the Bayesian approach proposed in the papers by Dzhaparidze et.al.
[9, 10] is closely related to the problem of enlargement of filtrations.
In the Bayesian approach one of the main concepts is the arithmetic
mean measure. This means the following. Suppose that on a probabil-
ity space (Ω, F,F, P ) with a filtration F we observe a semimartingale
X = (Xt)t≥0, and the law P θ of X depends of a parameter θ ∈ Θ.
Assume that θ is a value of some random variable ϑ, taking values in a
measurable polish space (Θ,A) where A is σ-algebra on Θ. Denote the
law of the random variable ϑ by α. We suppose that for each θ ∈ Θ
the measure P θ is absolutely continuous with respect to P and that
the density process zθ is measurable with respect to F ⊗ A. Then we
can introduce on the original space (Ω,F,F, P ) the arithmetic mean
measure P̄α: for all B ∈ F

P̄α(B) :=

∫

Θ

P θ(B)α(dθ) =

∫

Θ

∫

B

zθdPα(dθ).

One can interpret the measure P̄α also as a ’randomised experiment’.
In [9, 10] it is shown how to compute the predictable characteristics of
X with respect to the arithmetic mean measure P̄α given the charac-
teristics T θ of X with respect to P θ.
The Bayesian approach to the initial enlargement of filtration goes
as follows. Let (Ω, F,F, P ) be a filtered space with the filtration
F = (Ft)t≥0 satisfying usual conditions with F0 = {∅, Ω}. Let X be a
semimartingale on this space with the (P,F) -triplet T = (B,C, ν). We
suppose that we have in addition a random variable ϑ : (Ω,F) → (Θ,A)
with the values in polish space and the prior law α.
We consider next the product space (Ω × Θ,F ⊗ A, IG, IP) with the
filtration IG = (IGt)t≥0 defined by IGt = Ft ⊗ A and IP is the joint
law of (X(ω), ϑ(ω)). Let t ∈ IR+ and αt be the regular a posteriori
distribution of the random variable ϑ given the information Ft:

αt(ω, θ) := P (ϑ ∈ dθ|Ft)(ω).

Assume now that αt ≺≺ α. Then, according to the results of Jacod
[18] the process zθ = (zθ

t )t≥0 where

zθ
t (ω) :=

dαt(ω, θ)

dα(θ)
,

is a (P,F)- martingale with zθ
0 = 1. Define now a measure P θ by

dP θ
t := zθ

t dPt,

where the sub-script means the restriction of the measure to the sub-
sigma-algebra Ft. Then the process X is also a (P θ,F) semimartingale.
If we know the structure of density martingale zθ, then using the Itô
formula we can write a semimartingale decomposition of it and read the
(P θ,F) -triplet T θ = (Bθ, C, νθ). Finally, if T θ is P(F)⊗A-measurable,
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one obtains the (P,G) triplet of the semimartingale X by replacing in
T θ the fixed parameter θ by the random variable ϑ. This method is rel-
atively simple and gives a unifying approach to various concrete models
like diffusion processes, counting processes and Lévy processes. It can
also be used outside of the semimartingale world. Some applications
will be given in the paper [12].
The paper contains two parts. The first one is devoted to the initial en-
largement of filtration. We begin with reminding of some basic facts on
semimartingale characteristics and Girsanov theorem. Then we apply
Bayesian approach to initial enlargement. For somewhat related study
see [6]. We continue by giving some examples of initial enlargement
with the final value. The Bayesian approach can be developed for the
progressive enlargement of filtration. This will be done in a later work.
The second part is devoted to so called weak information introduced
in Baudoin [3, 4]. We show that the notion of weak information can
be interpreted as changing the ”true” prior α, the law of the random
variable ϑ, to another prior distribution γ for the random variable ϑ.
After this the whole analysis can be reduced to the computation of the
P̄ γ characteristics of the semimartingale X.
Some preliminary results of the Bayesian approach were already ob-
tained in [11]. We extend and generalise the results in many direc-
tions: in addition to several examples and new applications, we give a
Bayesian interpretation of so-called additional utility of an insider, or
of a weak insider and finally gain on false information.

2. Characteristics of a semimartingale

We shall work with a semimartingale X defined on a filtered space
(Ω,F,F, P ) where F = (Ft)t≥0 is a filtration. Recall some facts con-
cerning the triplet T of a semimartingale X. Since the triplet T depends
on the probability measure P and on the filtration we keep track of the
measures and filtrations in what follows. We assume that F := FX is
the right-continuous version of natural filtration of the semimartingale
X completed with F sets of probability zero and that F = FX

∞.
Let µ be the jump measure of X, i.e.∫ t

0

∫

|x|>ε

xµ(ds, dx) :=
∑
s≤t

∆Xs1{|∆Xs|>ε}.

We use the standard notation from [19] and [15]: if µ := µX is the
jump measure of the semimartingale X, then g ?µ means integral with
respect to the jump measure, g ? ν denotes integral with respect to the
(P,F)- compensator ν of µ; later g ·U is stochastic integral with respect
to a local martingale U or Riemann-Stieltjes integral with respect to a
bounded variation process U .
Suppose that the semimartingale X has characteristics T = (B,C, ν)
with respect to (P,F). Recall that this means the following (see [19]
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for more details and unexplained terminology). Let l : IR → IR be a
truncation function: l(x) = x in the neighbourhood of 0 and l has a
compact support. Then one can write the semimartingale X as

X = (X −X(l)) + X(l),

where X(l) is a jump process, the process with ’big’ jumps, defined as

X(l)t :=
∑
s≤t

(∆Xs − l(∆Xs))

with ∆Xs = Xs −Xs−.
The process X̃ = (X−X(l)) is a special semimartingale with bounded
jumps and allows a representation

X̃t = X0 + Xc
t +

∫ t

0

∫

IR\{0}
l(x)(µ(ds, dx)− ν(ds, dx)) + Bt(l),

where Xc is the continuous local martingale part of X, ν is the (P,F)
compensator of µ, Bt(l) is the unique (P,F)- predictable locally inte-
grable process such that the process X̃−B(l) is a (P,F)- local martin-
gale. Let C be the continuous process such that the process (Xc)2−C is
a (P,F) local martingale. Having all this we have defined the triplet of
predictable characteristics of a semimartingale X as T = (B(l), C, ν).
Later we write B instead of B(l).
Consider the class of real functions G with the following properties:
functions g are bounded, Borel measurable functions on IR vanishing
inside of a neighbourhood of 0. Moreover, if η and η̃ are measures on
IR such that η({0}) = η̃({0}) = 0, η(|x| > ε) < ∞ and η̃(|x| > ε) < ∞,
and if for all g ∈ G ∫

IR

g(x)η(dx) =

∫

IR

g(x)η̃(dx)

then η = η̃.
Recall Theorem II.2.21 from [19, p.80]

Theorem 2.1. A semimartingale X has the (P,F) triplet T = (B, C, ν)
if and only if

• The process M(l) := X −X(l)−B −X0 is a local martingale.
• The process

N(l) := M(l)2 − C2 − l2 ? ν −
∑
s≤·

(∆Bs)
2

is a local martingale.
• The process U(l) := g ? (µ − ν) is a local martingale, where

g ∈ G.

Assume moreover that we have on (Ω,F,F, P ) a family of probability
measures P θ with θ ∈ Θ such that P θ

t ≺≺ Pt for all t ∈ IR+.
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Let θ ∈ Θ be fixed. Then X is a (P θ,F) semimartingale as well with
a triplet T θ = (Bθ, Cθ, νθ), and this triplet is related to the triplet
T = (B, C, ν) as follows

Bθ = B + βθ · C + (Y θ − 1)l ? ν,

Cθ = C,(2.1)

νθ = Y θ · ν,
with certain (P θ,F)-predictable processes βθ = (βθ

t )t≥0 and Y θ =
(Y θ

t )t≥0 such that P -a.s. for all t ∈ IR+

(2.2) ((βθ)2 · C)t + (|(Y θ − 1)l| ? ν)t < ∞.

For more details see [19].
We denote by P θ

t and Pt the restrictions of the corresponding measures
on Ft and we define density process zθ = (zθ

t )t≥0 with

zθ
t =

dP θ
t

dPt

.

We note that the density process is (P,F)- martingale with the property
inft∈[0,T ] z

θ
t > 0 P -a.s. for each T > 0, and we define the stochastic

logarithm mθ of zθ by

(2.3) mθ := zθ/zθ
−.

Then mθ is a (P,F)- local martingale and zθ is the stochastic exponen-
tial of mθ:

zθ
t = E(mθ)t.

Assume now that X is a (P,F)- semimartingale with a triplet T =
(B, C, ν) and that the natural filtration F of X has the predictable
representation property : if M is a local martingale with respect to F,
then it has a representation:

(2.4) M = M0 + H ·Xc + W ? (µ− ν).

Here the predictable process H belongs to the space L2
loc of locally

square-integrable processes with respect to C and the predictable pro-
cess W = (Wt(ω; x))t≥0 belong to Gloc(µ). For information on the space
Gloc(µ) see [19, II.1.1,pp. 72-74] and on the predictable representation
property see [19, p.185].
By the predictable representation property we have that the local mar-
tingale mθ from (2.3) has the following semimartingale representation

(2.5) mθ = βθ ·Xc +

(
Y θ − 1 +

Ŷ θ − 1̂

1− 1̂

)
? (µ− ν),

where the processes βθ and Y θ are the same as in (2.1) and the ”hat”
processes are related to the jumps of the compensator ν, namely

1̂t(ω) := ν(ω; {t} × IR0)
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and

Ŷ θ
t (ω) :=

∫

IR0

Y θ
t (ω, x)ν(ω, {t}, dx).

So, to find the triplet T θ we can read βθ and Y θ from (2.5) and use
(2.1) .

3. Arithmetic mean measure

We consider a filtered probability space (Ω, F,F, P ) with the right-
continuous filtration F = (Ft)t≥0 completed by the F sets of probability
zero and F = F∞. Suppose that we are given with a parametric family
of probability measures (P θ)θ∈Θ where θ belongs to a measurable polish
space (Θ, A).
We make the following assumption

Assumption 1. For each θ ∈ Θ the probability P θ is locally absolute
continuous with respect to P .

Then we can define density process: for each θ ∈ Θ and t ∈ IR+

zθ
t =

dP θ
t

dPt

where P θ
t and Pt are the restrictions of P θ and P on Ft respectively. Let

us consider measurable with respect to θ versions of density process.
Given a probability measure α on (Θ,A), t ∈ IR+ and B ∈ Ft we can
define the arithmetic mean measure P̄α

t :

P̄α
t (B) :=

∫

Θ

P θ
t (B)α(dθ) =

∫

Θ×B

zθ
t P (dω)α(dθ).

Remark 3.1. In the case of the initial enlargement by a random vari-
able ϑ such that α = L(ϑ|P ), considered in the section 4., we have
P̄α = P . This follows from the fact that in this case P θ is regular
conditional law of X given ϑ = θ.

We see that P̄α
t is absolutely continuous with respect to Pt and that in

general, P θ
t is not absolutely continuous with respect to P̄α

t . For this
reason we suppose also that

Assumption 2. For each θ ∈ Θ the probability P θ is locally absolute
continuous with respect to P̄α .

Assume now again that X is a (P,F)- semimartingale with a triplet T =
(B, C, ν) having representation property. Then X is a (P θ,F) semi-
martingale as well with a triplet T θ = (Bθ, Cθ, νθ) where Bθ , Cθ , νθ

are given in (2.1).
The next theorem is a generalisation of a result by Kolomiets.
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Theorem 3.1. Suppose that the assumptions 1 and 2 hold and X is
a (P,F) semimartingale with triplet T = (B,C, ν). Then, X is also a
(P̄α,F)- semimartingale with the triplet T̄ = (B̄, C̄, ν̄) defined by

B̄ = Eα{z̄θ
− ·Bθ} = B + Eα{z̄θ

−βθ · C}+ Eα{z̄θ
−(Y θ − 1)l ? ν}

C̄ = C,(3.1)

ν̄ = Eα{z̄θ
−Y θ · ν}

where z̄θ is the density of P θ with respect to arithmetic mean measure
P̄α.

For the proof see [8, Theorem 3.3].

To interchange the order of integration in (3.1) by using Fubini theorem
we introduce the following notation. For each t ∈ IR+ we define a
posteriori measure αt. To do it for each B ∈ A we put

αt(B) :=

∫
B

zθ
t α(dθ)∫

Θ
zθ

t α(dθ)
.

Let us define αt−(dθ) in the following natural way: for each B ∈ A

αt−(B) :=

∫
B

zθ
t−α(dθ)∫

Θ
zθ

t−α(dθ)
.

Assuming that βθ
t and Y θ

t are integrable with respect to αt−, we put

(3.2) β̄t = Eαt−βθ
t , Ȳt = Eαt−Y θ

t .

Theorem 3.2. Suppose that the assumptions 1 and 2 hold and P -a.s.
for t > 0

(3.3) (Eαt−|βθ
t | · C)t + (Eαt−|Y θ − 1|l ? ν)t < ∞.

Then X is a (P̄α,F)- semimartingale with the triplet T̄ = (B̄, C̄, ν̄)
defined by

B̄ = B + β̄ · C + (Ȳ − 1)l ? ν

C̄ = C,(3.4)

ν̄ = Ȳ · ν
where β̄ and Ȳ are given in (3.2).

Proof To prove our result we use classical Fubini theorem. In order to
do it, we show that B̄ is the process of locally P -integrable variation.
In fact, for all t > 0

Var(B̄)t ≤ Var(B)t + Eα{(z̄θ
−|βθ| · C)t}+ Eα{(z̄θ

−|Y θ − 1|l ? ν)t}.
Using classical Fubini theorem for positive functions in last two inte-
grals and integration with respect the measure αt− we have: for all
t > 0

Var(B̄)t ≤ Var(B)t + (Eα− |βθ| · C)t + (Eα−|Y θ − 1|l ? ν)t.
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We define a localising sequence as follows. For n ∈ IN∗ we put
(3.5)
τn = inf{t ≥ 0 : (Eαt−|βθ

t | · C)t + (Eαt−|Y θ − 1|l ? ν)t + V ar(B)t > n}.
and notice that τn is F-stopping time. Moreover, since the jumps of
considered processes are bounded by a constant, we can easily verify
that for each n ∈ IN∗

EP̄ α [((Eαt−|βθ
t |) · C)τn + ((Eαt−|Y θ − 1|)l ? ν)τn + V ar(B)τn ] < n + 3 max

x∈IR
l(x),

where l is truncation function. Now, we notice that the sequence of
F- stopping times τn is increasing up to infinity due to the condition
(3.3). Then, we localise with τn and we apply classical Fubini theorem
to (3.1) and we have (3.4). ¤

Remark 3.2. Theorem 3.2 is a special case of stochastic Fubini theo-
rem. Namely, we know that

zθ
t = E(mθ)t,

where

mθ = βθ ·Xc +

(
Y θ − 1 +

Ŷ θ − 1̂

1− 1̂

)

Then by Theorem 3.2 we have the following variant of stochastic Fubini
theorem

z̄t =

∫

Θ

zθ
t α(dθ) = E(m̄)t

with

m̄ = β̄ ·Xc +

(
Ȳ − 1 +

ˆ̄Y − 1̂

1− 1̂

)
.

Some times the verification of the condition (3.3) can be difficult and we
can be interested to replace it by another condition expressed in terms
of density process. For instance, we can use the following assumption.

Assumption 3. There exists a localizing sequence of F- stopping times
τn such that for n ≥ 1

E

(∫

Θ

[zθ, zθ]1/2
τn

α(dθ)

)
< ∞

where E is the expectation with respect to initial measure measure P .

Theorem 3.3. Suppose that the assumptions 1,2, 3 hold. Then X is a
(P̄α,F)- semimartingale with the triplet T̄ = (B̄, C̄, ν̄) defined by (3.4).

Proof In fact, we have only to show that the assumption 3 implies the
local integrability of the variation of B̄. Since B is locally integrable
with respect to arithmetic mean measure, which follows from the fact
that the jumps of B are bounded by a constant, we have only to show
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that there exists a localizing sequence of stopping times sn such that
for each n ≥ 1

(3.6) EP̄ α

(
(Eα−|βθ| · C)τn + (Eα−|Y θ − 1|l ? ν)τn

)
< ∞.

Let for t ≥ 0

Z̄t =
dP̄t

dPt

.

We remark that

Z̄t =

∫

Θ

zθ
t α(dθ).

Using the fact that Z̄ is positive (P,F) martingale and the observation
that we are dealing with the predictable positive processes, we obtain:

EP̄ α

(
(Eα−|βθ| · C)τn + (Eα−|Y θ − 1|l ? ν)τn

)

= EP

(
Z̄τn(Eα−|βθ| · C)τn + (Eα−|Y θ − 1|l ? ν)τn

)

=

∫

Θ

EP{(zθ
−|βθ| · C)τn + (zθ

−|Y θ − 1|l ? ν)τn}α(dθ)

=

∫

Θ

EP{(zθ
−|βθ| · C)τn + (zϑ

−|Y θ − 1|l ? µX)τn}α(dθ)

=

∫

Θ

EP{Var([zθ, X(l)−B])τn}α(dθ)

Let

τ
′
n = inf{t ≥ 0 : sup

0≤s≤t
|Xs(l)−Bs| > n}

and sn = τ
′
n ∧ τn. By Fefferman inequality, (see [15, Theorem 10.17])

and the fact that X(l)−B is (P,F)- local martingale we deduce that

EP Var([zθ, X(l)−B])sn ≤‖ (X(l)−B)sn ‖BMO EP [zθ, zθ]1/2
sn

.

We remark that

‖ (X(l)−B)sn ‖BMO≤ 2(n + 2 max
x

l(x))

where l is truncation function. So, after integration with respect to
α, we obtain from assumption 3 that (3.6) holds, and, hence, B̄ has
locally integrable variation with respect to P̄α. ¤

4. Initial enlargement

4.1. Triplet and initial enlargement. We assume that we are given
with a semimartingale X on a filtered space (Ω, F,F, P ). We suppose
that the filtration F is the right-continuous version of natural filtration
F = (FX

t )t≥0 which is completed by the F sets of probability zero and
F = FX

∞. Let T = (B, C, ν) be the (P,F)-triplet of X. Later, to
simplify the notation, we omit the index X in the filtration.
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Suppose that we have also a random variable ϑ with values in measur-
able polish space (Θ,A). Define now the initially enlarged filtration
G = (Gt)t≥0 by

Gt :=
⋂
s>t

(Fs ∨ σ(ϑ)).

Then we complete the filtration with G∞ sets of P -probability zero.
Our problem is to find the semimartingale decomposition of X with
respect to the enlarged filtration G.
Let α be the distribution of the random variable ϑ, i.e. P (ϑ ∈ dθ) =
α(dθ). Let for t ∈ IR+ αt be its regular conditional distribution with
respect to the sigma-field Ft. Following Bayesian terminology we say
that α is the a priori distribution and αt is the a posteriori distribution
with respect to the information Ft, of the random variable ϑ.
We make the following standing assumption

Assumption 4. The posterior distributions αt and the prior distribu-
tion α satisfy: for each t ∈ [0, T ] and P -a.s.

(4.1) αt ≺≺ α

We stop to discuss the right-continuity of the filtration G: in Amendinger
[2, Proposition 3.3] it is shown that under the assumption αt ∼ α we
have that Gt = Ft ∨ σ(ϑ). But if one checks the proof of this result in
[2] it can be seen that in fact it is sufficient to assume only assumption
4. So under assumption 4 we can take Gt = Ft ∨ σ(ϑ).
We consider next the product space (Ω × Θ,F ⊗ A, IG, IP) with the
filtration IG = (IGt)t≥0 defined by

(4.2) IGt =
⋂
s>t

(Fs ⊗A)

and IP joint law of (ω, ϑ(ω)). Again, under assumption 4 we can take
IGt = Ft ⊗A.
Denote the optional and predictable sigma-fields on (Ω × IR+) with
respect to F by O(F) and P(F). With the filtration IG we have that

P(IG) = P(F)⊗A

and
O(F)⊗A ⊂ O(IG).

The following result is due to Jacod.

Lemma 4.1. Under assumption 4 there exists a strictly positive O(IG)-
measurable function (ω, t, θ) 7→ zθ

t (ω), such that:

(1) For each θ ∈ Θ, zθ is a (P,F)- martingale.
(2) For each t ∈ IR+, the measure zθ

t α(dθ) is a version of the regular
conditional distribution αt(dθ) so that Pt × α-a.s.

(4.3)
dαt

dα
(θ) = zθ

t .
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The proof of this lemma is in [18, Lemme 1.8., p.18-19].
For each θ ∈ Θ define also a measure P θ as follows

(4.4) dP θ
t := zθ

t dPt.

The measure P θ is absolutely continuous with respect to the measure
P , and so X is a (P θ,F)- semimartingale, too. Hence it has a (P θ,F)-
triplet T θ = (Bθ, C, νθ).
Next we indicate how one can use the prior and posterior distribution to
obtain the semimartingale decomposition of a (P,F)- semimartingale
with respect to the filtration G.

(1) We are given a semimartingale X with (P,F)- triplet T =
(B,C, ν), where the natural filtration F has the representation
property, random variable ϑ, prior α(dθ) = P (ϑ ∈ dθ) and
posterior αt(dθ) = P (ϑ ∈ dθ|Ft).

(2) Compute
dαt

dα
(θ) with the Ito formula as E(mθ) and read βθ and

Y θ from the representation (2.5), use (2.1) to obtain T θ .
(3) If T θ is P(F)⊗A - measurable, replace θ by ϑ in T θ to obtain

the triplet of X with respect to (P,G).

In the following theorem we give the link between Girsanov theorems
and enlargement of filtrations.

Theorem 4.1. Assume that the process X is a cadlag (P,F)- semi-
martingale with triplet T = (B,C, ν) and we have the martingale rep-
resentation property with respect to natural filtration F. Let ϑ be a
random variable such that the assumption (4.1) is satisfied. Suppose
also that L1(Ω,F, P ) is separable and the condition (3.3) holds.
Then, if we consider cadlag versions, the following conditions are equiv-
alent:

(a) The process X is a (P θ,F)- semimartingale with the triplet
T θ = (Bθ, C, νθ) on the space (Ω,F,F, P ) for α almost all θ
and the application T

′
: (ω, t, θ) → T θ

t (ω) is P(F)⊗A- measur-
able.

(b) The process X is a (IP, IG)- semimartingale with the triplet T
′
:

(ω, t, θ) → T θ
t (ω) on product space (Ω × Θ,F ⊗ A, IG, IP) where

IP is the joint law of (ω, ϑ(ω),
(c) The process X is a (P,G)- semimartingale on the space (Ω,F, P )

with the triplet T ϑ = (Bϑ, C, νϑ).

Remark 4.1. It should be noticed that separability condition will be
used only in the direction:

c) ⇒ b) ⇒ a).

To prove the theorem we need some lemmas concerning the transfor-
mation of triplets, stopping times and martingales.
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Lemma 4.2. The application X : (ω, t, θ) → (IR, B(IR)) is P(F)⊗A-
measurable if and only if Xϑ : (ω, t, ϑ(ω)) → (IR,B(IR)) is P(G)-
measurable.

Proof It is sufficient to establish the property on semi-algebras gen-
erating the corresponding σ-algebras. Let now a, b, c ∈ IR, a < b,A ∈
Fa, B ∈ A and

(4.5) X(ω, t, θ) = c1(a,b](t)1A(ω)1B(θ).

Then X is an element of semi-algebra generating P(F)⊗A and
(4.6)

Xϑ(ω, t, ϑ(ω)) = c1(a,b](t)1A(ω)1B(ϑ(ω)) = c1(a,b](t)1A∩ϑ−1(B)(ω).

Since the set A ∩ ϑ−1(B) belongs to Fa ∨ σ(ϑ), it belongs also to Ga,
and the function Xϑ defined by (4.6) is an element of P(G).
Inversely, let a, b, c ∈ IR, a < b, C ∈ Ga−, then

(4.7) Xϑ(ω, t, ϑ(ω)) = c1(a,b](t)1C(ω)

is an element of semi-algebra generating P(G). Since Ga− =
∨

s<a(Fs∨
σ(ϑ)) it is sufficient to consider the elements of generating algebra,
namely

⋃
s<a(Fs ∨ σ(ϑ)). In turn, if C ∈ ⋃

s<a(Fs ∨ σ(ϑ)), then there
exists s < a such that C ∈ Fs∨σ(ϑ). Next, the sigma-algebra Fs∨σ(ϑ)
is generated by the sets A ∩ ϑ−1(B) with A ∈ Fs and B ∈ A. So, we
have to consider only the elements Xϑ of the form (4.7) with C =
A ∩ ϑ−1(B). But the corresponding application X is (4.5) and it is
P(F)⊗A-measurable. ¤
Lemma 4.3. Let for each θ ∈ Θ the process (Xθ

t )t≥0 be F-adapted
cadlag process. Let L > 0 and

(4.8) τ θ
L = inf{s ≥ 0 : Xθ

s (ω) > L}.
If the application X : (ω, t, θ) → Xθ

t is O(IG) then

τϑ
L = inf{s ≥ 0 : Xϑ(ω)

s (ω) > L}
is G-stopping time.

Proof Let t ∈ IR+. Then

{(ω, θ) : τ θ
L > t} = {(ω, θ) : sup

s≤t
Xθ

s ≤ L} ∈ IGt

where IGt is defined by (4.2). It means that for all u > t

{(ω, θ) : τ θ
L > t} ∈ Fu ⊗A.

Since Fu⊗A is generated by semi-algebra of the sets of the form A×B
with A ∈ Fu and B ∈ A, we can restrict ourselves to this special type
of sets. But

{ω : (ω, ϑ(ω)) ∈ A×B} ∈ Fu ∨ σ(ϑ)

and, hence, for u > t

{ω : τϑ
L > t} ∈ Fu ∨ σ(ϑ).
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Then, τϑ
L is G-stopping time. ¤

Lemma 4.4. Let θ ∈ Θ and (M θ
t )t≥0 be F-adapted cadlag process. Let

M be the application (t, ω, θ) → M θ
t (ω). Suppose that L1(Ω,F, P ) is

separable. Then the following conditions are equivalent:

a) M θ is (P θ,F)-martingale for α-almost all θ and M is O(IG)-
measurable process,

b) M is (IP, IG)-martingale,
c) Mϑ is (P,G)-martingale.

Proof We show that

a)
(i)⇒ c)

(ii)⇒ b)
(iii)⇒ a).

(i): Let E be the expectation with respect to P and IE be the expec-
tation with respect to IP which is the joint law of (ω, ϑ(ω)). For each
s < t,A ∈ Fs, B ∈ A we have

E(1A(ω)1B(ϑ(ω))(Mϑ
t −Mϑ

s )) = IE(1A(ω)1B(θ)(M θ
t −M θ

s )).

Let Eα be the expectation with respect to α and Eθ is the expectation
with respect to P θ. Then by Fubini theorem and conditioning we obtain

IE(1A(ω)1B(θ)(M θ
t −M θ

s )) = Eα[1B(θ)Eθ(1A(ω)Eθ(M
θ
t −M θ

s |Fs))] = 0

since M θ is a martingale α-a.s. with respect to (P θ,F) . Hence, P -a.s.

E(Mϑ
t −Mϑ

s |Fs ∨ σ(ϑ)) = 0

Since Mϑ is cadlag, using corollary 2.4 of [22] ,p.59, we have

E(Mϑ
t −Mϑ

s |Gs) = lim
u↓s

E(Mϑ
t −Mϑ

s |Fu ∨ σ(ϑ)) = 0

which gives c).
(ii): If Mϑ is (P,G)-martingale, then for each t ∈ IQ+ Mϑ

t is Gt =⋂
s>t(Fs∨σ(ϑ))-measurable and it can be written in the form Mϑ

t (ω) =
M(ω, t, ϑ(ω)) (P -a.s.) where M is measurable with respect to IGt =⋂

s>t(Ft ⊗A). Taking right-continuous version having left-hand limits
we obtain the application M : (ω, t, θ) → (IR,B(IR)) which is O(IG).
For all s < t and A ∈ Fs, B ∈ A we have:

IE(1A(ω)1B(θ)(M(ω, t, θ)−M(ω, s, θ)) = E(1A(ω)1B(ϑ(ω))(Mϑ
t −Mϑ

s )) = 0

which means that IP-a.s.

IE(M(ω, t, θ)−M(ω, s, θ)|Fs ⊗A) = 0

and we have b) in the same way as c) before, since M is cadlag.
(iii): If we have b), then for each (ω, t, θ) we have M θ

t = M(ω, t, θ).
For A ∈ Fs and B ∈ A we obtain by Fubini theorem

0 = IE(1A(ω)1B(θ)(M(ω, t, θ)−M(ω, s, θ))) = Eα(1B(θ)Eθ(1A(ω)(M θ
t −M θ

s ))).

Hence, for each s < t and α - a.s.

Eθ(1A(M θ
t −M θ

s )) = 0.
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The measurability problem which may occur here is that α-a.s. set
can depend on A and s. Since L1(Ω,F, P ) is separable, we obtain that
α-a.s. for all s and all Fs-measurable bounded functions gs

Eθ(gs(M
θ
t −M θ

s )) = 0

and, hence,

Eθ(M
θ
t −M θ

s |Fs) = 0

which gives a).
¤

Proof We show that a), b), c) are equivalent. With the notation of
Theorem 2.1, the processes M θ(l), N θ(l) and U θ(l) are (P,F) local
martingales. Since the semimartingale X̃ has bounded jumps, all these
local martingales are also locally bounded, i.e. for each θ there exists
a localizing sequence τ θ

L such that the stopped processes are bounded.
By Lemma 4.3 the replacing θ by ϑ in stopping times gives τϑ

L(ω) which
is (P,G)-stopping times. Moreover, the application τL : (ω, t, θ) → τ θ

L

is (IP, IG)-stopping time.
Next, by Lemma 4.2 the replacing of θ by ϑ in T θ which supposed to be
P(F)⊗A-measurable, gives T ϑ which is P(G)-measurable. Moreover,
the application T

′
: (ω, t, θ) → T θ is P(IG)-measurable.

Finally, the claim follows now from the Lemma 4.4 which guaranties
the conservation of martingale properties in the case of replacing θ
by the variable ϑ and in the case of replacing of the initial space by
product space. ¤

In the considered case when P θ is the conditional law of semimartingale
X given ϑ = θ, one can rewrite the assumption 3 in terms of so-called
decoupling measure Q as in [14]. Let us suppose that the density
process z = (zθ)θ∈Θ is O(F) ⊗ A measurable. Then we can replace
θ by ϑ to obtain zϑ. We denote by Pt and Qt the restrictions of the
measures P and Q to Gt where G = (Gt)t≥0 is enlarged with the initial
value ϑ filtration . If for all t > 0, zϑ

t > 0 P -a.s. , we can define Q by

dQt = (zϑ
t )−1dPt.

The decoupling measure has the following property: (Q,G)- triplet of
X is the same as the (P,F)- triplet of X and L(ϑ|Q) = L(ϑ|P ). We
can also use an another definition of a decoupling measure Q, namely
as a solution of the following martingale problem, if it exists and is
unique: the (Q,G)- triplet of X is the same as the (P,F)- triplet of X
and L(ϑ|Q) = L(ϑ|P ).

Remark 4.2. If for all t > 0, zϑ
t > 0 P -a.s., the assumption 3 is

equivalent to the assumption:

(4.9) EQ[zϑ, zϑ]1/2
τn

< ∞
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for some localizing sequence of F- stopping times τn. We note that
[zϑ, zϑ]1/2 is (Q,G)- locally integrable (see [19, Corollary I.4.55]). Here
we require the existence of a localizing sequence of F-stopping times.

Theorem 4.2. Under the settings of Theorem (4.1), assume a) and
(4.9) hold. Then X is a (P,G)- semimartingale with the triplet T ϑ =
(Bϑ, C, νϑ).

Proof Using the proof of Theorem (4.1) we conclude that it remains
to prove that Bϑ is of locally integrable variation with recpect to P .
Since Bϑ is obtained from Bθ by replacing θ by ϑ, we have: for t > 0

Var(Bϑ)t ≤ Var(B)t + (|βϑ| · C)t + (|Y ϑ − 1|l ? ν)t.

Since B is locally integrable with respect to P , the question of local
integrability of Bϑ is reduced to the existence of localizing sequence of
F stopping times τn such that for each n ≥ 1

(4.10) EP

(|βϑ| · C)τ + |Y ϑ − 1|l ? ν
)

τn
< ∞.

We have:

EP

(
(|βϑ| · C)τn + (|Y ϑ − 1|l ? ν)τn

)

= EQ{zϑ
τ

(
(|βϑ| · C)τn + (|Y ϑ − 1|l ? ν)τn

)}
= EQ{(zϑ

−|βϑ| · C)τn + (zϑ
−|Y ϑ − 1|l ? ν)τn}

= EQ{(zϑ
−|βϑ| · C)τn + (zϑ

−|Y ϑ − 1|l ? µX)τn}
= EQVar([zϑ, X(l)−B])τn

By Fefferman inequality, (see [15, Theorem 10.17]) and the fact that
X(l)−B is both (Q,G)- and (P,F)- local martingale we deduce that

EQVar([zϑ, X(l)−B])τn ≤‖ (X(l)−B)τn ‖BMO EQ[zϑ, zϑ]1/2
τn

.

From proposition 2.38 in [17] it follows easily that the (P,F)-local mar-
tingale (X(l)−B) is (P,F)-locally in BMO since it has bounded jumps,
and by assumption (4.9) there is a localizing sequence of F-stopping
times τn tending to infinity which makes the last expression finite.
Hence, the inequality (4.10) holds and Bϑ has locally integrable varia-
tion with respect to P . ¤

Remark 4.3. Assumption 4.9 can be expressed in term of information.
More precicely,

EQ([zϑ, zϑ]1/2
τ ) ≤ C(1 + EQ(zϑ

τ logzϑ
τ ))

The boundness of this information was used in [10] to verify stochastic
Fubini theorem.
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4.2. Initial enlargement and gaussian martingales. Let us first
consider a classical example of initial enlargement of filtration. Here
X is a continuous Gaussian martingale with respect to the measure P
starting from zero and such that there exists lim

t→∞
Xt = X∞.

Let ϑ = X∞. We denote by 〈X〉 the predictable quadratic variation of
X and we put 〈X〉t,∞ := 〈X〉∞ − 〈X〉t.
The prior distribution α(dθ) := P (ϑ ∈ dθ) is a N(0, 〈X〉∞) and the
posterior distribution αt of ϑ given Ft is N(Xt, 〈X〉t,∞).
Assume 〈X〉t,∞ > 0 for all t ∈ IR+, then αt is equivalent to α, so the
assumption (4.1) is valid.
From the Ito formula with the function f(x, y) = x2/y applied to the
first term in exponential we have:

dαt

dα
(θ) =

√
〈X〉∞√〈X〉t,∞

exp
{−(θ −Xt)

2

2〈X〉t,∞ +
θ2

2〈X〉∞
}

= exp
{∫ t

0

βθ
sdXs − 1

2

∫ t

0

(
βθ

s

)2
d〈X〉s

}
,

where

βθ
s :=

θ −Xs

〈X〉s,∞ .

Since βθ is predictable process for each θ ∈ Θ, continuous in θ uniformly
in t ∈ [0, T ] for each T > 0, the application (ω, t, θ) → βθ

t is P(F)⊗A-
measurable. By Theorem 4.1 we can now conclude that the process

Xt −
∫ t

0

(X∞ −Xs)

〈X〉s,∞ d〈X〉s

is a (P,G)- Gaussian martingale with the bracket 〈X〉.
We give some special cases of the above results.

• Let Y be a Brownian motion and put Xt =
∫ t

0
asdYs, where

a is deterministic square-integrable function on IR+. If as :=
I(0,T ](s), then we have: ϑ = YT , 〈X〉t,∞ = T − t for t ≤ T and

βθ
s =

θ − Ys

T − s
and hence we have the classical representation of

the Brownian bridge:

Yt =

∫ t

0

YT − Ys

T − s
ds + Y G

t ,

where Y G is a Brownian motion with respect to G.
• In the previous case take a = I(0,T+η]. We obtain the case of

final value distorted by a small noise example from [1].
• Assume that Y is a fractional Brownian motion and let Xt :=

E[YT |F Y
t ] be the prediction martingale. This example and re-

lated will be studied in detail in [12].
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4.3. Initial enlargement in the Poisson filtration. Assume that X
is a Poisson process with intensity 1 on (Ω, F,F, P ) stopped in time T
and let ϑ = XT . Here prior distribution α is Poisson(T ) and posterior
distribution

(4.11) αt(θ) =

{
eT−t (T−t)θ−Xt

(θ−Xt)!
if θ ≥ Xt,

0 if θ < Xt.

Next, for all t ∈ [0, T [ we have αt ≺≺ α and

dαt

dα
(θ) = e−t (T − t)θ−Xt

T θ
I{θ≥Xt}

θ!

(θ −Xt)!
.

We put Y θ
s :=

θ −Xs−
T − s

and we remark that Y θ predictable process

with 0 ≤ Y θ
s < ∞ for all s ∈ [0, T ] – this follows from the fact that

∆XT = 0 IP - a.s. Since

dαt

dα
(θ) = exp{

∫ t

0

(Y θ
s − 1)ds}

∏
s≤t

(
Y θ

s

)∆Xs
,

we obtain that with respect to the filtration G the standard Poisson
process has the semimartingale representation: for t < T

Xt = nt +

∫ t

0

XT −Xs−
T − s

ds,

where n = (nt)t≥0 is a (P,G)- martingale.

4.4. Lévy processes: initial enlargement with the final value.
Let X be a Lévy process. Then for each λ ∈ IR the characteristic
function of Xt is

EeiλXt = e−tψ(λ)

where ψ is characteristic exponent given by

ψ(λ) = iaλ +
1

2
σ2λ2 +

∫

IR

(
1− eiλx + iλxI{|x|<1}

)
π(dx)

with π a measure on IR verifying
∫
IR

(1 ∧ x2)π(dx) < ∞. The (P,F)-
triplet of X is T = (aI, σ2I, Leb⊗ π), where It = t.
We consider again stopped in T process and we take ϑ := XT . The
process X is a time-homogeneous Markov process with independent
increments and hence

αt(dθ) = P (XT ∈ dθ|Xt) = P (XT−t + x ∈ dθ)|x=Xt .

To be able to continue we assume that the law of the random variable
Xs has a density f(s, y) with respect to fixed dominating measure η,
i.e. for B ∈ B(IR)

P (Xs ∈ B) =

∫

B

f(s, y)η(dy).
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Moreover, we assume that f ∈ C1,2
b (IR+ × U) where U is an open set

belonging to IR.
Since for t ∈ [0, T [ αt ≺≺ α, we can write that η- a.s.

(4.12)
dαt

dα
(θ) =

f(T − t, θ −Xt)

f(T, θ)
.

Use Itô formula to obtain

f(T − t, θ −Xt) = f(T, θ)−
∫ t

0

∂f

∂s
(T − s, θ −Xs−)ds

−
∫ t

0

∂f

∂x
(T − s, θ −Xs−)dXs(4.13)

+
1

2
σ2

∫ t

0

∂2f

∂x2
(T − s, θ −Xs−)ds

+
∑
s≤t

(
∆f(T − s, θ −Xs) +

∂f

∂x
(T − s, θ −Xs−)∆Xs

)
.

We know that the expression in (4.12) is a (P,F)- martingale for each
θ. So, we can identify the continuous martingale part on the right hand
side of (4.13) and then the continuous martingale part of (4.12) as

(4.14) −
∫ t

0

∂f

∂x
(T − s, θ −Xs−)

f(T, θ)
dXc

s .

Recall that zθ
t =

dαt

dα
(θ). According to the Girsanov theorem the term

βθ in the equation (2.1) is obtained as (for more details on this kind of
computations see [19, Lemma III.3.31])

βθ
t =

d < zθ, Xc >t

zθ
t−d < Xc, Xc >t

=
−∂f

∂x
(T − t, θ −Xt−)

f(T − t, θ −Xt−)

= − ∂

∂x
log f(T − t, x)|x=θ−Xt− .(4.15)

Consider next the pure jump martingale in (4.12): we have that

∆f(T − t, θ −Xt) = f(T − t, θ −Xt)− f(T − t, θ −Xt−)

and so
∆zθ

t

zθ
t−

=
f(T − t, θ −Xt)

f(T − t, θ −Xt−)
− 1,

from this we obtain (for more details, see [19, p. 175]) that the P θ

compensator νθ of µX is

(4.16) νθ(dt, du) =
f(T − t, θ − (Xt− + u))

f(T − t, θ −Xt−)
π(du)dt.
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Moreover, since the expression on the right-hand side of (4.12) is a mar-
tingale, the function f(t, u) satisfies the following integro-differential
equation, which might be called a Kolmogorov backward integro-differential
equation:

∂f

∂t
(T − t, θ − x) =

1

2
σ2∂2f

∂x2
(T − t, θ − x)− a

∂f

∂x
(T − t, θ − x)

+

∫

IR

(
f (T − t, θ − (x + y))(4.17)

−f (T − t, θ − x) +
∂f

∂x
(T − t, θ − x) y

)
π(dy)

with the boundary condition f(T, θ − x) = δ{0}(θ − x).

4.4.1. Example: Brownian motion. We look again the Brownian case,
as in subsection 4.2, but now using the Lévy processes approach. Since
the triplet of X is T = (0, σ2I, 0), the equation (4.17) is reduced to:

∂f

∂t
(T − t, θ − x) =

1

2
σ2∂2f

∂x2
(T − t, θ − x)

with boundary condition f(T, θ − x) = δ{0}(θ − x).
It is well-known that the solution is

f(T − t, θ − x) =
1√

2π(T − t)
exp{− (θ − x)2

2(T − t)
}

and so βθ =
θ −Xs

T − s
and a new drift is Bθ

t =

∫ t

0

θ −Xs

T − s
ds.

4.4.2. Example: Gamma process. Let X be a Gamma process. This
means that the (P,F) triplet of X is T = (a

b
t, 0, a

u
e−bududt). We know

also that the density f(t, x) = P (Xt ∈ dx) is f(t, x) = bat

Γ(at)
xat−1e−bx

with some parameters a, b > 0 (see [5, p.73] ). In particular we have
that Xt − a

b
t is a (P,F) martingale.

Put again ϑ = XT and we have from (4.16) that the (P θ, F ) compen-
sator is

νθ(dx, dt) = (1− x

θ −Xt−
)a(T−t)−1 a

x
dxdt.

Hence, (P θ,F) drift of the process X is

∫ t

0

∫ θ−Xt−

0

x(1− x

θ −Xs−
)a(T−s)−1 a

x
dxdt =

∫ t

0

θ −Xs−
T − s

ds,

and this means that the process Xt − a
b
t − ∫ t

0
θ−Xs−

T−s
ds is a (P θ,F)-

martingale.
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4.4.3. Example: Poisson process. We look again at the Poisson case,
as in subsection 4.3. We indicate briefly how one can use the approach
described in 4.4, where we know only the triplet of the process X. So,
let X be a Poisson process with intensity λ.
Put again ϑ = XT . Put p(t, k) := P (Xt = k) and we assume that for
k ≥ 0 the functions p(·, k) ∈ C1(IR+).
We know (see (4.12)) that

dαt

dα
(θ) =

p(T − t, θ −Xt)

p(T, θ)
.

We start with the trivial identity, which is the analog of Ito-formula
here:

p(T − t, θ −Xt) =(4.18)

p(T, θ)−
∫ t

0

pt(T − s, θ −Xs−)ds +
∑
s≤t

∆p(T − s, θ −Xs).

Using the fact that ∆Xt ∈ {0, 1}, we have the following identity

∆p(T − s, θ−Xs) = (p(T − s, θ− (Xs− + 1))− p(T − s, θ−Xs−))∆Xs;

and since the right-hand side of (4.18) is a (P,F)- martingale, we obtain
that the functions p(t, k) satisfy the following system of differential
equations

(4.19) pt(T − s, k) = λ(p(T − s, k)− p(T − s, k + 1));

and, hence,

p(T − s, k) = e−λ(T−s) (λ(T − s))k

k!
is the solution of the system (4.19) with boundary condition p(T, θ −
x) = δ{0}(θ − x). It remains to note that

(4.20) p(T − s, k)− p(T − s, k + 1) = p(T − s, k)(
k + 1

λ(T − s)
− 1)

and we can conclude that with respect to the measure P θ the process
X has intensity θ−Xs−

T−s
. This means that the process Xt −

∫ t

0
θ−Xs−

T−s
ds

is a (P θ,F)- martingale.

5. Progressive enlargement

5.1. Progressive enlargement with random time. We assume that
we are given with a semimartingale X on a filtered space (Ω,F,F, P )
with the right-continuous version of natural filtration F = (FX

t )t≥0 com-
pleted by the F sets of probability zero and F = FX

∞. Let T = (B,C, ν)
be the (P,F)-triplet of X. Later, to simplify the notation, we omit the
index X in the filtration.
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Suppose that we have also a random variable ϑ with values in measur-
able polish space (Θ,A). Define now the initially enlarged filtration
G = (Gt)t≥0 by

Gt :=
⋂
s>t

(Fs ∨ σ(ϑ)).

Consider a counting process N = (Nt)t≥0 defined by

Nt = 1{ϑ≤t}

and let FN = (FN
t )t≥0 be the right-continuous version of the filtration

generated by N . Put

Ht =
⋂
s>t

(Fs ∨ FN
s )

and we complete the filtration with H∞ sets of probability zero. Then,
H = (Ht)t≥0 is progressively enlarged filtration with the random pro-
cess N or with random time ϑ.
As it was shown in 3., under the conditions of theorem 4.1 X is (P,G)-
semimartingale. Since the filtration H is smaler then G, the result of
Stricker ( see [?, p.53, Theorem 4]) on filtration shrinkage says that X
will be (P,H)-semimartingale. So, (P,H)-triplet of X exists. But to
find it by projection we have to avoid some technical difficulties related
with the local integrability of the variation of drift part. Namely, this
localisation can be done with G- stopping times but not always with
H-stopping times. To assure the existence of H-stopping times for
localising procedure we assume that for each t > 0 and P -a.s.

(5.1) (β̃ · C)t + (Ỹ ? ν)t < ∞
where

(5.2) β̃t = Eαt−|βθ
t |, Ỹt = Eαt− |(Y θ

t − 1)l|.
and Eαt− stays for the expectation with respect to a posreriori measure
αt−.

Proposition 5.1. Assume the conditions of theorem 3.1 and (5.1).
Then the (P,H) triplet TN = (BN , CN , νN) of X is simply the (P,H)-
dual predictable projection of the (P,G)-triplet T ϑ = (Bϑ, Cϑ, νϑ) of X
.

Proof We begin with the decomposition of the semimartingale X =
X̃ + X(l) where X̃ = X −X(l) and

X(l)t :=
∑
s≤t

(∆Xs − l(∆Xs))

with ∆Xs = Xs − Xs− and l truncation function. Since X̃ is special
semimartingale it can be decomposed on martingale and drift parts



22 GASBARRA, VALKEILA, AND VOSTRIKOVA

both with respect to the filtration G and with respect to the filtration
H:

X̃ = MG + BG, X̃ = MH + BH.

To show that BH is dual predictable projection of BG we have to find
an increasing sequence of H-stopping times τn, τn ↑ ∞ such that for
each bounded (P,H)-predictable process K

(5.3) E(K ·BH)τn = E(K ·BH)τn

where E stands for the expectation with respect to P .
For n ∈ IN∗ we put

(5.4) τn = inf{t ≥ 0 : (β̃ · C)t + (Ỹ ? ν)t + V ar(B)t > n}
where β̃ and Ỹ are given by (5.2). Since τn is (P,F)-stopping time
and the filtration H is bigger then F, it is also (P,H)-stopping time.
Moreover, we can easily verify by Fubini theorem that for each n

E(V ar(BG)τn) ≤ E[(|βϑ| · C)τn + V ar(B)τn + (|(Y ϑ − 1)l| ? ν)τn ] =

E[(β̃ · C)τn + V ar(B)τn + (Ỹ ? ν)τn ] < n + 3 max
x∈IR

l(x) < ∞.

Without loss of generality we can suppose that MH and MG are mar-
tingales and that X̃ is integrable for each t > 0. In fact, to satisfy
these conditions it is sufficient to make an additional localising. Then
for each (P,H)-predictable bounded process K we have:

E(K ·MH)τn∧t + E(K ·BH)τn∧t = E(K ·MG)τn∧t + E(K ·BG)τn∧t.

Since MG and MH are martingales we obtain (5.3) letting t →∞.
By [?, Theorem 4.6.1, p. 191] we have that CH = CG =: C.
Consider next the compensators νH and νG. From [19, II.1.16] it fol-

lows that the jump measure µ(ω, dt, dx) of X is both P̃(G) σ-finite and

P̃(H) σ-finite, and its respective (P,H)- and (P,G)- dual predictable
projections νH(ω, dt, dx) and νG(ω, dt, dx) do exist.
What it remains to show is that νG is the (P,G)-dual predictable pro-

jection of νH. But for every non-negative P̃(G)-measurable bounded
integrand W (ω, t, x) we have

E(W ? νH)τn = E(W ? µ)τn = E(W ? νG)τn

which means that (νH) is (P,H) dual predictable projection of νG. ¤
It remains now to find the formulas for dual predictable projection of
(P,G)- triplet of X. For this we note that under the conditions of
theorem 3.1 the (P,G)-tiplet is given by:

νG = Y ϑ · ν, BG = B + βϑ · C + (Y ϑ − 1)l ? ν

where T = (B, C, ν) is a triplet of X under P . We suppose that for
each F-predictable bounded stopping time τ

(5.5) E[βϑ
τ 1{τ<∞}] < ∞,
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(5.6) E[

∫

IR\{0}
|(Y ϑ

τ (ω, x)− 1)l(x)|K(ω, τ, dx)1{τ<∞}] < ∞,

(5.7) E[

∫

IR\{0}
Y ϑ

τ (ω, x)K(ω, τ, dx)1{τ<∞}] < ∞.

Where K(ω, τ, dx) is a transition kernel appearing in desintegration
formula for compensator ν:

dνt(ω, x) = dAt(ω)K(ω, t, dx).

Proposition 5.2. Assume the conditions of theorem 3.1 and the con-
ditions (5.1), (5.5), (5.6), (5.7). Then (P,H)-triplet of X is given
by:

νH = Y H · ν, BH = B + βH · C + (Y H − 1)l ? ν.

Here βH and Y H are left-continuous versions of the conditional expec-
tations with respect to P :

(5.8) βH
s (ω) = E(βϑ

s (ω)|Hs−), Y H
s (ω, x) = E(Y ϑ

s (ω, x)|Hs−).

Proof Let n ∈ IN∗ and τn is defined by (5.4). Since B is (P,H)-
predictable we have:

BH
τn∧t = Bτn∧t + (βϑ · C)p

τn∧t + ((Y ϑ − 1)l ? ν)p
τn∧t

where p stands for (P,H)-predictable projection.
Without additional restrictions we can take only positive bounded
(P,H)-predictable process U . Then for all F-predictable stopping time
τ we have:

E[Uτβ
ϑ
τ 1{τ<∞}] = E[UτE[βϑ

τ |Hτ−]1{τ<∞}]

since Uτ and 1{τ<∞} is Hτ−-measurable. Then performing time change
with the process C as it was indicated in [22], p.177, we obtain

E[(Uβϑ · C)τn∧t] = E[(UE(βϑ|H−) · C)τn∧t].

The same procedure can be used to find the predictable projection
for the term contaning the integral with respect to the compensator.
Namely, for each bounded P̃(H)-predictable process W (·, ω, x) we have:

E[(

∫

IR∗
W (·, ω, x)(Y ϑ

· (ω, x)− 1)l(x)K(ω, ·, dx) · A)τn∧t =

E[(E(

∫

IR∗
W (·, ω, x)(Y ϑ

· (ω, x)− 1)l(x)K(ω, ·, dx)|H−) · A)τn∧t

It remains to show that for each s ∈ IR+ and P -a.s.

E(

∫

IR∗
W (s, ω, x)(Y ϑ

s (ω, x)− 1)l(x)K(ω, s, dx)|Hs−) =

∫

IR∗
W (s, ω, x)E((Y ϑ

s (ω, x)− 1)|Hs−)l(x)K(ω, s, dx)
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Let (E, E) be measurable space of jumps. Since the functions W and
K are measurable with respect to P(H)×E and Y ϑ is measurable with
respect to P(G)×E, they can be approximated by linear combinations
of the functions of the type v(ω, s)h(x) and u(ω, s)g(x) where v and u
are P(H)- and P(G)-measurables and h, g are E-mesurables. Since E is
generated by countable algebra A we have only to consider as functions
of x the indicator functions of the sets belonging to A. Finally, with
these reductions we have P -a.s.:

E(

∫

IR∗
v(ω, s)u(ω, s)1B(x)K(ω, s, dx)|Hs−) =

E(v(ω, s)u(ω, s)K(ω, s, B)|Hs−) = v(ω, s)E(u(ω, s)|Hs−)K(ω, s, B) =
∫

IR∗
v(ω, s)E(u(ω, s)|Hs−)1B(x)K(ω, s, dx).

The fact that E is generated by countable algebra permit us to ap-
proximate in L1 sense each E-measurable bounded fonction by at most
countable set of linear combinations of indicator functions with the sets
from A . So, for each s ∈ IR+ and K(ω, s, ·)-a.a. x we will have (5.8).
Similar consideration with νG as previously permit to obtain that νH =
Y H · ν with Y H given by (5.8). ¤

Let us give the Bayesian interpretation of the conditional expectation
with respect to H−. First we remark that Hs− = Fs−∨FN

s− and that we
can only consider the sets belonging to semi-algebras generating Fs−
and FN

s−. Let u < s and A ∈ Fu, then for βG = βG(ω, ϑ) we have by
Fubini theorem:

E(1A1[0,u]∪[s,∞[β
G
s ) =

IE[1A1[0,u]∪[s,∞[(θ)β
G
s (ω, θ)] = E[1AEαs−(1[0,u]∪[s,∞[(θ)β

G
s (ω, θ))]

where IE is the expectation with respect to IP, the joint law of (ω, ϑ),
and αs− is posterior distribution of ϑ with respect to Fs−.
For u < s we put

Q([0, u]) = Eαs−(1[0,u]∪[s,∞[(θ)β
G
s (ω, θ)).

Then by (5.1), Q is a σ-finite positive measure which is absolutely
continuous with respect to αs−(·∩ [0, s[)+ δ{s}αs−([s,∞[) and βH

s (ω, θ)
is nothing else as the Radon-Nikodym derivative of Q with respect to
above mentionned measure. Explicite calculation of Radon-Nikodym
derivative gives

(5.9) βH
s (ω, θ) = 1{θ<s}β

θ
s (ω) + 1{θ≥s}

∞∫
s

βθ
s (ω)αs−(dθ)

αs−([s,∞))
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Similar calculation can be made for Y H too. We have

Y H
s (ω, θ, x) = 1{θ<s}Y

θ
s (ω, x) + 1{θ≥s}

∞∫
s

Y θ
s (ω, x)αs−(dθ)

αs−([s,∞))

If the application T : (ω, t, θ) → T θ
t (ω) is P(F) ⊗ A-measurable we

replace θ by ϑ to obtain that

(5.10) βH
s (ω) = 1{ϑ<s}β

ϑ
s (ω) + 1{ϑ≥s}

∞∫
s

βθ
s (ω)αs−(dθ)

αs−([s,∞))

and analogously

Y H
s (ω, x) = 1{ϑ<s}Y

ϑ
s (ω, x) + 1{ϑ≥s}

∞∫
s

Y θ
s (ω, x)αs−(dθ)

αs−([s,∞))
(5.11)

Theorem 5.1. Assume that the process X is a (P,F)-semimartingale
with triplet T = (B, C, ν), that we have the martingale representa-
tion property with respect to natural filtration F and L1(Ω,F, P ) is
separable. Suppose the application T : (ω, t, x) → T θ

t (ω) is P(F) ⊗ A-
measurable and that the conditions (5.1), (5.5), (5.6), (5.7) hold. Then
X is (P,H)-semimartingale with the triplet TH = (BH, C, νH) given by

νH = Y H · ν,
BH = B + βH · C + (Y H − 1)l ? ν

where βH and Y H are defined in (5.10),(5.11).

Proof The result follows from the propositions 5.1 and 5.2 and per-
formed above calculus. ¤

5.2. Progressive enlargement in brownian filtration. Let X be
a brownian motion with respect to the measure P starting from zero
and stoped in T and ϑ = XT .
The prior distribution α(dθ) := P (ϑ ∈ dθ) is a N(0, T ) and the poste-
rior distribution αt of ϑ given Ft is N(Xt, T − t).
As it was shown in 2.,

βθ
t =

θ −Xt

T − t
.

Hence, by straightforward calculations we have

βH
t = 1{XT <t}

(XT −Xt)

(T − t)
+1{XT≥t}

1√
2π(T − t)

exp[−(t−Xt)/(T − t)]

[1− Φ((t−Xt)/(T − t))]

where Φ(·) is the distribution function of standard normal law.
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6. Weak information

In this and in the next sections we discuss briefly some other appli-
cations of the Bayesian viewpoint related with the enlargement and
arithmetic mean measure.

6.1. Weak insider information. The notion of weak information in
mathematical finance was introduced by Baudoin [3, 4]. Before we dis-
cuss briefly this notion, recall our basic setup. We have a semimartin-
gale X on a filtered space (Ω,F,FX , P ) with the right-continuous ver-
sion of natural filtration F = (FX

t )t≥0 completed by the F sets of prob-
ability zero and F = FX

∞. We assume the predictable representation
property for FX and we denote by T = (B,C, ν) the (P,F)-triplet of X.
Later, to simplify the notation, we omit the index X in the filtration.
Let ϑ be a FT - measurable random variable with the values in measur-
able polish space (Θ, A). Let α := L(ϑ|P ), αt(dθ) := P (ϑ ∈ dθ|Ft),
assume that we have (4.1), and define zθ

t by (4.3) and finally put
dP θ

t = zθ
t dPt. Recall that in this case the arithmetic mean measure

is

P̄α
t (B) :=

∫

Θ

P θ
t (B)α(dθ) = P (B).

In particular, the (P,F)- triplet of the semimartingale X does not
change under the arithmetic mean measure P̄α (see Remark 3.1).
Consider three types of agents in a pricing model, where by the stock
price is given by the semimartingale X: ordinary agents, strong insid-
ers and weak insiders. We do not want to go in too detailed description
of the pricing model, but we define the three types by giving the infor-
mation and the (historical) probability of the agent.

• ordinary agents For the ordinary agent the information is given
by F, the probability is P and he uses the triplet T = (B,C, ν)
to build his stratergy.

• strong insiders For the strong insider the information is given
in the pair (X, ϑ), and we can model this by initial enlargement
of filtration. By using Theorem 4.1 we see that one possibility
to model strong insider is to change the probability P to P θ,
and the strong insider works with filtration F and with the new
triplet T θ.

Let us now describe the notion of weak insider in more detail. Let γ be
the probability distribution on (Θ,A). Following [3, p. 112] we assume
that γ ≺≺ α. Then it is easy to see that P̄ γ ≺≺ P̄α = P , where

P̄ γ
t (B) =

∫

Θ×B

zθ
t γ(dθ)dP,

and the measure P̄ γ is the arithmetic mean measure with respect to
the prior distribution γ; in [3] the corresponding measure on (Ω,F, F ) is
called the minimal probability associated with the conditioning (T, ϑ, γ).
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Hence we can model the weak insiders as follows:

• weak insiders For the weak insider the information is given by
the filtration F, but he changes the probability measure P to
the measure P̄ γ and he works with the triplet T̄ γ = (B̄γ, C, ν̄γ).

Assume that we have

γt ≺≺ γ

and we have assumption 3 with respect to the measure P ⊗ γ.
We can now use Theorem 3.1 to compute the new triplet with respect
to the measure P̄ γ and we obtain:

B̄γ = B + β̄γ · C + (Ȳ γ − 1)l ? ν,

C̄γ = C,(6.1)

ν̄γ = Ȳ γ · ν,
where the predictable local characteristics β̄γ and Ȳ γ are given by

(6.2) β̄γ
t = Eγt−βθ

t , Ȳ γ
t = Eγt−Y θ

t

with γt and γt− a posteriori distributions under γ. Recall that γt is
defined by : for each A ∈ A

γt(A) :=

∫
A

zθ
t γ(dθ)∫

Θ
zθ

t γ(dθ)

and γt− is given by the same formula with replacing zθ
t by zθ

t−.
Define now m̄γ as

m̄γ = β̄γ ·Xc +

(
Ȳ γ − 1 +

ˆ̄Y γ − 1̂

1− 1̂

)
? (µ− ν),

then we have that

dP̄ γ
t

dPt

= E(m̄γ)t.

By definition of P̄ γ
t and γt we have also that

dγt

dγ
(θ) =

dP θ
t

dP̄ γ
t

=
dP θ

t

dPt

dPt

dP̄ γ
t

= zθ
t

1

E(m̄γ)t

.

In comparison with
dαt

dα
(θ) which is equal to zθ

t (Pt×α -a.s.), it means

that

dγt

dγ
(θ) =

dαt

dα
(θ)

1

E(m̄γ)t

.
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Example: Brownian motion. Let X be a Brownian motion stopped in
T and suppose that the Brownian filtration F is enlarged by ϑ = XT .

In this example T = (0, I, 0) and βθ =
θ −Xt

T − t
. Consider the example

of final value distorted with a noise. We suppose that the weak insider
knows in advance the value y of random variable Y = XT + ε, where ε
is independent of XT and has N(0, η2) as law. The prior of the insider
with weak information is γ = P (XT |Y ), which by theorem of normal
correlation is N(m,σ2) with σ2 = (T−1 + η−2)−1 and m = Y σ2/η2.
For t < T the posterior distribution is γt := P (XT |Y, Xt), which by the
theorem of normal correlation is N(mt, σ

2
t ) with σ2

t = ((T−t)−1+η−2)−1

and mt = (Y η−2 + Xt(T − t)−1)σ2
t .

According to previous results on the triplets a new drift of X under
the insider measure is given by

(6.3) B̄γ
t =

t∫

0

Eγsϑ−Xs

T − s
ds.

Since

Eγsϑ =
Y (T − s) + Xsη

−2

T − s + η−2

we have after simplification that

B̄γ
t =

t∫

0

Y −Xs

T − s + η2
ds.

Remark 6.1. One can analyse the increasing information along the
same lines. By this we mean that the insider obtains dynamically more
and more precise information about the random variable ϑ. A model of
this type is the following: in addition to the price process X the insider
observes the process Y , where

Yt = ϑ + εt,

where ε is a semimartingale, independent of the random variable ϑ such
that εt → 0 P - a.s., when t → T . This kind of models are analysed in
[7].

7. Additional expected logarithmic utility of an insider

7.1. Introduction. We consider the pricing model with two assets,
the stock (risky asset) and the bond (riskless asset). We assume as in
[1] that the process X has the dynamics

(7.1) dXt = µtd〈M〉t + dMt

here µ is a predictable process, and M is a continuous Gaussian mar-
tingale with a deterministic bracket 〈M〉. The bond B has dynamics
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dBt = rBtdt and we assume that the interest rate r is equal to zero, so
that Bt = 1 for all t.
We assume that the stock price S has the dynamics

dSt = StdXt.

We assume that if we have fixed the investment strategy π we have the
dynamics

dV π
t = πtV

π
t dXt.

Then it can be shown that with respect to logarithmic utility, the
average optimal strategy πo of an ordinary investor is to take πo := µ.
Note that here the average optimal strategy is computed with respect
to the measure P .

7.2. Additional expected utility of strong insiders. Now consider
a strong insider who knows the final value of the stock. We assume that
it is the same as the insider knows the final value of the martingale MT .
Put again ϑ = MT .
Then he can model the dynamics of X as

(7.2) dXt = (µt + βθ
t )d〈M〉t + dM θ

t .

Here M θ is a continuous G-martingale with

M θ
t = Mt −

∫ t

0

βθ
sd〈M〉s

and

βθ
t =

θ −Mt

〈M〉t,T
where 〈M〉t,T = 〈M〉T −〈M〉t. Again the optimal expected investment
strategy of an insider agent for the logarithmic utility is πi = µ + βθ.
Note that the expectation is computed with respect to the measure
IP which is the joint law of (M, ϑ(ω)). The log-value of the optimal
strategy for the ordinary investor is

(7.3) log V πo

t = log V0 +

∫ t

0

µsdMs +
1

2

∫ t

0

µ2
sd〈M〉s.

Similarly, the log-value of the optimal strategy for the insider investor
is

(7.4) log V πi

t = log V0 +

∫ t

0

(µs + βθ
s )dM θ

s +
1

2

t∫

0

(βθ
s + µs)

2d〈M〉s.

To calculate the expectation IE with respect to IP we need the following
lemma.
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Lemma 7.1. Let for each θ ∈ Θ uθ = (uθ
t )t≥0 be a positive F-adapted

cadlag process. Suppose that the application u : (ω, t, θ) → uθ
t (ω) is

O(IG)- measurable with IG defined by (4.2). Then

(7.5) IE

∫ t

0

uθ
sd〈M〉s = E

∫ t

0

ūα
s d〈M〉s

where E is the expectation with respect to P and ūα
s is the posterior

mean of uθ
s namely

ūα
s = Eαs−uθ

s

Proof Recall first the following fact. Assume that y = (yt)t≥0 is a
positive uniformly integrable (P,F)-martingale and D is a predictable
increasing process, with D0 = 0. Then by [15, Theorem 5.16, p. 144
and Remark 5.3, p. 137]

(7.6) E (ytDt) = E

∫ t

0

(pY )sdDs = IE

∫ t

0

Ys−dDs.

Since zθ is the conditional density of the law of X given ϑ = θ with
respect to P , we have using (7.6) and ordinary Fubini theorem that

IE(

∫ t

0

uθ
sd〈M〉s) = E(

∫

Θ

zθ
t

∫ t

0

uθ
sd〈M〉sdα) =

∫

Θ

E

(
zθ

t

∫ t

0

uθ
sd〈M〉s

)
dα

= (

∫

Θ

E

∫ t

0

zθ
s−uθ

sd〈M〉sdα) = E

∫ t

0

(∫

Θ

zθ
s−uθ

sdα

)
d〈M〉s

= E

∫ t

0

ūα
s d〈M〉s.

This proves (7.5). ¤
Let us now compute the expected utility from the insider point of view.
This means that we take the expectation of (7.4) with respect to the
insider measure IP which is the joint law of (ω, ϑ). In the computation
we use the fact that the martingale M has a drift

∫ ·
0
βθ

sd〈M〉s with
respect to the insider measure. We obtain:

IE(log V πi

t − log V πo

t ) =
1

2
IE

∫ t

0

(µs + βθ
s )

2d〈M〉s

−1

2
IE

∫ t

0

µ2
sd〈M〉s − IE

∫ t

0

µsdMs

=
1

2
IE

∫ t

0

(βθ
s )

2d〈M〉s

=
1

2
E

∫ t

0

v̄α
s (β)d〈M〉s
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where v̄α
s (β) is the posterior variance of the process βθ

s . Next we give
Bayesian interpretation of this result. Note first that the Kullback-
Leibler information in the prior with respect to posterior is

I(α|ατ ) := Eατ log
dατ

dα
(θ).

In our case we have:

IE(log V πi

t − log V πo

t ) = EI(α|αt).

For more information on this kind of computations we refer to [10].
We compute next the difference of the expected gain from the ordinary
agent point of view. This has the interpretation that the ordinary agent
has excess to the insider information, but he thinks that this is false.
We model this by the measure P ⊗ α – this means that the ordinary
agent does not change his triplet. So the expected utility gain has to
be calculated using the measure P ⊗α. With a similar computation to
the previous one we obtain that

EP⊗α(log V πo

t − log V πi

t ) =
1

2
EP⊗α

∫ t

0

(βθ
s )

2d〈M〉s.

The Kullback-Leibler information in the posterior ατ with respect to
the prior α is define by

I(ατ |α) := Eα log
dα

dατ
.

For our model we can conclude that

EP⊗α(log V πo

t − log V πi

t ) = EI(αt|α).

Note that the differences of the expected gains are in both cases positive
– this reflects the fact the investors act optimally according to their own
model.

7.3. Additional expected logarithmic utility of weak insider.
Assume that γ and α are two different equivalent priors for the param-
eter ϑ; we can define the arithmetic mean measures P̄ γ and P̄α; we can
compute the (F, P̄ γ) and (F, P̄α) triplets of the semimartingale X by
(3.1). Note that here we do not assume that α is the marginal law of
the parameter ϑ.
Denote the optimal strategies based on the weak information for the
prior γ and α by πw,γ and πw,α respectively.
Then, with a familiar computation

(7.7) EP̄ γ (log V w,γ
t − log V w,α

t ) =
1

2
EP̄ γ

( t∫

0

(β
γ

s − β
α

s )2d〈M〉s
)

where

β̄γ
s = Eγs−βθ

s , β̄α
s = Eαs−βθ

s .
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We remark that the right-hand side of (7.7) is nothing else as Kullback-
Leibler information of P̄α in P̄ γ and, hence,

EP̄ γ (log V w,γ
t − log V w,α

t ) = I(P̄α|P̄ γ)t.

Note that

0 ≤ I(P̄α|P̄ γ)t = EP̄ γ log
(dP̄ γ

t

dP̄α
t

)
=

=

∫

Θ

∫

Ω

{
log

(dP θ
t

dP̄α
t

)− log
(dP θ

t

dP̄ γ
t

)}
P θ

t (dω)γ(dθ)

= Eγ

{
I(P θ

t |P̄α
t )− I(P θ

t |P̄ γ
t )

}
= EP̄ γ

t

{
I(α|αt)− I(γ|γt)

}

In particular this means that

EP̄ γ
t
I(γ|γt) = inf

α
EP̄ γ

t
I(α|αt)

where infinum is taken over all measures α which are equivalent to γ.
The interpretation is that if one believes in his own prior γ, he expects
to get less information from the data than any other person using the
same model with a “wrong” prior.
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