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Introduction

Filtering of finite state Markov chains

Let the signal process X; be a continuous time Markov chain:
@ values in a finite set of real numbers S = {ay, ..., a4}
@ transition rates A = {A,-j}gi’jgd

@ the initial distribution v; = P(Xp = a;), i =1,...,d
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Introduction

Filtering of finite state Markov chains

Let the signal process X; be a continuous time Markov chain:
@ values in a finite set of real numbers S = {ay, ..., a4}
@ transition rates A = {A,-j}gi’jgd

@ the initial distribution v; = P(Xp = a;), i =1,...,d

The observation process Y; is generated by
t
Y} :/ h(Xs)ds+oB;, t>0,
0

where
@ h:S— Ris a fixed known function
@ B;is a Brownian motion, independent of X
@ o > 0is the noise intensity
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Introduction

Filtering of finite state Markov chains

@ The objective of the filtering problem is to calculate
(recursively) the conditional probabilities (i =1, ..., d)

(i) .= P(X; = ai|. %), where Z = o{Ys,s€[0,1]}.
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Introduction

Filtering of finite state Markov chains

@ The objective of the filtering problem is to calculate
(recursively) the conditional probabilities (i =1, ..., d)

(i) .= P(X; = ai|. %), where Z = o{Ys,s€[0,1]}.

@ Once the vector 7r; is computed, it can be used to find
various estimates of X; given the trajectory {Ys, s < t}.
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Introduction

Filtering of finite state Markov chains

@ The minimal probability of error:

inf  P(¢# X;) = P(XMF £ X;) =1 — Emax (i)
€€l (F)Y) ajeS

is attained by the Maximum a Posteriori Probability
estimate A
XMAP — argmax o s 7t (/).
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Introduction

Filtering of finite state Markov chains

@ The mean square error:

inf  E(¢— X)® = E(XMSF - X,)% =
el ) (€= X)) =E(X; t)

d d )
E [;alzﬂ-t(i) - (;a,-m(i)) ]

is attained by the conditional mean

d
XMOE =" aim (i),
i=1
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Introduction

The long time behavior

The vector r; satisfies the Wonham SDE:
dri = Nmedt + 02 (diag(m) — ﬂtW?)H(dYt — h*ﬂtdt), T =V,

where
@ A s the transition rates matrix of the chain
@ His a column vector with the entries h(a;), i =1,...,d
@ x* is transposed of x

@ diag(x) with x € R? is the diagonal matrix with x on the
diagonal
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Introduction

The limit performance indeces

If X is an ergodic Markov chain, then process r; is an ergodic
diffusion on the simplex of probability vectors S9—1:

P. Chigansky Filtering in strong noise



Introduction

The limit performance indeces

If X is an ergodic Markov chain, then process r; is an ergodic
diffusion on the simplex of probability vectors S9—1:

@ a unique invariant measure ¢ on (89 1) exists
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Introduction

The limit performance indeces

If X is an ergodic Markov chain, then process r; is an ergodic
diffusion on the simplex of probability vectors S9—1:

@ a unique invariant measure ¢ on %(S9") exists
@ the convergence to ¢ is exponential
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The limit performance indeces

If X is an ergodic Markov chain, then process r; is an ergodic
diffusion on the simplex of probability vectors S9—1:

@ a unique invariant measure ¢ on (89 1) exists
@ the convergence to ¢ is exponential
@ the Law of Large Numbers holds
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Introduction

The limit performance indeces

If X is an ergodic Markov chain, then process r; is an ergodic
diffusion on the simplex of probability vectors S9—1:

@ a unique invariant measure ¢ on (89 1) exists
@ the convergence to ¢ is exponential
@ the Law of Large Numbers holds

This implies that the limits of the performance indices exist

Perr = lim inf _ P(E#£X;) =1 —/ (max u;)p(du)

t—oo gel oo (FY) Sd—1 i

Emse = lim inf _ E(¢— X;)? :/ (u*az—(u*a)2><p(du)
Sd—1

t—oo §€L2('g(:ty)
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Introduction

Expression for the performance indices

What is known about Pg,r and Egfr ?
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Introduction

Expression for the performance indices

What is known about Pe;r and Egrr ?
@ For the case d = 2, both indices are explicitly computable
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Expression for the performance indices

What is known about Pg,r and Egfr ?
@ For the case d = 2, both indices are explicitly computable
@ Low noise asymptotic (¢ — 0): assuming h(a;) # h(&),
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Introduction

Expression for the performance indices

What is known about Pg,r and Egfr ?
@ For the case d = 2, both indices are explicitly computable
@ Low noise asymptotic (¢ — 0): assuming h(a;) # h(&),

O.Zeitouni & R.Khasminskii (1996):

d 2\ 2 1
Perlo) = { Sy @) ) o8z et
]

i=1 i (h(a;) —h
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Introduction

Expression for the performance indices

What is known about Pg,r and Egfr ?
@ For the case d = 2, both indices are explicitly computable
@ Low noise asymptotic (¢ — 0): assuming h(a;) # h(&),

O.Zeitouni & R.Khasminskii (1996):

Perr(o (Z wiy 2)\”(&))2) -o% log %(Ho(ﬂ)
)

i=1 i (h(a;) —h

Y.Golubev (2000):

d
Emse(o (Z Z 2)(a —3)° ).a2loga12(1+o(1)).

=7 (ha) - h(a,)>2
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Introduction

Another side of the coin: measure concentration

@ The filter “converges” to the signalas ¢ — 0
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Introduction

Another side of the coin: measure concentration

@ The filter “converges” to the signalas ¢ — 0

@ As o — 0, the invariant measure ¢, (du) of the filtering
process 7; converges to the point measure

d
po(du) = pide(du),
i—1

where {e;} is the standard basis of R? (“corners” of S 1)
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Another side of the coin: measure concentration

@ The filter “converges” to the signalas ¢ — 0

@ As o — 0, the invariant measure ¢, (du) of the filtering
process 7; converges to the point measure

d
po(du) = pide(du),
i—1

where {e;} is the standard basis of R? (“corners” of S 1)

@ The results of O.Zeitouni/R.Khasminskii and Y.Golubev
give partial information about concentration of ¢, (du)
around po(du) as o — 0
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Introduction

Another side of the coin: measure concentration

@ The filter “converges” to the signalas ¢ — 0

@ As o — 0, the invariant measure ¢, (du) of the filtering
process 7; converges to the point measure

d
po(du) = pide,(du),
i=1

where {e;} is the standard basis of R? (“corners” of S 1)

@ The results of O.Zeitouni/R.Khasminskii and Y.Golubev
give partial information about concentration of ¢, (du)
around po(du) as o — 0

@ The complete characterization is still unknown (e.g.
important for calculation of the entropy rate, etc.) !
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The main results

Strong noise asymptotic

Theorem (P.Ch., 2006)

Assume X is ergodic, then for any F : R — R, growing not
faster than polynomially,

g —00

lim /S  Flo(u=p))ps(du) = EF(e),

where ¢ ~ N (0, P) with the covariance matrix P, solving
uniquely the algebraic Lyapunov equation:

0 = A*P+ PN\ + (diag(p) — pp*) hh* (diag(pe) — pup*)

in the class of nonnegative definite matrices with 3_; Pjj = 0.
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The main results

Strong noise asymptotic

Corollary

In particular,

lim 0'2 (gmse(oo) — (‘:mse(a')) = a*Pa7

g —00

where Emse(0) is the a priori error
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The main results

Strong noise asymptotic

Corollary
In particular,

lim 0'2 (gmse(oo) — (‘:mse(a')) = a*Pa7

g —00

where Emse(0) is the a priori error and

lim O'(,Perr(oo) - Perr(U)) =E max Zj,

0—00 jeT

where J = {i : puj = max; u;} and Per(c0) is the a priori error.
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The main results

Strong noise asymptotic

As o — oo, the measure ¢, (du) converges to the a priori
stationary distribution of the signal:

lim ¢, (du) = 6,(du)

and the Theorem states that the concentration is Gaussian
under appropriate scaling (a CLT type result).
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The main results

Strong noise asymptotic

Fait curieux:

Pmap(c) approaches the a priori limit Pnap(co0) much faster, if
the maximal probability among all x;’s is unique, namely for any
p=>1

o—IEnoo O'p(Perr(OO) - Perr((f)) =0
if |J| = 1. Otherwise, i.e. if |J| > 1,

lim U(Perr(oo) — 739”(0)) =C

g —00

with C > 0!
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The proof idea

The proof idea

@ The Wonham SDE is regularly perturbed, when o — oc:
dr{ = N'rfdt + o' (diag(n{) — n{n{*)HB:, m = v,

where B; is the innovation Brownian motion.

P. Chigansky Filtering in strong noise



The proof idea

The proof idea

@ The Wonham SDE is regularly perturbed, when o — oc:
dr{ = N'rfdt + o' (diag(n{) — n{n{*)HB:, m = v,

where B; is the innovation Brownian motion.
@ Obviously, lim,_.., 77 = 1 in the stationary case
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The proof idea

@ The Wonham SDE is regularly perturbed, when o — oc:
dr{ = N'rfdt + o' (diag(n{) — n{n{*)HB:, m = v,

where B; is the innovation Brownian motion.
@ Obviously, lim,_.., 77 = 1 in the stationary case

@ The scaled error process o(n{ — ;1) satisfies a linear (and
hence Gaussian) SDE — the Lyapunov equation
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The proof idea

The proof idea

@ The Wonham SDE is regularly perturbed, when o — oc:
dr{ = N'rfdt + o' (diag(n{) — n{n{*)HB:, m = v,

where B; is the innovation Brownian motion.
@ Obviously, lim,_.., 77 = 1 in the stationary case

@ The scaled error process o(n{ — ;1) satisfies a linear (and
hence Gaussian) SDE — the Lyapunov equation

@ Some care should be taken of interchanging the limits
o — oo and t — oo.
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