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Filtering of finite state Markov chains

Let the signal process Xt be a continuous time Markov chain:
values in a finite set of real numbers S = {a1, ..., ad}
transition rates Λ =

{
λij

}
1≤i,j≤d

the initial distribution νi = P(X0 = ai), i = 1, ..., d
The observation process Yt is generated by

Yt =

∫ t

0
h(Xs)ds + σBt , t ≥ 0,

where
h : S 7→ R is a fixed known function
Bt is a Brownian motion, independent of X
σ > 0 is the noise intensity
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Filtering of finite state Markov chains

The objective of the filtering problem is to calculate
(recursively) the conditional probabilities (i = 1, ..., d)

πt(i) := P(Xt = ai |F Y
t ), where F Y

t := σ{Ys, s ∈ [0, t ]}.

Once the vector πt is computed, it can be used to find
various estimates of Xt given the trajectory {Ys, s ≤ t}.
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Filtering of finite state Markov chains

The minimal probability of error:

inf
ξ∈L∞(F Y

t )
P

(
ξ 6= Xt

)
= P

(
X̂ MAP

t 6= Xt
)

= 1− E max
ai∈S

πt(i)

is attained by the Maximum a Posteriori Probability
estimate

X̂ MAP
t = argmaxai∈Sπt(i).
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Filtering of finite state Markov chains

The mean square error:

inf
ξ∈L2(F

Y
t )

E
(
ξ − Xt

)2
= E

(
X̂ MSE

t − Xt
)2

=

E

[
d∑

i=1

a2
i πt(i)−

( d∑
i=1

aiπt(i)
)2

]

is attained by the conditional mean

X̂ MSE
t =

d∑
i=1

aiπt(i).
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The long time behavior

The vector πt satisfies the Wonham SDE:

dπt = Λ∗πtdt + σ−2(diag(πt)− πtπ
∗
t
)
H

(
dYt − h∗πtdt

)
, π0 = ν,

where
Λ is the transition rates matrix of the chain
H is a column vector with the entries h(ai), i = 1, ..., d
x∗ is transposed of x
diag(x) with x ∈ Rd is the diagonal matrix with x on the
diagonal
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The limit performance indeces

If X is an ergodic Markov chain, then process πt is an ergodic
diffusion on the simplex of probability vectors Sd−1:

a unique invariant measure ϕ on B(Sd−1) exists
the convergence to ϕ is exponential
the Law of Large Numbers holds

This implies that the limits of the performance indices exist

Perr := lim
t→∞

inf
ξ∈L∞(F Y

t )
P

(
ξ 6= Xt

)
= 1−

∫
Sd−1

(max
i

ui)ϕ(du)

Emse := lim
t→∞

inf
ξ∈L2(F

Y
t )

E
(
ξ − Xt

)2
=

∫
Sd−1

(
u∗a2 − (u∗a)2

)
ϕ(du)
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Expression for the performance indices

What is known about Perr and Eerr ?
For the case d = 2, both indices are explicitly computable
Low noise asymptotic (σ → 0): assuming h(ai) 6= h(aj),

O.Zeitouni & R.Khasminskii (1996):

Perr (σ) =

 d∑
i=1

µi
∑
j 6=i

2λij(
h(ai)− h(aj)

)2

·σ2 log
1
σ2

(
1+o(1)

)
Y.Golubev (2000):

Emse(σ) =

 d∑
i=1

µi
∑
j 6=i

2λij
(
ai − aj

)2(
h(ai)− h(aj)

)2

·σ2 log
1
σ2

(
1+o(1)

)
.
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Another side of the coin: measure concentration

The filter “converges” to the signal as σ → 0
As σ → 0, the invariant measure ϕσ(du) of the filtering
process πt converges to the point measure

ϕ0(du) =
d∑

i=1

µiδei (du),

where {ei} is the standard basis of Rd (“corners” of Sd−1)
The results of O.Zeitouni/R.Khasminskii and Y.Golubev
give partial information about concentration of ϕσ(du)
around ϕ0(du) as σ → 0
The complete characterization is still unknown (e.g.
important for calculation of the entropy rate, etc.) !
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Strong noise asymptotic

Theorem (P.Ch., 2006)

Assume X is ergodic, then for any F : Rd 7→ R, growing not
faster than polynomially,

lim
σ→∞

∫
Sd−1

F
(
σ
(
u − µ

))
ϕσ(du) = EF (ξ),

where ξ ∼ N (0, P) with the covariance matrix P, solving
uniquely the algebraic Lyapunov equation:

0 = Λ∗P + PΛ +
(
diag(µ)− µµ∗

)
hh∗

(
diag(µ)− µµ∗

)
in the class of nonnegative definite matrices with

∑
ij Pij = 0.

P. Chigansky Filtering in strong noise



Introduction
The main results

The proof idea

Strong noise asymptotic

Corollary
In particular,

lim
σ→∞

σ2(Emse(∞)− Emse(σ)
)

= a∗Pa,

where Emse(∞) is the a priori error and

lim
σ→∞

σ
(
Perr (∞)− Perr (σ)

)
= E max

j∈J
Zj ,

where J = {i : µi = maxj µj} and Perr (∞) is the a priori error.
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Strong noise asymptotic

As σ →∞, the measure ϕσ(du) converges to the a priori
stationary distribution of the signal:

lim
σ→∞

ϕσ(du) = δµ(du)

and the Theorem states that the concentration is Gaussian
under appropriate scaling (a CLT type result).
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Strong noise asymptotic

Fait curieux:
Pmap(σ) approaches the a priori limit Pmap(∞) much faster, if
the maximal probability among all µi ’s is unique, namely for any
p ≥ 1

lim
σ→∞

σp(
Perr (∞)− Perr (σ)

)
= 0

if |J| = 1. Otherwise, i.e. if |J| > 1,

lim
σ→∞

σ
(
Perr (∞)− Perr (σ)

)
= C

with C > 0!
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The Wonham SDE is regularly perturbed, when σ →∞:

dπσ
t = Λ∗πσ

t dt + σ−1(diag(πσ
t )− πσ

t πσ∗
t

)
HB̄t , π0 = ν,

where B̄t is the innovation Brownian motion.
Obviously, limσ→∞ πσ

t = µ in the stationary case
The scaled error process σ(πσ

t − µ) satisfies a linear (and
hence Gaussian) SDE =⇒ the Lyapunov equation
Some care should be taken of interchanging the limits
σ →∞ and t →∞.
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