Filtering in strong noise

P. Chigansky

Universitè du Maine, France

2007-03-22/ SAPS VI

Outline

- Introduction
- 2 The main results
- The proof idea

Let the signal process X_t be a continuous time Markov chain:

- values in a finite set of real numbers $\mathbb{S} = \{a_1, ..., a_d\}$
- transition rates $\Lambda = \{\lambda_{ij}\}_{1 < i,j < d}$
- the initial distribution $\nu_i = P(X_0 = a_i), i = 1, ..., d$

The observation process Y_t is generated by

$$Y_t = \int_0^t h(X_s)ds + \sigma B_t, \quad t \geq 0,$$

where

- $h: \mathbb{S} \mapsto \mathbb{R}$ is a fixed known function
- B_t is a Brownian motion, independent of X
- $\sigma > 0$ is the noise intensity

Let the signal process X_t be a continuous time Markov chain:

- values in a finite set of real numbers $\mathbb{S} = \{a_1, ..., a_d\}$
- transition rates $\Lambda = \{\lambda_{ij}\}_{1 < i,j < d}$
- the initial distribution $\nu_i = P(X_0 = a_i), i = 1, ..., d$

The observation process Y_t is generated by

$$Y_t = \int_0^t h(X_s) ds + \sigma B_t, \quad t \ge 0,$$

where

- $h: \mathbb{S} \mapsto \mathbb{R}$ is a fixed known function
- B_t is a Brownian motion, independent of X
- $\sigma > 0$ is the noise intensity

• The objective of the filtering problem is to calculate (recursively) the conditional probabilities (i = 1, ..., d)

$$\pi_t(i) := \mathsf{P}(X_t = a_i | \mathscr{F}_t^{\mathsf{Y}}), \quad \text{where } \mathscr{F}_t^{\mathsf{Y}} := \sigma\{Y_s, s \in [0, t]\}.$$

• Once the vector π_t is computed, it can be used to find various estimates of X_t given the trajectory $\{Y_s, s \leq t\}$.

• The objective of the filtering problem is to calculate (recursively) the conditional probabilities (i = 1, ..., d)

$$\pi_t(i) := \mathsf{P}(X_t = a_i | \mathscr{F}_t^{\mathsf{Y}}), \quad \text{where } \mathscr{F}_t^{\mathsf{Y}} := \sigma\{Y_s, s \in [0, t]\}.$$

 Once the vector π_t is computed, it can be used to find various estimates of X_t given the trajectory { Y_s, s ≤ t}.

• The minimal probability of error:

$$\inf_{\xi \in L_{\infty}(\mathscr{F}_{t}^{Y})} \mathsf{P}\big(\xi \neq X_{t}\big) = \mathsf{P}\big(\hat{X}_{t}^{MAP} \neq X_{t}\big) = 1 - \mathsf{E}\max_{a_{i} \in \mathbb{S}} \pi_{t}(i)$$

is attained by the Maximum a Posteriori Probability estimate

$$\hat{X}_t^{MAP} = \operatorname{argmax}_{a_i \in \mathbb{S}} \pi_t(i).$$

• The mean square error:

$$\inf_{\xi \in L_2(\mathscr{F}_t^Y)} \mathsf{E}\big(\xi - X_t\big)^2 = \mathsf{E}\big(\hat{X}_t^{MSE} - X_t\big)^2 = \\ \mathsf{E}\left[\sum_{i=1}^d a_i^2 \pi_t(i) - \Big(\sum_{i=1}^d a_i \pi_t(i)\Big)^2\right]$$

is attained by the conditional mean

$$\hat{X}_t^{MSE} = \sum_{i=1}^d a_i \pi_t(i).$$

The long time behavior

The vector π_t satisfies the Wonham SDE:

$$d\pi_t = \Lambda^* \pi_t dt + \sigma^{-2} (\operatorname{diag}(\pi_t) - \pi_t \pi_t^*) H(dY_t - h^* \pi_t dt), \quad \pi_0 = \nu,$$

where

- A is the transition rates matrix of the chain
- H is a column vector with the entries $h(a_i)$, i = 1, ..., d
- x* is transposed of x
- $\operatorname{diag}(x)$ with $x \in \mathbb{R}^d$ is the diagonal matrix with x on the diagonal

If X is an ergodic Markov chain, then process π_t is an ergodic diffusion on the simplex of probability vectors S^{d-1} :

- a unique invariant measure φ on $\mathcal{B}(\mathcal{S}^{d-1})$ exists
- ullet the convergence to φ is exponential
- the Law of Large Numbers holds

$$\begin{split} \mathcal{P}_{err} &:= \lim_{t \to \infty} \inf_{\xi \in L_{\infty}(\mathscr{F}_{t}^{Y})} \mathsf{P}\big(\xi \neq X_{t}\big) = 1 - \int_{\mathscr{S}^{d-1}} (\max_{i} u_{i}) \varphi(du) \\ \mathcal{E}_{mse} &:= \lim_{t \to \infty} \inf_{\xi \in L_{2}(\mathscr{F}_{t}^{Y})} \mathsf{E}\big(\xi - X_{t}\big)^{2} = \int_{\mathscr{S}^{d-1}} \Big(u^{*}a^{2} - (u^{*}a)^{2}\Big) \varphi(du) \end{split}$$

If X is an ergodic Markov chain, then process π_t is an ergodic diffusion on the simplex of probability vectors S^{d-1} :

- a unique invariant measure φ on $\mathcal{B}(\mathcal{S}^{d-1})$ exists
- the convergence to φ is exponential
- the Law of Large Numbers holds

$$\begin{split} \mathcal{P}_{err} &:= \lim_{t \to \infty} \inf_{\xi \in L_{\infty}(\mathscr{F}_{t}^{Y})} \mathsf{P}\big(\xi \neq X_{t}\big) = 1 - \int_{\mathscr{S}^{d-1}} (\max_{i} u_{i}) \varphi(du) \\ \mathcal{E}_{mse} &:= \lim_{t \to \infty} \inf_{\xi \in L_{2}(\mathscr{F}_{t}^{Y})} \mathsf{E}\big(\xi - X_{t}\big)^{2} = \int_{\mathscr{S}^{d-1}} \Big(u^{*}a^{2} - (u^{*}a)^{2}\Big) \varphi(du) \end{split}$$

If X is an ergodic Markov chain, then process π_t is an ergodic diffusion on the simplex of probability vectors S^{d-1} :

- a unique invariant measure φ on $\mathcal{B}(\mathcal{S}^{d-1})$ exists
- the convergence to φ is exponential
- the Law of Large Numbers holds

$$\begin{split} \mathcal{P}_{\textit{err}} &:= \lim_{t \to \infty} \inf_{\xi \in L_{\infty}(\mathscr{F}_{t}^{Y})} \mathsf{P}\big(\xi \neq X_{t}\big) = 1 - \int_{\mathscr{S}^{d-1}} (\max_{i} u_{i}) \varphi(du) \\ \mathcal{E}_{\textit{mse}} &:= \lim_{t \to \infty} \inf_{\xi \in L_{2}(\mathscr{F}_{t}^{Y})} \mathsf{E}\big(\xi - X_{t}\big)^{2} = \int_{\mathscr{S}^{d-1}} \Big(u^{*}a^{2} - (u^{*}a)^{2}\Big) \varphi(du) \end{split}$$

If X is an ergodic Markov chain, then process π_t is an ergodic diffusion on the simplex of probability vectors S^{d-1} :

- a unique invariant measure φ on $\mathcal{B}(\mathcal{S}^{d-1})$ exists
- ullet the convergence to φ is exponential
- the Law of Large Numbers holds

$$\begin{split} \mathcal{P}_{\textit{err}} &:= \lim_{t \to \infty} \inf_{\xi \in L_{\infty}(\mathscr{F}_{t}^{Y})} \mathsf{P}\big(\xi \neq X_{t}\big) = 1 - \int_{\mathscr{S}^{d-1}} (\max_{i} u_{i}) \varphi(du) \\ \mathcal{E}_{\textit{mse}} &:= \lim_{t \to \infty} \inf_{\xi \in L_{2}(\mathscr{F}_{t}^{Y})} \mathsf{E}\big(\xi - X_{t}\big)^{2} = \int_{\mathscr{S}^{d-1}} \Big(u^{*}a^{2} - (u^{*}a)^{2}\Big) \varphi(du) \end{split}$$

If X is an ergodic Markov chain, then process π_t is an ergodic diffusion on the simplex of probability vectors S^{d-1} :

- a unique invariant measure φ on $\mathcal{B}(\mathcal{S}^{d-1})$ exists
- ullet the convergence to φ is exponential
- the Law of Large Numbers holds

$$\begin{split} \mathcal{P}_{\textit{err}} &:= \lim_{t \to \infty} \inf_{\xi \in L_{\infty}(\mathscr{F}_{t}^{Y})} \mathsf{P}\big(\xi \neq X_{t}\big) = 1 - \int_{\mathcal{S}^{d-1}} (\max_{i} u_{i}) \varphi(du) \\ \mathcal{E}_{\textit{mse}} &:= \lim_{t \to \infty} \inf_{\xi \in L_{2}(\mathscr{F}_{t}^{Y})} \mathsf{E}\big(\xi - X_{t}\big)^{2} = \int_{\mathcal{S}^{d-1}} \Big(u^{*}a^{2} - (u^{*}a)^{2}\Big) \varphi(du) \end{split}$$

What is known about \mathcal{P}_{err} and \mathcal{E}_{err} ?

- For the case d = 2, both indices are explicitly computable
- Low noise asymptotic ($\sigma \to 0$): assuming $h(a_i) \neq h(a_i)$,

O.Zeitouni & R.Khasminskii (1996):

$$\mathcal{P}_{err}(\sigma) = \left(\sum_{i=1}^{d} \mu_i \sum_{j \neq i} \frac{2\lambda_{ij}}{\left(h(a_i) - h(a_j)\right)^2}\right) \cdot \sigma^2 \log \frac{1}{\sigma^2} (1 + o(1))$$

Y. Golubev (2000).

$$\mathcal{E}_{mse}(\sigma) = \left(\sum_{i=1}^{d} \mu_i \sum_{j \neq i} \frac{2\lambda_{ij} (a_i - a_j)^2}{\left(h(a_i) - h(a_j)\right)^2}\right) \cdot \sigma^2 \log \frac{1}{\sigma^2} (1 + o(1)).$$

What is known about \mathcal{P}_{err} and \mathcal{E}_{err} ?

- For the case d = 2, both indices are explicitly computable
- Low noise asymptotic ($\sigma \to 0$): assuming $h(a_i) \neq h(a_i)$,

O.Zeitouni & R.Khasminskii (1996).

$$\mathcal{P}_{err}(\sigma) = \left(\sum_{i=1}^{d} \mu_i \sum_{j \neq i} \frac{2\lambda_{ij}}{\left(h(a_i) - h(a_j)\right)^2}\right) \cdot \sigma^2 \log \frac{1}{\sigma^2} \left(1 + o(1)\right)$$

Y.Golubev (2000).

$$\mathcal{E}_{mse}(\sigma) = \left(\sum_{i=1}^{d} \mu_i \sum_{j \neq i} \frac{2\lambda_{ij} (a_i - a_j)^2}{\left(h(a_i) - h(a_j)\right)^2}\right) \cdot \sigma^2 \log \frac{1}{\sigma^2} (1 + o(1))$$

What is known about \mathcal{P}_{err} and \mathcal{E}_{err} ?

- For the case d = 2, both indices are explicitly computable
- Low noise asymptotic $(\sigma \to 0)$: assuming $h(a_i) \neq h(a_i)$,

O.Zeitouni & R.Khasminskii (1996).

$$\mathcal{P}_{err}(\sigma) = \left(\sum_{i=1}^{d} \mu_i \sum_{j \neq i} \frac{2\lambda_{ij}}{\left(h(a_i) - h(a_j)\right)^2}\right) \cdot \sigma^2 \log \frac{1}{\sigma^2} \left(1 + o(1)\right)$$

Y.Golubev (2000):

$$\mathcal{E}_{mse}(\sigma) = \left(\sum_{i=1}^{d} \mu_i \sum_{j \neq i} \frac{2\lambda_{ij} (a_i - a_j)^2}{\left(h(a_i) - h(a_j)\right)^2}\right) \cdot \sigma^2 \log \frac{1}{\sigma^2} (1 + o(1)).$$

What is known about \mathcal{P}_{err} and \mathcal{E}_{err} ?

- For the case d = 2, both indices are explicitly computable
- Low noise asymptotic $(\sigma \to 0)$: assuming $h(a_i) \neq h(a_i)$,

O.Zeitouni & R.Khasminskii (1996):

$$\mathcal{P}_{err}(\sigma) = \left(\sum_{i=1}^{d} \mu_i \sum_{j \neq i} \frac{2\lambda_{ij}}{\left(h(a_i) - h(a_j)\right)^2}\right) \cdot \sigma^2 \log \frac{1}{\sigma^2} \left(1 + o(1)\right)$$

Y.Golubev (2000):

$$\mathcal{E}_{mse}(\sigma) = \left(\sum_{i=1}^{d} \mu_i \sum_{j \neq i} \frac{2\lambda_{ij} (a_i - a_j)^2}{\left(h(a_i) - h(a_j)\right)^2}\right) \cdot \sigma^2 \log \frac{1}{\sigma^2} (1 + o(1)).$$

What is known about \mathcal{P}_{err} and \mathcal{E}_{err} ?

- For the case d = 2, both indices are explicitly computable
- Low noise asymptotic $(\sigma \to 0)$: assuming $h(a_i) \neq h(a_i)$,

O.Zeitouni & R.Khasminskii (1996):

$$\mathcal{P}_{err}(\sigma) = \left(\sum_{i=1}^{d} \mu_i \sum_{j \neq i} \frac{2\lambda_{ij}}{\left(h(a_i) - h(a_j)\right)^2}\right) \cdot \sigma^2 \log \frac{1}{\sigma^2} (1 + o(1))$$

Y.Golubev (2000):

$$\mathcal{E}_{mse}(\sigma) = \left(\sum_{i=1}^{d} \mu_i \sum_{j \neq i} \frac{2\lambda_{ij} \big(a_i - a_j\big)^2}{\big(h(a_i) - h(a_j)\big)^2}\right) \cdot \sigma^2 \log \frac{1}{\sigma^2} \big(1 + o(1)\big).$$

- ullet The filter "converges" to the signal as $\sigma
 ightarrow 0$
- As $\sigma \to 0$, the invariant measure $\varphi_{\sigma}(du)$ of the filtering process π_t converges to the point measure

$$\varphi_0(du) = \sum_{i=1}^d \mu_i \delta_{e_i}(du),$$

- where $\{e_i\}$ is the standard basis of \mathbb{R}^d ("corners" of \mathcal{S}^{d-1})
- The results of O.Zeitouni/R.Khasminskii and Y.Golubev give partial information about concentration of $\varphi_{\sigma}(du)$ around $\varphi_{0}(du)$ as $\sigma \to 0$
- The complete characterization is still unknown (e.g. important for calculation of the entropy rate, etc.)!

- ullet The filter "converges" to the signal as $\sigma
 ightarrow 0$
- As $\sigma \to 0$, the invariant measure $\varphi_{\sigma}(du)$ of the filtering process π_t converges to the point measure

$$\varphi_0(du) = \sum_{i=1}^d \mu_i \delta_{e_i}(du),$$

where $\{e_i\}$ is the standard basis of \mathbb{R}^d ("corners" of \mathcal{S}^{d-1})

- The results of O.Zeitouni/R.Khasminskii and Y.Golubev give partial information about concentration of $\varphi_{\sigma}(du)$ around $\varphi_{0}(du)$ as $\sigma \to 0$
- The complete characterization is still unknown (e.g. important for calculation of the entropy rate, etc.)!

- ullet The filter "converges" to the signal as $\sigma
 ightarrow 0$
- As $\sigma \to 0$, the invariant measure $\varphi_{\sigma}(du)$ of the filtering process π_t converges to the point measure

$$\varphi_0(du) = \sum_{i=1}^d \mu_i \delta_{e_i}(du),$$

- where $\{e_i\}$ is the standard basis of \mathbb{R}^d ("corners" of \mathcal{S}^{d-1})
- The results of O.Zeitouni/R.Khasminskii and Y.Golubev give partial information about concentration of $\varphi_{\sigma}(du)$ around $\varphi_{0}(du)$ as $\sigma \to 0$
- The complete characterization is still unknown (e.g. important for calculation of the entropy rate, etc.)!

- ullet The filter "converges" to the signal as $\sigma
 ightarrow 0$
- As $\sigma \to 0$, the invariant measure $\varphi_{\sigma}(du)$ of the filtering process π_t converges to the point measure

$$\varphi_0(du) = \sum_{i=1}^d \mu_i \delta_{e_i}(du),$$

- where $\{e_i\}$ is the standard basis of \mathbb{R}^d ("corners" of \mathcal{S}^{d-1})
- The results of O.Zeitouni/R.Khasminskii and Y.Golubev give partial information about concentration of $\varphi_{\sigma}(du)$ around $\varphi_{0}(du)$ as $\sigma \to 0$
- The complete characterization is still unknown (e.g. important for calculation of the entropy rate, etc.)!

Theorem (P.Ch., 2006)

Assume X is ergodic, then for any $F : \mathbb{R}^d \mapsto \mathbb{R}$, growing not faster than polynomially,

$$\lim_{\sigma \to \infty} \int_{S^{d-1}} F(\sigma(u-\mu)) \varphi_{\sigma}(du) = \mathsf{E}F(\xi),$$

where $\xi \sim \mathcal{N}(0, P)$ with the covariance matrix P, solving uniquely the algebraic Lyapunov equation:

$$0 = \Lambda^* P + P\Lambda + (\operatorname{diag}(\mu) - \mu \mu^*) hh^* (\operatorname{diag}(\mu) - \mu \mu^*)$$

in the class of nonnegative definite matrices with $\sum_{ii} P_{ii} = 0$.

Corollary

In particular,

$$\lim_{\sigma o \infty} \sigma^2 ig(\mathcal{E}_{ extit{mse}}(\infty) - \mathcal{E}_{ extit{mse}}(\sigma) ig) = extit{a}^* extit{Pa},$$

where $\mathcal{E}_{mse}(\infty)$ is the a priori error and

$$\lim_{\sigma o \infty} \sigma ig(\mathcal{P}_{ extit{err}}(\infty) - \mathcal{P}_{ extit{err}}(\sigma) ig) = \mathsf{E} \max_{j \in \mathcal{J}} Z_j,$$

where $\mathcal{J} = \{i : \mu_i = \max_i \mu_i\}$ and $\mathcal{P}_{err}(\infty)$ is the a priori error.

Corollary

In particular,

$$\lim_{\sigma o \infty} \sigma^2 ig(\mathcal{E}_{ extit{mse}}(\infty) - \mathcal{E}_{ extit{mse}}(\sigma) ig) = extit{a}^* extit{Pa},$$

where $\mathcal{E}_{mse}(\infty)$ is the a priori error and

$$\lim_{\sigma \to \infty} \sigma \big(\mathcal{P}_{\textit{err}}(\infty) - \mathcal{P}_{\textit{err}}(\sigma) \big) = \mathsf{E} \max_{j \in \mathcal{J}} Z_j,$$

where $\mathcal{J} = \{i : \mu_i = \max_i \mu_i\}$ and $\mathcal{P}_{err}(\infty)$ is the a priori error.

As $\sigma \to \infty$, the measure $\varphi_{\sigma}(du)$ converges to the a priori stationary distribution of the signal:

$$\lim_{\sigma \to \infty} \varphi_{\sigma}(\mathbf{d}\mathbf{u}) = \delta_{\mu}(\mathbf{d}\mathbf{u})$$

and the Theorem states that the concentration is Gaussian under appropriate scaling (a CLT type result).

Fait curieux:

 $\mathcal{P}_{map}(\sigma)$ approaches the a priori limit $\mathcal{P}_{map}(\infty)$ much faster, if the maximal probability among all μ_i 's is unique, namely for any p > 1

$$\lim_{\sigma \to \infty} \sigma^{\textit{p}} \big(\mathcal{P}_{\textit{err}} (\infty) - \mathcal{P}_{\textit{err}} (\sigma) \big) = 0$$

if |J| = 1. Otherwise, i.e. if |J| > 1,

$$\lim_{\sigma \to \infty} \sigma \big(\mathcal{P}_{\textit{err}}(\infty) - \mathcal{P}_{\textit{err}}(\sigma) \big) = C$$

with C > 0!

• The Wonham SDE is regularly perturbed, when $\sigma \to \infty$:

$$\label{eq:def_def} \textit{d}\pi^{\sigma}_t = \Lambda^* \pi^{\sigma}_t \textit{d}t + \sigma^{-1} \big(\mathrm{diag}(\pi^{\sigma}_t) - \pi^{\sigma}_t \pi^{\sigma*}_t \big) \textit{H} \bar{\textit{B}}_t, \quad \pi_0 = \nu,$$

- Obviously, $\lim_{\sigma\to\infty}\pi_t^{\sigma}=\mu$ in the stationary case
- The scaled error process $\sigma(\pi_t^{\sigma} \mu)$ satisfies a linear (and hence Gaussian) SDE \implies the Lyapunov equation
- Some care should be taken of interchanging the limits $\sigma \to \infty$ and $t \to \infty$.

• The Wonham SDE is regularly perturbed, when $\sigma \to \infty$:

$$\label{eq:def_def} \textit{d}\pi^{\sigma}_t = \Lambda^* \pi^{\sigma}_t \textit{d}t + \sigma^{-1} \big(\mathrm{diag}(\pi^{\sigma}_t) - \pi^{\sigma}_t \pi^{\sigma*}_t \big) \textit{H} \bar{\textit{B}}_t, \quad \pi_0 = \nu,$$

- Obviously, $\lim_{\sigma \to \infty} \pi_t^{\sigma} = \mu$ in the stationary case
- The scaled error process $\sigma(\pi_t^{\sigma} \mu)$ satisfies a linear (and hence Gaussian) SDE \implies the Lyapunov equation
- Some care should be taken of interchanging the limits $\sigma \to \infty$ and $t \to \infty$.

• The Wonham SDE is regularly perturbed, when $\sigma \to \infty$:

$$\label{eq:def_def} \textit{d}\pi^{\sigma}_t = \Lambda^* \pi^{\sigma}_t \textit{d}t + \sigma^{-1} \big(\mathrm{diag}(\pi^{\sigma}_t) - \pi^{\sigma}_t \pi^{\sigma*}_t \big) H \bar{B}_t, \quad \pi_0 = \nu,$$

- Obviously, $\lim_{\sigma\to\infty}\pi_t^{\sigma}=\mu$ in the stationary case
- The scaled error process $\sigma(\pi_t^{\sigma} \mu)$ satisfies a linear (and hence Gaussian) SDE \implies the Lyapunov equation
- Some care should be taken of interchanging the limits $\sigma \to \infty$ and $t \to \infty$.

• The Wonham SDE is regularly perturbed, when $\sigma \to \infty$:

$$\label{eq:def_def} \textit{d}\pi^{\sigma}_t = \Lambda^* \pi^{\sigma}_t \textit{d}t + \sigma^{-1} \big(\mathrm{diag}(\pi^{\sigma}_t) - \pi^{\sigma}_t \pi^{\sigma*}_t \big) \textit{H} \bar{\textit{B}}_t, \quad \pi_0 = \nu,$$

- ullet Obviously, $\lim_{\sigma o \infty} \pi_t^{\sigma} = \mu$ in the stationary case
- The scaled error process $\sigma(\pi_t^{\sigma} \mu)$ satisfies a linear (and hence Gaussian) SDE \implies the Lyapunov equation
- Some care should be taken of interchanging the limits $\sigma \to \infty$ and $t \to \infty$.

