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Poisson Processes

We observe a periodic Poisson process X7 = {X,;,0 <t < T} of
intensity function A (-) and consider the following hypotheses testing

problem:

I ; At) = (t), t>0
where A, () is known periodic function of period 7, against

A A £, t>0,

but A (t) is always 7-periodic. Let us suppose that T'= n7 and
denote X (t) = X (j_1)4+ — Xr(j—1), = 1,...,n. Put




The GoF' tests of C-vM and K-S type can be based on the statistics
2
|"an. @),

A () sup Vi [Rn (1) — A (1)

0<t<rt

It can be shown that

1
W3:>/ W (s)*ds, D, = sup |W (s)|
0 0<s<1

where W () is a Wiener process. Hence these statistics are

asymptotically distribution-free and the tests

U (X)) = Liw2seny € Ka, on (X1) =1p, 5.y € Ka

where IC,, is the classe of tests of asymptotic size «.




These tests are uniformly consistent against any alternative of the

type

Hp=0C): IAG) = A O = o)

but are not consistent against

Ky ={AC) NG =M O] = p)

because they can not see the intensities like
Me(t) = A (t) +¢cpcos(kt), k=1,2;...
For example, for the power function (3 (15, )\) = E ¢ we have

inf ﬁ(@l,)\) < infﬁ(?ﬁ,)\k) — Q

\(-) €, k




Let us consider the problem of testing alternatives like %% even with
p = pr — 0, but we suppose that the functions A (-) are sufficiently
smooth. The intensity A, (-) we transform to constant using the time
change

t:/)\*(v)dv, 0<t<T"
0

and put 7 = 1. Hence
Ho A(t) =1.
The alternative is

A A e ={A0) (NG =1 = o, [N ()] < BY.




Let us put A (¢) =1+ 9 (¢) and introduce the trigonometric
orthonormal base {y; (), € Z} in the space L5 (0,1) as

1, ¢;(t) =V2cos (2mit), ¢_;(t) =V2sin(2mit),

where 7 > 0. Then

10 = 0o, = [ 00 i) at

1EL

and Ar corresponds to O (with condition inf; 9 (¢) > —1)

Op = {19 LY 07> o7, Y (2m|i))* v

1EZ 1EZL




Our goal is to minimize the second type error v (¢, 9) =1 — Ey ¢

uniformly on alternative:

sup vy (@@,19) = inf sup v (¢¥,9) +o(1).

19€C")T wEK:oz Q9EG)T

The test 1& e IC,, we call asymptotically minimax.




Let us introduce the statistic

by = i Ww; (Xf—l),

1=—m

—1/4

. 120 m 7:202
) bl

| T
X, = — ; () [dX; — dt].
= | ewlax.—ay
Here ¢; (+) is periodic prolongation of ¢; (-) on Ry and

— (R261 (O’) 20

C2 (O')




Theorem 1. (Ingster, Kutoyants) Let o > 1/4, then the test

A

%b — 1{tw>za} - }Ca

is asymptotically minimax. Its power function admits the

representations

inf ﬁ(@@,ﬁ) =P{(>z24,—ur}+o(1)

VEO

where ¢ ~ N (0,1) and




The constants

C1 (O')

Ao 220—|—2 7'('20 o
— ’ C2 (O-) — 9
20 +1 (20 +1) (4o + 1)

802
() = Go i 1) (do + 1)

Cg (0_)1/2 62 (0_)1/0'

c1 (O') R1/20'

ur ~d(o,R) Tr2, d(o,R) =

The most interesting case is ur — 1. Then the separation rate

20

pr = (d(o,R) T) *+1

10



To prove this theorem we need to prove two different type results.
The first one is to establish the lower bound on the errors: for all
tests 1 € Ky

sup Y(,9) >1—® (2o —ur)+o0(1),
VEOT

and the second is to show that for the test Qﬂ we have the asymptotic

equalities

A

sup y(¢¥,9) =1— @ (2o —ur) +o0(1),
YEOT
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DifTusion Processes

Let X7 = {X;,0 <t < T} be an observation of solution of some SDE
and we would like to know if this SDE is of the following form

dXt — S* (Xt) dt + o (Xt) th, Xo, 0 S t § T,

where the trend S, (+) and diffusion coefficient o (-)* are known

functions. Our goal is to construct a test (called Goodness-of-Fiit)
which can answer to this question. We study such tests in two types
of asymptotics: small noise (0 — 0) and large samples (T — o0).
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Small Noise Asymptotics

Suppose that the observed process X¢ = {X;,0 <t < T} is solution
of the SDE

dXt = S(Xt> dt + 0 (Xt) th, XO —= X, 0 S t S T.

If ¢ — 0 then the stochastic process X° converges to the

deterministic function {x;,0 <t <T'}, solution of the ordinary DE

dl’t
dt
Our goal is to construct the GoF tests (C-vM and K-S type) for this

model.

= S (z¢), rg, 0<t<T.
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The basic hypothesis is simple:
I Ty =y,

and the alternative is

A SC) e =27l zpr, p>0

Here 7 is solution z; under hypothesis 7. Introduce two statistics

2
X, — r*
W2 = ¢ xt>2> o (CU

) Te S, (]

D Xt — .f:
= su :
© 7 gever | VT €S, (47)
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The C-vM and K-S type tests

Ve (X°) = Igwese,y € Ka, ¢ (X°) = 1ip.>a.1 € Ka

with the constants ¢, d, defined by the equations

P{/OlW(s)Q ds>ca} = a, P{ sup |W (s)] >da} = a,

0<s<1

where W (+) is standard Wiener process. The both tests are

distribution free and uniformly consistent against any alternative J7,.
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Let us consider local (contiguous) alternatives of the following form

h(Xy)o (X))
VT S (X¢)

and denote A, (v) = h (Zsuyy), 0 <wv <1, where s(7) is inverse to

dX, = S, (X;) dt + ¢ dt +edW;,, 0<t<T.

7 (s). We have the convergence

W3:>/01 [W(s)+/08h*(v)dv]2 ds,

D. = sup W(s)+/ hy (v) do
0

0<s<1
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The power function

5(¢s,h)—>P{/01 [W(s)+/()sh*(v)dv]2 ds>ca}

Note that these tests are not uniformly consistent against

alternatives of the form

Ay SESC) =S5Ol zpt,  p>0
because for the functions like Sy (x) = Sy () + hg (x)
hi(z) =cpcos(k(z—z0)), k=1,2,...

we have

S(.i)rg:%ﬂp 6 (%, h) < Hlifﬁ (¢€7 hk) PN
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Chi Square Test

The basic hypothesis as before is simple
dXt = S* (Xt) dt + 0 (Xt) th, XO — X, 0 S t S T,

and the alternative we write as

dX;, = S, (X;) dt+h (X)) 0 (X4) V/|Ss (Xo)|dt+eo (X)) AWy,  Xo = o,
where

= S, (), x5 = xo.

T — T ) dz;}
Y

T — To dt

(25 — 20) " h, (

Therefore, the alternative is entirely defined by the function h. (-).
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We suppose that h, (-) € H,:

Ho={h(): b0z |09 0| < B},

where ||-|| is £5 (0,1)-norm and r = 7 (¢) — 0. We call a test 1,

asymptotically minimax in /C, if

Sup - 7y (&87 h*) = _inf sup 7 (?7287 h*) +o(1).
h.€H, Ve €KL hy €H,

Here Y (@Eeah*> =1- Eh*zza =1- ﬁ (@s,h*)
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Let us introduce orthonormal base in L5 (0,1): ¢g (y) = 1,
i (y) = V2 sin(2njy), >0, ¢;(y) = V2 cos(2mjy),

and write

he () =S 005 (1), 0 = / h () 5 () dy.

JEZ

The set H, can be rewritten in terms of ¥ = {¥,} as follows

=9 > =2 ) (@) i < R?

jEZ jET

20
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The Chi-square test we construct with the help of the random
variables

. /OT ) (Xt _ x@) ngf;f:&t) dX, — S, (X,)df],

T — To

Let us put

w= 3w’ -1], m= (B9l

C9o (O’)

j1<m
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Theorem 2. Let h, (-) € H, with k > 1, then the test

A

w — ]‘{Qw>za} 6 ICa

and is asymptotically minimax. Its second type error admits the

representations

sup 7(1@ 19) =1—P (2o —u:) +0(1)
YEOT

do+1

ue =d(o,R) e tr- (1+0(1)).
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The test statistic can be simplified as follows, let us put

T
T} — o VIS (7))

ve _ [ dX; — S, (X;) dt],
’ /o i (1';7—5130> \/x;—xgg(){t)[ ‘ (Xe) d]

and note that under hypothesis the random variables Y7 are
independent and Y7 ~ N (0,1). The test statistic is

Qu= ) w, [(Yf)Q - 1} ,

j1<m

where w; and m are the same as before. Then the test

~

w — 1{Qw>zo¢} 6 ,Ca

has the same asymptotic properies as 1& above.
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Ergodic Diffusion

Suppose that the observed process is one dimensional ergodic

diffusion
dXt — S (Xt) dt + o (Xt) th, Xo,

i.e., there exists an invariant probability distribution Fs (z) such that

—/ (Xy) dt—>/ z) de =Egg (§).

1 x
fs(x) = exp 2/
(@) G(S)o (z)° 0
The basic hypothesis 77 is simple: S (x) = S, ().
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We propose two different type of tests. The First one is based on

the following two statistics

1 T t 2
-y L oo

1 t
Dr = sup | Xy — Xo — / Sy (Xy) do
0

Jree ] o5

It can be shown that under hypothesis J%

1
W%:>/ W (s)*ds, Dr = sup |W (s)].
0 0<s<1
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Hence the C-vM and K-S type tests

vr (X7) = Twzse) €Kar 07 (X7) = 1{prsa,) € Ka

with the same constants ¢, and d,.

Remind that Eg, S, (§) = 0. These tests are consistent against any
alternative of the type

s ={5(-) : Es.5(§) # 0}

Let us denote
={h(:): Es ,h(§) > p}
where p > 0.
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The contiguous alternatives we introduce by the SDE

h (X
dXt = S(Xt) dt —+ ( t) dt + 0o (Xt) th, Xo, 0 S t S T.
VT
—1/2

We put pp, = Eg h (&) (ES* [a (f)QD . The limits for the both

statistics under alternative %’jo are

1
W2 = / (W (s)+ pns]°ds, Dr= sup |W(s)+pps|
0 0<s<1

We can compare these tests with the Neyman-Pearson test

b (XT, h) = 1z (h)>en (b))}

for simple alternatives. Here Zp (h) is the LR function.
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Its power function (¢ ~ N (0, 1))

8 (drh) = PLC> 20— VI, 1(h)
The least favorable alternative corresponds to

h(-i)rg%”pl(h) = Ph H, ={h() : Eg h(§) > p}.

inf ﬁ(@BT,h) —P{¢> 20— pn},

h(-)eH,
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Let us introduce statistic

Vr (XT) = (TEs, |0 (S)QD_U2 [XT — X, — /OT S. (Xt)dt]

and the corresponding test

Z;T (XT) — 1{VT(XT)>ZQ} € Ka.

Then its power function
8 (dr,h) = Eg,dr (XT) = B(6,h) = P{C> 20 — o)}
and the least favorable means

inf (k) =P{C> 20— pn}

h(-)eH,

Hence this test is AUMP.
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We can compare these three tests by their limit powers

(C—vM) ﬁ(w,p)=P{/Ol [W(S>+p3]2d3>coz}a

(K—S) B(6p) =P{ sup W (s) + ps >da},

0<s<1
(AUMP) 8 (¢,p) =P{¢ > 20 — p}

The results of simulation we find on the next slide.
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K-Stest
C-vM test
LAUMP test
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The Second type of tests is a direct analogue of the classical
Cramér-von Mises and Kolmogorov-Smirnov tests based on empirical

distribution and density functions:

1 [t A 9 T
f./o lix,<ay dt, fr(z) = T/O lix, <2y dXy

Remind that both of them are unbiased:

Eskr(z) =Fs(z),  Esfr(z)=fs(x),

admit the representations

T Fs (X; Nx) — Fs (Xy) Fs (z)
fs (X4)
" 1ix, 501 — Fs (Xy)
fs (X4)

th+O( ),

th + o0 (1)
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The Cramér-von Mises and Kolmogorov-Smirnov type test statistics

are

W= [ [Fro) - Fo. @)] dFs. (@)

Dy =sup VT |Fr (z) — Fs, (a:)‘

=7 [ [fr@)-s.@)] daFs. @)

o

dr =suwp VT |fr (2) = fs. (@)

respectively. Unfortunately, all these statistics are not
distribution-free even asymptotically and the choice of the

corresponding thresholds for the tests is much more complicate.
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The Cramér-von Mises and Kolmogorov-Smirnov type tests based on

these statistics are

Ur (X7) =1yzocy 0 (X7) = Lprspay

wT (XT) — 1{’0%>Ca}7 qu (XT) — 1{dT>da}

with corresponding constants belong to € K, .
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The contiguous alternatives can be introduced by the following way

Then we obtain for the Cramér-von Mises statistics the limits

2

§
W2 :>/ 2Eg, ([1{5@3} — Fs, (:U)]/O h(s) ds) +n(x)| dFs, (x),

2
vy = / [2E5 / (s) ds+ ¢ (33)] dFg, (z).
where 7 (+) and ( () are limit gaussian processes:

VT (Fr(z) = Fs. (v)) = n(@), VT (fr(2) = fs. () = ¢ (@)
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Partially Observed Processes

Let us consider the partially observed system

dY; = —aY; dt +bdV;, Y,
dXt:C)/:fdt—l—O'th, XQ, OStST

where a > 0,b > 0,¢ > 0. We observe X1 = {X;,0 <t < T} and we
have to construct C-vM and K-S type tests to check if this model
corresponds well to X*. Remind that m; = Eq (Y;|X,,0 < s <)

satisfies the Kalman-Bucy equations:

dm; = cmy dt + C—Zt dX; —cmedt], myg
o

70, OStST
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Let us introduce the statistics
2

1 T t
= Xt—Xo—c/ m8d5] dt,
T202/0 [ 0

1 ¢
Dt = sup Xt—Xo—c/ msds|.
oV o<t<T 0

Then under hypothesis 77 we have

1
W%z/ W (s)? ds, Dy = sup |W (s)].
0

0<s<1

and the tests

vr (X7) =Twese, ) 07 (X7) = Yprsaa

with corresponding constants belong to € K.
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These tests are consistent against any alternative of the type

dY; = —aY; dt +bdV;, Y,
dXt:CY;dt—Fh(Xt)dt—FO'th, XQ, OStST

The contigous alternatives can be introduced by the equations

dY; = —aY; dt + bdV;, Y,

h (X
dXt :CYt dt—|— \(/Tj>dt+o_th’ )(07 0 S t S T.

Then (r = (a® + 62620_2)1/2)

Wi = /01 [W (s) + OLT/OT [ : ‘“ST‘”")] h(Xy) dvr ds

Limit=open question.
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