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Poisson Processes

We observe a periodic Poisson process XT = {Xt, 0 ≤ t ≤ T} of
intensity function λ (·) and consider the following hypotheses testing
problem:

H0 : λ (t) ≡ λ∗ (t) , t ≥ 0

where λ∗ (t) is known periodic function of period τ , against

H1 : λ (t) 6= λ∗ (t) , t ≥ 0,

but λ (t) is always τ -periodic. Let us suppose that T = nτ and
denote Xj (t) = Xτ(j−1)+t −Xτ(j−1), j = 1, . . . , n. Put

Λ̂n (t) =
1
n

n∑

j=1

Xj (t) → Λ (t) =
∫ t

0

λ (s) ds.
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The GoF tests of C-vM and K-S type can be based on the statistics

W 2
n = Λ∗ (τ)−2

n

∫ τ

0

[
Λ̂n (t)− Λ∗ (t)

]2

dΛ∗ (t) ,

Dn = Λ∗ (τ)−1/2 sup
0≤t≤τ

√
n

∣∣∣Λ̂n (t)− Λ∗ (t)
∣∣∣ .

It can be shown that

W 2
n =⇒

∫ 1

0

W (s)2 ds, Dn =⇒ sup
0≤s≤1

|W (s)|

where W (·) is a Wiener process. Hence these statistics are
asymptotically distribution-free and the tests

ψn

(
XT

)
= 1{W 2

n>cα} ∈ Kα, φn

(
XT

)
= 1{Dn>dα} ∈ Kα

where Kα is the classe of tests of asymptotic size α.
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These tests are uniformly consistent against any alternative of the
type

Hρ = {Λ (·) : ‖Λ (·)− Λ∗ (·)‖ ≥ ρ}
but are not consistent against

Ĥρ = {Λ (·) : ‖λ (·)− λ∗ (·)‖ ≥ ρ}

because they can not see the intensities like

λk (t) = λ∗ (t) + cρ cos (kt) , k = 1, 2; . . .

For example, for the power function β
(
ψ̄, λ

)
= Eλψ̄ we have

inf
λ(·)∈Ĥρ

β
(
ψ̄, λ

) ≤ inf
k

β
(
ψ̄, λk

) → α
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Let us consider the problem of testing alternatives like Ĥρ even with
ρ = ρT → 0, but we suppose that the functions λ (·) are sufficiently
smooth. The intensity λ∗ (·) we transform to constant using the time
change

t =
∫ s

0

λ∗ (v) dv, 0 ≤ t ≤ T ∗ =
∫ T

0

λ∗ (v) dv

and put τ = 1. Hence

H0 : λ (t) = 1.

The alternative is

H1 : λ (·) ∈ ΛT =
{

λ (·) : ‖λ (·)− 1‖ ≥ ρT ,
∥∥∥λ(σ) (·)

∥∥∥ ≤ R
}

.

5



Let us put λ (t) = 1 + ϑ (t) and introduce the trigonometric
orthonormal base {ϕi (·) , i ∈ Z} in the space L2 (0, 1) as

ϕ0 (1) = 1, ϕi (t) =
√

2 cos (2πit) , ϕ−i (t) =
√

2 sin (2πit) ,

where i > 0. Then

ϑ (t) =
∑

i∈Z
ϑi ϕi (t) , ϑi =

∫ 1

0

ϑ (t) ϕi (t) dt

and ΛT corresponds to ΘT (with condition inft ϑ (t) ≥ −1)

ΘT =

{
ϑ :

∑

i∈Z
ϑ2

i ≥ ρ2
T ,

∑

i∈Z
(2π |i|)2σ

ϑ2
i ≤ R2

}
.
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Our goal is to minimize the second type error γ
(
ψ̄, ϑ

)
= 1−Eϑ ψ̄

uniformly on alternative:

sup
ϑ∈ΘT

γ
(
ψ̂, ϑ

)
= inf

ψ̄∈Kα

sup
ϑ∈ΘT

γ
(
ψ̄, ϑ

)
+ o (1) .

The test ψ̂ ∈ Kα we call asymptotically minimax.
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Let us introduce the statistic

tw =
m∑

i=−m

wi

(
X2

i − 1
)
,

where

wi = z2

(
1−

∣∣∣∣
i

m

∣∣∣∣
2σ

)
, z =


2

m∑

i=−m

[
1−

∣∣∣∣
i

m

∣∣∣∣
2σ

]2


−1/4

,

and

Xi =
1√
T

∫ T

0

φi (t) [dXt − dt] .

Here φi (·) is periodic prolongation of ϕi (·) on R+ and

m =
(

R2c1 (σ)
c2 (σ)

) 1
2σ

ρ
− 1

σ

T −→∞
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Theorem 1. (Ingster, Kutoyants) Let σ > 1/4, then the test

ψ̂ = 1{tw>zα} ∈ Kα

is asymptotically minimax. Its power function admits the

representations

inf
ϑ∈ΘT

β
(
ψ̂, ϑ

)
= P {ζ > zα − uT }+ o (1)

where ζ ∼ N (0, 1) and

uT = d (σ,R) T ρ
4σ+1
2σ

T (1 + o (1)) .
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The constants

c1 (σ) =
4σ

2σ + 1
, c2 (σ) =

22σ+2 π2σ σ

(2σ + 1) (4σ + 1)
,

c3 (σ) =
8σ2

(2σ + 1) (4σ + 1)

and

uT ∼ d (σ,R) T r
2+ 1

2σ

T , d (σ,R) =
c3 (σ)1/2

c2 (σ)1/σ

c1 (σ) R1/2σ
.

The most interesting case is uT → 1. Then the separation rate

ρT = (d (σ,R) T )−
2σ

4σ+1
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To prove this theorem we need to prove two different type results.
The first one is to establish the lower bound on the errors: for all
tests ψ̄ ∈ Kα

sup
ϑ∈ΘT

γ(ψ̄, ϑ) ≥ 1− Φ(zα − uT ) + o (1) ,

and the second is to show that for the test ψ̂ we have the asymptotic
equalities

sup
ϑ∈ΘT

γ(ψ̂, ϑ) = 1− Φ(zα − uT ) + o (1) ,
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Diffusion Processes

Let XT = {Xt, 0 ≤ t ≤ T} be an observation of solution of some SDE
and we would like to know if this SDE is of the following form

dXt = S∗ (Xt) dt + σ (Xt) dWt, X0, 0 ≤ t ≤ T,

where the trend S∗ (·) and diffusion coefficient σ (·)2 are known
functions. Our goal is to construct a test (called Goodness-of-Fit)
which can answer to this question. We study such tests in two types
of asymptotics: small noise (σ → 0) and large samples (T →∞).
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Small Noise Asymptotics

Suppose that the observed process Xε = {Xt, 0 ≤ t ≤ T} is solution
of the SDE

dXt = S (Xt) dt + εσ (Xt) dWt, X0 = x0, 0 ≤ t ≤ T.

If ε → 0 then the stochastic process Xε converges to the
deterministic function {xt, 0 ≤ t ≤ T}, solution of the ordinary DE

dxt

dt
= S (xt) , x0, 0 ≤ t ≤ T.

Our goal is to construct the GoF tests (C-vM and K-S type) for this
model.
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The basic hypothesis is simple:

H0 : xt = x∗t , 0 ≤ t ≤ T,
dx∗t
dt

= S∗ (x∗t )

and the alternative is

H1 : {S (·) : ‖x. − x∗. ‖ ≥ ρ} , ρ > 0

Here x∗t is solution xt under hypothesis H0. Introduce two statistics

W 2
ε =

∫ T

0

(
Xt − x∗t

τ ε S∗ (x∗t )
2

)2

σ (x∗t )
2 dt, τ = τ (T )

Dε = sup
0≤t≤T

∣∣∣∣
Xt − x∗t√
τ ε S∗ (x∗t )

∣∣∣∣ , τ (s) =
∫ s

0

(
σ (x∗t )
S∗ (x∗t )

)2

dt
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The C-vM and K-S type tests

ψε (Xε) = 1{W 2
ε >cα} ∈ Kα, φε (Xε) = 1{Dε>dα} ∈ Kα

with the constants cα, dα defined by the equations

P
{∫ 1

0

W (s)2 ds > cα

}
= α, P

{
sup

0≤s≤1
|W (s)| > dα

}
= α,

where W (·) is standard Wiener process. The both tests are
distribution free and uniformly consistent against any alternative Hρ.
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Let us consider local (contiguous) alternatives of the following form

dXt = S∗ (Xt) dt + ε
h (Xt)σ (Xt)

2

√
τ S∗ (Xt)

dt + ε dWt, 0 ≤ t ≤ T.

and denote h∗ (v) = h
(
xs(vuT )

)
, 0 ≤ v ≤ 1, where s (τ) is inverse to

τ (s). We have the convergence

W 2
ε =⇒

∫ 1

0

[
W (s) +

∫ s

0

h∗ (v) dv

]2

ds,

Dε =⇒ sup
0≤s≤1

∣∣∣∣W (s) +
∫ s

0

h∗ (v) dv

∣∣∣∣
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The power function

β (ψε, h) → P

{∫ 1

0

[
W (s) +

∫ s

0

h∗ (v) dv

]2

ds > cα

}

Note that these tests are not uniformly consistent against
alternatives of the form

H ∗
ρ : {S (·) : ‖S (·)− S∗ (·)‖ ≥ ρ} , ρ > 0

because for the functions like Sk (x) = S∗ (x) + hk (x)

hk (x) = cρ cos (k (x− x0)) , k = 1, 2, . . .

we have
inf

S(·)∈Hρ

β (ψε, h) ≤ inf
k

β (ψε, hk) → α
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Chi Square Test

The basic hypothesis as before is simple

dXt = S∗ (Xt) dt + εσ (Xt) dWt, X0 = x0, 0 ≤ t ≤ T,

and the alternative we write as

dXt = S∗ (Xt) dt+h (Xt)σ (Xt)
√
|S∗ (Xt)|dt+εσ (Xt) dWt, X0 = x0,

where

h (x) = (x∗T − x0)
−1/2

h∗

(
x− x0

x∗T − x0

)
,

dx∗t
dt

= S∗ (x∗t ) , x∗0 = x0.

Therefore, the alternative is entirely defined by the function h∗ (·).
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We suppose that h∗ (·) ∈ Hr:

Hr =
{

h (·) : ‖h (·)‖ ≥ rε,
∥∥∥h(k) (·)

∥∥∥ ≤ R
}

,

where ‖·‖ is L2 (0, 1)-norm and r = r (ε) → 0. We call a test ψ̂ε

asymptotically minimax in Kα if

sup
h∗∈Hr

γ
(
ψ̂ε, h∗

)
= inf

ψ̄ε∈Kα

sup
h∗∈Hr

γ
(
ψ̄ε, h∗

)
+ o (1) .

Here γ
(
ψ̄ε, h∗

)
= 1−Eh∗ ψ̄ε = 1− β

(
ψ̄ε, h∗

)
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Let us introduce orthonormal base in L2 (0, 1): ϕ0 (y) = 1,

ϕj (y) =
√

2 sin (2πjy) , j > 0, ϕj (y) =
√

2 cos (2πjy) , j < 0

and write

h∗ (y) =
∑

j∈Z
ϑj ϕj (y) , ϑj =

∫ 1

0

h∗ (y) ϕj (y) dy.

The set Hr can be rewritten in terms of ϑ = {ϑj} as follows

Θr =



ϑ :

∑

j∈Z
ϑ2

j ≥ r2
ε ,

∑

j∈Z
(2πj)2k

ϑ2
j ≤ R2



 .
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The Chi-square test we construct with the help of the random
variables

Xε
j =

∫ T

0

ϕj

(
Xt − x0

x∗T − x0

) √
|S∗ (Xt)|√

x∗T − x0 σ (Xt)
[dXt − S∗ (Xt) dt] ,

Let us put

qw =
∑

|j|≤m

wj

[(
Xε

j

)2 − 1
]
, m =

(
R2c1 (σ)
c2 (σ)

) 1
2σ

r
− 1

σ
ε −→∞

where

wj = z2

(
1−

∣∣∣∣
j

m

∣∣∣∣
2σ

)
, z =


2

m∑

j=−m

[
1−

∣∣∣∣
j

m

∣∣∣∣
2σ

]2


−1/4

,
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Theorem 2. Let h∗ (·) ∈ Hr with k ≥ 1, then the test

ψ̂ = 1{qw>zα} ∈ Kα

and is asymptotically minimax. Its second type error admits the

representations

sup
ϑ∈ΘT

γ
(
ψ̂, ϑ

)
= 1− Φ(zα − uε) + o (1)

where

uε = d (σ,R) ε−1 r
4σ+1
2σ

ε (1 + o (1)) .
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The test statistic can be simplified as follows, let us put

Y ε
j =

∫ T

0

ϕj

(
x∗t − x0

x∗T − x0

) √
|S∗ (x∗t )|√

x∗T − x0 σ (Xt)
[dXt − S∗ (Xt) dt] ,

and note that under hypothesis the random variables Y ε
j are

independent and Y ε
j ∼ N (0, 1). The test statistic is

Qw =
∑

|j|≤m

wj

[(
Y ε

j

)2 − 1
]
,

where wj and m are the same as before. Then the test

ψ̃ = 1{Qw>zα} ∈ Kα

has the same asymptotic properies as ψ̂ above.
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Ergodic Diffusion

Suppose that the observed process is one dimensional ergodic
diffusion

dXt = S (Xt) dt + σ (Xt) dWt, X0, 0 ≤ t ≤ T,

i.e., there exists an invariant probability distribution FS (x) such that

1
T

∫ T

0

g (Xt) dt −→
∫ ∞

−∞
g (x) fS (x) dx = ESg (ξ) .

where

fS (x) =
1

G (S) σ (x)2
exp

{
2

∫ x

0

S (y)
σ (y)2

dy

}
.

The basic hypothesis H0 is simple: S (x) = S∗ (x).
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We propose two different type of tests. The First one is based on
the following two statistics

W 2
T =

1

T 2 ES∗

[
σ (ξ)2

]
∫ T

0

[
Xt −X0 −

∫ t

0

S∗ (Xv) dv

]2

dt,

DT =
1√

T ES∗

[
σ (ξ)2

] sup
0≤t≤T

∣∣∣∣Xt −X0 −
∫ t

0

S∗ (Xv) dv

∣∣∣∣

It can be shown that under hypothesis H0

W 2
T =⇒

∫ 1

0

W (s)2 ds, DT =⇒ sup
0≤s≤1

|W (s)| .
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Hence the C-vM and K-S type tests

ψT

(
XT

)
= 1{W 2

T >cα} ∈ Kα, φT

(
XT

)
= 1{DT >dα} ∈ Kα

with the same constants cα and dα.

Remind that ES∗S∗ (ξ) = 0. These tests are consistent against any
alternative of the type

H1 = {S (·) : ES∗S (ξ) 6= 0} .

Let us denote
Hρ = {h (·) : ES∗h (ξ) ≥ ρ}

where ρ > 0.
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The contiguous alternatives we introduce by the SDE

dXt = S (Xt) dt +
h (Xt)√

T
dt + σ (Xt) dWt, X0, 0 ≤ t ≤ T.

We put ρh = ES∗h (ξ)
(
ES∗

[
σ (ξ)2

])−1/2

. The limits for the both
statistics under alternative Hρ are

W 2
T ⇒

∫ 1

0

[W (s) + ρh s]2 ds, DT ⇒ sup
0≤s≤1

|W (s) + ρh s|

We can compare these tests with the Neyman-Pearson test

ψ̂T

(
XT , h

)
= 1{ZT (h)>cα(h)}

for simple alternatives. Here ZT (h) is the LR function.
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Its power function (ζ ∼ N (0, 1))

β
(
ψ̂T , h

)
→ P

{
ζ > zα −

√
I (h)

}
, I (h) = ES∗

(
h (ξ)
σ (ξ)

)2

The least favorable alternative corresponds to

inf
h(·)∈Hρ

I (h) = ρ2
h, Hρ = {h (·) : ES∗h (ξ) ≥ ρ} .

Hence
inf

h(·)∈Hρ

β
(
ψ̂T , h

)
→ P {ζ > zα − ρh} ,
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Let us introduce statistic

VT

(
XT

)
=

(
TES∗

[
σ (ξ)2

])−1/2
[
XT −X0 −

∫ T

0

S∗ (Xt) dt

]

and the corresponding test

ψ̃T

(
XT

)
= 1{VT (XT )>zα} ∈ Kα.

Then its power function

β
(
ψ̃T , h

)
= ESh

ψ̃T

(
XT

) → β
(
ψ̃, h

)
= P {ζ > zα − ρh)}

and the least favorable means

inf
h(·)∈Hρ

β
(
ψ̃, h

)
= P {ζ > zα − ρh}

Hence this test is AUMP.
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We can compare these three tests by their limit powers

(C− vM) β (ψ, ρ) = P
{∫ 1

0

[W (s) + ρ s]2 ds > cα

}
,

(K− S) β (φ, ρ) = P
{

sup
0≤s≤1

|W (s) + ρ s| > dα

}
,

(AUMP) β
(
ψ̃, ρ

)
= P {ζ > zα − ρ}

The results of simulation we find on the next slide.

30



0 1 2 3 4 5 6
rho

0

0,2

0,4

0,6

0,8

1

po
w

er

K-S test
C-vM test
LAUMP test

31



The Second type of tests is a direct analogue of the classical
Cramér-von Mises and Kolmogorov-Smirnov tests based on empirical
distribution and density functions:

F̂T (x) =
1
T

∫ T

0

1{Xt<x} dt, f̂T (x) =
2
T

∫ T

0

1{Xt<x} dXt

Remind that both of them are unbiased:

ESF̂T (x) = FS (x) , ES f̂T (x) = fS (x) ,

admit the representations

ηT (x) = − 2√
T

∫ T

0

FS (Xt ∧ x)− FS (Xt) FS (x)
fS (Xt)

dWt + o (1) ,

ζT (x) = −2fS (x)√
T

∫ T

0

1{Xt>x} − FS (Xt)
fS (Xt)

dWt + o (1)
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The Cramér-von Mises and Kolmogorov-Smirnov type test statistics
are

W 2
T = T

∫ ∞

−∞

[
F̂T (x)− FS∗ (x)

]2

dFS∗ (x) ,

DT = sup
x

√
T

∣∣∣F̂T (x)− FS∗ (x)
∣∣∣

and

v2
T = T

∫ ∞

−∞

[
f̂T (x)− fS∗ (x)

]2

dFS∗ (x) ,

dT = sup
x

√
T

∣∣∣f̂T (x)− fS∗ (x)
∣∣∣

respectively. Unfortunately, all these statistics are not
distribution-free even asymptotically and the choice of the
corresponding thresholds for the tests is much more complicate.
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The Cramér-von Mises and Kolmogorov-Smirnov type tests based on
these statistics are

ΨT

(
XT

)
= 1{W 2

T >Cα}, ΦT

(
XT

)
= 1{DT >Dα},

ψT

(
XT

)
= 1{v2

T >cα}, φT

(
XT

)
= 1{dT >dα}

with corresponding constants belong to ∈ Kα.
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The contiguous alternatives can be introduced by the following way

S (x) = S∗ (x) +
h (x)√

T
.

Then we obtain for the Cramér-von Mises statistics the limits

W 2
T ⇒

∫ [
2ES∗

(
[
1{ξ<x} − FS∗ (x)

] ∫ ξ

0

h (s) ds

)
+ η (x)

]2

dFS∗ (x) ,

v2
T ⇒

∫ [
2ES∗

∫ x

ξ

h (s) ds + ζ (x)
]2

dFS∗ (x) .

where η (·) and ζ (·) are limit gaussian processes:
√

T
(
F̂T (x)− FS∗ (x)

)
⇒ η (x) ,

√
T

(
f̂T (x)− fS∗ (x)

)
⇒ ζ (x)
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Partially Observed Processes

Let us consider the partially observed system

dYt = −aYt dt + b dVt, Y0,

dXt = c Yt dt + σ dWt, X0, 0 ≤ t ≤ T

where a > 0, b > 0, c > 0. We observe XT = {Xt, 0 ≤ t ≤ T} and we
have to construct C-vM and K-S type tests to check if this model
corresponds well to XT . Remind that mt = E0 (Yt|Xs, 0 ≤ s ≤ t)
satisfies the Kalman-Bucy equations:

dmt = c mt dt +
c γt

σ2
[dXt − c mt dt] , m0

dγt

dt
= −2a γt − c2 γ2

t

σ2
+ b2, γ0, 0 ≤ t ≤ T
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Let us introduce the statistics

W 2
T =

1
T 2σ2

∫ T

0

[
Xt −X0 − c

∫ t

0

ms ds

]2

dt,

DT =
1

σ
√

T
sup

0≤t≤T

∣∣∣∣Xt −X0 − c

∫ t

0

ms ds

∣∣∣∣ .

Then under hypothesis H0 we have

W 2
T =

∫ 1

0

W (s)2 ds, DT = sup
0≤s≤1

|W (s)| .

and the tests

ψT

(
XT

)
= 1{W 2

T >cα}, φT

(
XT

)
= 1{DT >dα}

with corresponding constants belong to ∈ Kα.
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These tests are consistent against any alternative of the type

dYt = −aYt dt + b dVt, Y0,

dXt = c Yt dt + h (Xt) dt + σ dWt, X0, 0 ≤ t ≤ T.

The contigous alternatives can be introduced by the equations

dYt = −aYt dt + bdVt, Y0,

dXt = c Yt dt +
h (Xt)√

T
dt + σ dWt, X0, 0 ≤ t ≤ T.

Then (r =
(
a2 + b2c2σ−2

)1/2)

W 2
T =

∫ 1

0

[
W (s) +

1
σT

∫ sT

0

[
1− c2

σ2
e−r(sT−v)

]
h (Xv) dv

]2

ds

Limit=open question.
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