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Abstract

For a class of non-uniformly ergodic Markov diffusions, under observa-
tions subject to a Wiener noise, it is shown that a wrong initial data is
forgotten with a certain rate in certain topologies.
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1 Introduction

We consider a continuous time filter for a Markov diffusion (Xt) with values in
the Euclidean space Rd, with observations (Yt) from R`, satisfying the following
system of nonlinear Itô’s equations,

dXt = b(Xt)dt+ dWt, t ≥ 0, (1)

dYt = h(Xt) dt+ dBt t ≥ 0, (2)

with initial data X0 and Y0 = 0, where (Wt, Bt) is a (d + `)-dimensional Wiener
process. Here b(·) is a d-dimensional vector-function, h(·) an `-dimensional vector-
function, random variable X0 is independent on W and B.

The exact initial distribution of X0 is denoted by µ0, and the main question
addressed here is about an asymptotical behaviour of the filter if this initial dis-
tribution is not known. Under uniform ergodicity assumptions, [1] for continuous
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time, [17], [6] for discrete time have established a limiting independence of the
optimal filter algorithm on a wrong initial data, along with certain bounds. The
problem has also been discussed in [15], [19], et al.

Non-compact systems attracted attention in the last decade. Small noise in ob-
servations was tackled in [4]. In [3], observation noise is assumed to be bounded,
with some additional condition on the support of its density. In [17] restrictive mix-
ing or “pseudo-mixing” conditions on the conditional kernel are assumed, which,
in particular, do not allow Gaussian noise, that is, of course, the most desirable
example; the pseudo-mixing condition, in particular, includes a requirement that
the observation noise is small enough. In [21], a variational approach applied to
the filtering systems with a gradient type drift and linear observation part under
additional assumptions. Neither of these restrictions is assumed here.

We have suggested an approach that works in a similar situation for rather
general discrete time filters in [9], and in this paper present a version suitable for
continuous time. The use of Birkhoff projective metric is as useful here as in com-
pact case. Although the basic “discrete” ideas remain the same, the transition to
continuous time is not straightforward, because, at some point, one has to work
with densities in an infinite-dimensional space. In particular, some technical steps
here are quite different from their analogues in [9]. The local contraction, or local
mixing condition here is guaranteed by the Harnack inequality; its analogue in the
discrete case was just due to the assumptions on the density of the noise in the
signal. Notice that in earlier papers on continuous time, mixing properties were
ensured by other density estimates; however, the Harnack inequality seems to be a
proper and most general tool here, as it proved to be in the problem of mixing for
non-conditional dynamics. One more obstacle to overcome here is that in discrete
time case, a “local mixing condition” on the non-conditional kernel immediately
implies a similar condition for conditional kernels, with the same constant of mix-
ing. Here the latter seems to be impossible, because of the integration in the
space of trajectories, say, over a unit interval, which does not appear in discrete
case; to tackle this difficulty we impose some smoothness assumption on h. It is,
of course, very probable that this approach could be useful for filtering diffusion
systems more general than (1)–(2), because the Harnack inequality itself is known
for much more general systems, see [12] or [14]. However, we start with a more
simple case, in order not to overload the presentation.

The paper is arranged as follows: the section 2 contains the assumptions and
the main results; the section 3 is devoted to the proof of the first main result, under
the assumption (A3); the section 4 is devoted to the proof of the second main
result, without (A3) but under more restrictive recurrence and other conditions.
This presentation is independent from [9]; however, we found it fruitful to consider
continuous case in order to understand better the discrete one, and vice versa.
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2 Assumptions and main result

2.1 Assumptions

The first group of assumptions deals with the case of exponential or polynomial
recurrence, and the function h is allowed to grow with any linear rate, under the
only assumption that ∇h is bounded. The absolute continuity condition (A3) is
most important. These assumptions are used in the Theorem 1.

(A1) We assume that the function b is locally bounded, and there exist p = 0, 1,
M > 0 and r ∈ (0,+∞] such that〈

b(x),
x

|x|1−p

〉
≤ −r, |x| ≥M ; (3)

in the case of p = 1, we understand this as a limit necessarily with r = +∞,
that is,

lim
|x|→∞

〈b(x), x〉 = −∞. (4)

(A2) The function h satisfies the condition,

h ∈ C2, & ‖∇h‖C1 <∞.

(A3) The measure µ0 is absolutely continuous with respect to ν0, and∥∥∥∥dµ0

dν0

∥∥∥∥
L∞(ν0)

≤ C <∞.

Moreover, both initial measures µ0 and ν0 possess some exponential moment,
that is, there exists c > 0 such that∫

ec|x|(µ0(dx) + ν0(dx)) <∞. (5)

Remark 1. The assumption on exponential moments for initial measures in
(A3) can be relaxed in the case p = 1. In (A3) the uniform bound in L∞(ν0)
can be replaced by any La(ν0), a > 1; this would just change the constants in
the final bounds, but not the exponential or better than any polynomial rate of
convergence. Notice, however, that under a = 1 we can only get convergence in
probability, without any useful rate. One special case when some convergence rate
is still available with a = 1 is provided by the Theorem 2 below. There are tools
to relax the assumption ‖∇h‖C1 <∞ in order to allow a certain growth of ‖∇2h‖
at infinity, in the spirit of large deviations, however, we do not pursue this here.

The second group of assumptions is used in the case when (A3) may fail, and
will be used in the Theorem 2.
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(A′1) We assume that

lim
|x|→∞

〈
b(x),

x

|x|

〉
= −∞; (6)

the vector-function b is locally bounded.

(A′2) The vector-function h is bounded, and, moreover, h ∈ C2
b , that is, bounded

along with its (continuous) partial derivatives up to the second order.

(A′3) The measure µ0 is absolutely continuous with respect to ν0:

µ0 << ν0.

Moreover, both initial measures µ0 and ν0 possess all exponential moments,
that is, for any c > 0, ∫

ec|x|(µ0(dx) + ν0(dx)) <∞. (7)

2.2 Setting and main results

In order to explain the setting, we have to start with the algorithm that solves the
“exact filtering problem”. This algorithm depends, both explicitly and implicitly,
on the initial data. “Wrong initial data” means that we are going to plug in a
new initial measure instead of the exact one, in this algorithm. To explain this
accurately, we need to show the details of the latter.

The filtered or conditional measure for Xt given the observations Y = (Ys, 0 ≤
s ≤ t) is constructed as follows. Consider the following family of stochastic expo-
nentials,

ρ0,t(X,Y ) = exp(

∫ t

0

h(Xs) dYs − (1/2)

∫ t

0

h2(Xs) ds),

where h2 = |h|2, hY ≡ h∗Y (here ∗ means transposition), and

γ0,t(X, Y ) = exp(−
∫ t

0

h(Xs) dBs − (1/2)

∫ t

0

h2(Xs) ds).

Since X and B are independent, γ is a probability density.
Notice that ρ = γ−1, both with respect to the original measure P, and Pγ, where

dPγ = γ dP, see [18]. Then, due to the Bayes – Kallianpur – Striebel formula, see
[8, chapter 11],

Eµ0(f(X) | Y ) =
Eγ
µ0

(f(X)ρ0,t(X, Y ) | Y )

Eγ
µ0

(ρ0,t(X, Y ) | Y )
. (8)

Here and in the sequel, any expression like E(· | Y ) means E(· | FYt ). This should
not lead to any confusion because t is fixed throughout the paper. Moreover, this
convention is reasonable, for when we claim that the sigma-algebra FYt is given,
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this is always interpreted as though we know the trajectory (Ys, 0 ≤ s ≤ t), so
that the idenfication of | Y and | FYt is, indeed, natural. Notice that f(X) here
may denote a function of Xt, or, more generally, a function of the whole trajectory
Xs, 0 ≤ s ≤ t. For the reader’s convenience and for methodical purposes, we
remind a short proof of the latter formula.

For any bounded measurable function g = g(Y ) we can check the definition of
the conditional probability as follows,

Eµ0g
Eγ
µ0

(f(X)γ−1 | Y )

Eγ
µ0

(γ−1 | Y )
= Eγ

µ0
γ−1g

Eγ
µ0

(f(X)γ−1 | Y )

Eγ
µ0

(γ−1 | Y )

= Eγ
µ0

(
g

Eγ
µ0

(f(X)γ−1 | Y )

Eγ
µ0

(γ−1 | Y )

(
Eγ
µ0

(
γ−1
)
| Y
))

= Eγ
µ0

(
g Eγ

µ0

(
f(X)γ−1 | Y

))
= Eγ

µ0

(
g f(X)γ−1

)
= Eµ0 (g f(X)) .

Hence, we get the formula (8), as required. As explained below, both parts of the
ratio in (8) can be regarded as continuous functions with respect to the trajectory
Y in the topology of uniform continuous function space. Our filtering algorithm
will use exactly these versions.

Now, let us define the following operator SYt ,

µSYt (A) :=

∫
Eγ
x0

(1(Xt ∈ A)ρ0,t(X, Y ) | Y )µ(dx0).

Then, by (8), for every t > 0, Pµ0-almost surely,

Pµ0(Xt ∈ · | Y ) = dµ0
t (Y )µ0S

Y
t (·), (9)

where dµ0
t (Y ) is a normalization constant, that is,

dµ0
t (Y )−1 = µ0S

Y
t (Rd).

Moreover, P-a.s.,
Eγ
µ0

(f(X)ρ0,t(X, Y ) | Y ) = 〈µ0S
Y
t , f〉,

and
Eγ
µ0

(ρ0,t(X, Y ) | Y ) = 〈µ0S
Y
t , 1〉;

here the first equality simply means that

Eγ
µ0

(ρ0,t(X, Y )1(Xt ∈ ·) | Y ) = µ0S
Y
t (·).

Notice that we can consider the function Pµ0(Xt ∈ · | Y ) as a measure due to the
existence of regular conditional distributions with a “desintegration” property, –
that is, Chapman – Kolmogorov’s equations for any finite set of integer nonrandom
moments, – cf., e.g., [20], or [13]. Hence, we can identify the right and left hand
sides in (9).
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Similarly, we can define the filtering measure with a wrong initial data as

dν0t (Y )ν0S
Y
t (·), that is, dν0t (Ỹ )ν0S

Ỹ
t (·) |Ỹ=Y ,

where (X̃, Ỹ ) is a solution of the same SDE system (1)–(2) with a new initial
measure ν0 on some independent probability space; this independence is not es-
sential here, but will be convenient in the sequel. The assumption (A3) serves as
a sufficient condition for this operation of substitution of Y instead of Ỹ to be
well-defined; namely, it guarantees that “Pµ0-almost surely” implies “Pν0-almost
surely”. Remind that another sufficient reasoning about this substitution is just to
use continuity with respect to Y mentioned above; in turn, (A3) will serve another
important task later in the proof. The conditional probability Pµ0(Xt ∈ · | Y ) can

also be defined via a non-linear operator S̄Y,µ0
t ,

µ0S̄
Y,µ0
t (·) := dµ0

t µ0S
Y
t (·).

The main question here is about the discrepancy of measures,

(µ0S̄
Y,µ0
t − ν0S̄

Y,ν0
t )(dxt).

We will be studying the mean total variation distance; non-averaged bounds
are also available, for example, for the sequence t = 1, 2, . . ., via Bienaymé –
Chebyshev’s inequality and Borel–Cantelli lemmae. Let us reiterate that the set-
ting is based upon the notion of exact solution algorithm, and this algorithm must
be presented before any statements. We use a particular representation for this al-
gorithm, and no other presentation is discussed in this paper. In particular, as was
mentioned above, this algorithm uses conditional expectations continuous with re-
spect to the trajectory Y . Questions about any use of other versions could be just
not accepted. We notice, however, that the final results below, – i.e., the formulae
(10) and (11), – relate to the non-conditional expectations of the difference of two
functions of Y . This means that for any other version of those conditional expec-
tations in both formulae, both results will remain valid. At the same time, the use
of continuous versions of more complicated conditional expectations of functions
of Y and Ȳ in the proof is simply a useful proof trick, nothing more. So, questions
about other versions of conditional expectations in the proof are not relevant.

Theorem 1 Under the assumptions (A1) – (A3) above, the following bounds hold
true:

Eµ0‖µ0S̄
Y,µ0
t − ν0S̄

Y,ν0
t ‖TV ≤

{
Cmt

−m, p = 1, ∀m > 0,
C exp(−ct), p = 0.

(10)

Theorem 2 Under the assumptions (A′1) – (A′3) above, the following bound holds
true: there exist C, c > 0 such that

Eµ0‖µ0S̄
Y,µ0
t − ν0S̄

Y,ν0
t ‖TV ≤ C exp(−ct). (11)
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Remark 2. Notice that in both Theorems the constants in the bounds can
be chosen uniformly over appropriate classes of problems, namely, with uniformly
bounded values of the integrals in the assumption on the initial measures, all
coefficients, and all other constants in the assumptions. The theorem 2 is a non-
divergent version close to the (divergent) result in [21], in particular, because of
the “large deviation” type conditions, although the proof is quite different. In this
respect notice that the theorem 1 provides a version of exponential convergence
rate under considerably less restrictive stability conditions.

Remark 3. If there is no even absolute continuity µ0 << ν0, but there is an
absolute continuity at some k0 > 0, one can repeat all considerations below starting
from this k0, that would not change the final conclusion about the convergence rate.
However, one should take care about the filter algorithm itself: if the observations
which are given do not correspond to the initial measure, the algorithm, generally
speaking, may not be able to run at all. One possible solution could be to find
or model some other imaginary observations, that suit the wrong initial measure,
and run the algorithm until it can work with given observations Y . We do not
discuss further details here.

3 Proof of Theorem 1

1. Let us consider the process Zt = (Xt, X̃t); remind that the components X
and X̃ are independent random processes satisfying the same equation (1) with
independent versions of Wiener processes, correspondingly, W and W̃ , however
with different initial distributions, X0 ∼ µ0 and X̃0 ∼ ν0.

First of all, let us notice that all conditional expectations like Eµ0,ν0(f(Xt, X̃t) |
Y, Ỹ ), with bounded Borel f , which will be frequently in use throughout the proof,
are Hölder continuous in C([0, t]; Rd) × C([0, t]; Rd) with respect to Y, Ỹ , and
only these versions are considered in all cases. This continuity follows from the
same calculus related to Girsanov exponentials as in the step 3 below, via the
formula (8), integration by parts in Girsanov exponentials and due to exponential
martingale inequalities under the measure Pγµ0,ν0

. It is needless to say that no
vicious circle arises here. Notice that another explanation of continuity which
appears reasonable is based on the PDE representations of both parts in the ratio
in the Bayes – Kallianpur – Striebel formula. However, our point of view is that
this way is more involved, see the comment after the formula (26) below.

Denote n := [t], – the integer part of t. Let us introduce some indicators. First
of all, in this proof, X stands for the whole continuous trajectory on [0, t], and
the same for the trajectories X̃ and Y . Next, we denote a (non-random) vector of
dimension n with coordinates 1 or 0 at every place by δ, and the following events
and indicators,

Di :=

{
max

(
|Xi|, |X̃i|

)
≤ R; max

(
sup

i≤s≤i+1
|Xs|, sup

i≤s≤i+1
|X̃s|

)
< R + 1

}
,
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and

1δ(X, X̃) :=
n−1∏
i=0

(1 (Di))
δi × (1− 1 (Di))

1−δi ,

with a convention 00 = 1. We have,

‖µ0S̄
Y,µ0
t − ν0S̄

Y,ν0
t ‖TV

= 2 sup
A∈B(Rd)

|Eµ0,ν0(1(Xt ∈ A) | Y )− Eµ0,ν0(1(X̃t ∈ A) | Ỹ )|Ỹ=Y |

= 2 sup
A∈B(Rd)

|Eµ0,ν0(
∑

δ∈∆ 1δ(X, X̃)1(Xt ∈ A) | Y )

−Eµ0,ν0(
∑

δ∈∆ 1δ(X, X̃)1(X̃t ∈ A) | Ỹ )|Ỹ=Y |

≤ 2 sup
A∈B(Rd)

∑
δ∈∆ |Eµ0,ν0(1δ(X, X̃)1(Xt ∈ A) | Y )

−Eµ0,ν0(1δ(X, X̃)1(X̃t ∈ A) | Ỹ )|Ỹ=Y |, (12)

where ∆ is the whole set of possible values of δ.

Next, denote by θs the shift operator on the trajectories, that is, (θt′X)s =
Xt′+s, (θt′X̃)s = X̃t′+s, etc. For 0 ≤ t′ ≤ t, by 1δ(θt′X, θt′X̃) we will understand
the indicator 1δ(X

′, X̃ ′) with the trajectories

X ′
s :=


0, s ≤ t′,
Xs, t′ ≤ s ≤ t,
0, s ≥ t,

and X̃ ′
s :=


0, s ≤ t′,

X̃s, t′ ≤ s ≤ t,
0, s ≥ t.

Let us define new operators on the spaces of normalized and non-normalized
measures on R2d = Rd × Rd, as follows, for 0 ≤ t′ < t′′ ≤ t,

(µt′ , νt′)S
Y ;R;δ
t′:t′′ (A×B)

=
∫

Eγ
x0,x̃0

(
1(Xt′′−t′ ∈ A, X̃t′′−t′ ∈ B)1δ(θt′X, θt′X̃)

×ρ0,t′′−t′(X, θt′Y )ρ0,t′′−t′(X̃, θt′Y ) | Y
)
µt′(dx0)νt′(dx̃0),

and

(µ, ν)S̄Y ;R;δ;µ0,ν0
t (A×B)

= dµ0
t d

ν0
t

∫
Eγ
x0,x̃0

(
1(Xt ∈ A, X̃t ∈ B)1δ(X, X̃)ρ0,t(X, Y )ρ0,t(X̃, Y ) | Y

)
µ(dx0)ν(dx̃0),
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and

(µ, ν)SY ;R;δ
t (A×B)

=

∫
Eγ
x0,x̃0

(
1(Xt ∈ A, X̃t ∈ B)1δ(X, X̃)ρ0,t(X, Y )ρ0,t(X̃, Y ) | Y

)
µ(dx0)ν(dx̃0).

Moreover, due to the desintegration property of regular conditional distributions
(see, e.g., [20], [13]),

(µ, ν)SY ;R;δ
t (A×B) = (µ, ν)

(
n−1∏
i=0

SY ;R;δ
i:i+1

)
SY ;R;δ
n:t (A×B).

Notice that in the latter expression we keep the general notation, but, in fact,
the operator, SY ;R;δ

n:t here does not depend neither on δ, nor on R, by definition, –
because we do not impose any restriction on the “remainder” interval [n, t].

For every δ, let
eY ;δ;µ0,ν0
t := (µ0, ν0)S̄

Y ;R;δ
t (R2d).

Then, Pµ0,ν0-almost surely,

eY ;δ;µ0,ν0
t = Eµ0,ν0(1δ(Z) | Y, Ỹ ) |Ỹ=Y .

Notice that by the symmetry in the definition of the operators S̄Y ;R;δ
t ,

eY ;δ;µ0,ν0
t = eY ;δ;ν0,µ0

t , Pµ0,ν0-almost surely.

Indeed, since all restrictions on x are the same as on x̃, or, in other words, because
1δ(x, x̃) = 1δ(x̃, x), we conclude,

eY ;δ;µ0,ν0
n = (µ0, ν0)S̄

Y ;R;δ
t (R2d)

= dµ0
t d

ν0
t

∫
Eγ
x0,x̃0

(
1δ(X, X̃)ρ0,t(X, Y )ρ0,t(X̃, Y ) | Y

)
µ(dx0)ν(dx̃0)

= dµ0
t d

ν0
t

∫
Eγ
x0,x̃0

(
1δ(X̃,X)ρ0,t(X̃, Y )ρ0,t(X, Y ) | Y

)
µ(dx0)ν(dx̃0)

(by change of variables, X ←→ X̃ and x0 ←→ x̃0, keeping X0 = x0, X̃0 = x̃0)

= dµ0
t d

ν0
t

∫
Eγ
x0,x̃0

(
1δ(X, X̃)ρ0,t(X, Y )ρ0,t(X̃, Y ) | Y

)
ν(dx0)µ(dx̃0)

= (ν0, µ0)S̄
Y ;R;δ
t (R2d) = eY ;δ;ν0,µ0

n ,

as required. Next, denote

(µ, ν)ŜY ;R;δ;µ0,ν0
t (A×B) := (eY ;δ;µ0,ν0

t )−1(µ, ν)S̄Y ;R;δ;µ0,ν0
t (A×B).
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The sense of the last notation is that the result of this action is a normalized
measure restricted to the event (X, X̃) ∈ δ. Hence, we have, with D ∈ B(R2d),

‖µ0S̄
Y ;µ0
t − ν0S̄

Ỹ ;ν0
t |Ỹ=Y ‖TV

≤
∑

δ∈∆ ‖(µ0, ν0)S̄
Y ;R;δ;µ0,ν0
t − (ν0, µ0)S̄

Y ;R;δ;µ0,ν0
t ‖TV

= 2
∑
δ∈∆

supD∈B(R2d)(e
Y ;δ;µ0,ν0
t (µ0, ν0)Ŝ

Y ;R;δ;µ0,ν0
t (D)− eY ;δ;ν0,µ0

t (ν0, µ0)Ŝ
Y ;R;δ;µ0,ν0
t (D))

= 2
∑
δ∈∆

eY ;δ;µ0,ν0
t supD∈B(R2d)((µ0, ν0)Ŝ

Y ;R;δ;µ0,ν0
t (D)− (ν0, µ0)Ŝ

Y ;R;δ;µ0,ν0
t (D)), (13)

Pµ0,ν0-almost surely. Here the first inequality can be explained as follows,

‖µ0S̄
Y ;µ0
n − ν0S̄

Ỹ ;ν0
n

∣∣∣
Ỹ=Y
‖TV

= 2 sup
A∈B(Rd)

∣∣∣Pµ0 (1(Xn ∈ A) | Y )− Pν0
(
1(X̃n ∈ A) | Ỹ

) ∣∣∣
Ỹ=Y

∣∣∣
= 2 sup

A∈B(Rd)

∣∣∣(Pµ0,ν0

(
1(Xn ∈ A) | Y, Ỹ

)
− Pµ0,ν0

(
1(X̃n ∈ A) | Y, Ỹ

)) ∣∣∣
Ỹ=Y

∣∣∣
(because (X, Y ) does not depend on Ỹ , nor (X̃, Ỹ ) on Y )

= 2 sup
A∈B(Rd)

∣∣∣∣Pµ0,ν0

(∑
δ∈∆

1δ(X, X̃)1(Xn ∈ A) | Y, Ỹ
) ∣∣∣

Ỹ=Y

−Pµ0,ν0

(∑
δ∈∆

1δ(X, X̃)1(X̃n ∈ A) | Y, Ỹ
) ∣∣∣

Ỹ=Y

∣∣∣∣
= 2 sup

A∈B(Rd)

∣∣∣∣∑
δ∈∆

Eµ0,ν0

(
1δ(X, X̃)1(Xn ∈ A) | Y, Ỹ

) ∣∣∣
Ỹ=Y

−
∑
δ∈∆

Eµ0,ν0

(
1δ(X, X̃)1(X̃n ∈ A) | Y, Ỹ

) ∣∣∣
Ỹ=Y

∣∣∣∣
(because of linearity)

= 2 sup
A∈B(Rd)

∣∣∣∣∑
δ∈∆

Eµ0,ν0

(
1δ(X, X̃)

(
1(Xn ∈ A)− 1(X̃n ∈ A)

)
| Y, Ỹ

) ∣∣∣
Ỹ=Y

∣∣∣∣
(again due to linearity)

≤ 2 sup
A∈B(Rd)

∑
δ∈∆

∣∣∣Eµ0,ν0

(
1δ(X, X̃)

(
1(Xn ∈ A)− 1(X̃n ∈ A)

)
| Y, Ỹ

) ∣∣∣
Ỹ=Y

∣∣∣
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= 2 sup
A∈B(Rd)

∑
δ∈∆

∣∣∣Eµ0,ν0

(
1δ(X, X̃)1(Xn ∈ A) | Y, Ỹ

) ∣∣∣
Ỹ=Y

−Eµ0,ν0

(
1δ(X, X̃)1(X̃n ∈ A) | Y, Ỹ

) ∣∣∣
Ỹ=Y

∣∣∣
≤ 2 sup

D∈B(R2d)

∑
δ∈∆

∣∣∣Eµ0,ν0

(
1δ(X, X̃)1((Xn, X̃n) ∈ D) | Y, Ỹ

) ∣∣∣
Ỹ=Y

−Eµ0,ν0

(
1δ(X̃,X)1((X̃n, Xn) ∈ D) | Y, Ỹ

) ∣∣∣
Ỹ=Y

∣∣∣ .
In the last line we used symmetry 1δ(X̃n, Xn) ≡ 1δ(Xn, X̃n). Remind that in

all terms we use versions of conditional expectations continuous with respect to
trajectories Y and Ỹ .

To estimate the terms supD((µ0, ν0)Ŝ
Y ;R;δ;µ0,ν0
t (D) − (ν0, µ0)Ŝ

Y ;R;δ;µ0,ν0
t (D)) in

(13), we will use the Birkhoff metric for positive measures, – other names for this
metric are Hilbert and projective, see [10], and also [1], [17], –

h(µ, ν) =

{
ln

(inf u : u > 0, µ ≤ uν)
(sup v : v > 0, µ ≥ vν)

, if finite,

+∞, otherwise.

In other words,

h(µ, ν) = ln ‖dµ
dν
‖+ ln ‖dν

dµ
‖,

where ‖dµ
dν
‖ = ess sup |dµ

dν
|. For normalized measures, we have the following basic

inequality (see [1] or [17]),

2 sup
D

((µ0, ν0)Ŝ
Y ;R;δ;µ0,ν0
t (D)− (ν0, µ0)Ŝ

Y ;R;δ;µ0,ν0
t (D))

≤ 2

ln 3
h((µ0, ν0)Ŝ

Y ;R;δ;µ0,ν0
t , (ν0, µ0)Ŝ

Y ;R;δ;µ0,ν0
t ).

It was duly noticed by Christoph Leuridan [private communication, 2006] that the
constant 2

ln 3
in this inequality may be replaced by one; for our aim, any constant

would do.
Moreover, for any 0 ≤ i ≤ n− 1,

h
(
(µi, νi)S

Y ;R;δ
i:i+1 , (νi, µi)S

Y ;R;δ
i:i+1

)
≤ h ((µi, νi), (νi, µi)) , (14)

as well as

h
(
(µn, νn)S

Y ;R;δ
n:t , (νn, µn)S

Y ;R;δ
n:t

)
≤ h ((µn, νn), (νn, µn)) , (15)
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and for any L > 0 there is a constant πR(L) < 1, such that for every i ∈ J := {j :
δj = δj+1 = 1},

h
(
(µi, νi)S

Y ;R;δ
i:i+1 , (νi, µi)S

Y ;R;δ
i:i+1

)
≤ πR(L)h ((µi, νi), (νi, µi)) , (16)

if the trajectory Y on i ≤ t ≤ i+1 satisfies the inequality, ∆i(Y ) := supi≤s≤i+1 |Ys−
Yi| ≤ L. Emphasize that this boundedness condition for Y can be checked with a
probability close to one, if L is large enough. The idea of this contraction which
occurs or does not occur randomly, depending on Y , is that it can be satisfied
frequently as i runs its values, i = 0, 1, . . . , n, and this suffices for a final exponential
or polynomial bound, depending on p = 0 or p = 1. If such a contraction does not
occur frequently enough, – see below for precise expressions, – we will not pass to
the Birkhoff metric, but will estimate the probability of this unlikely event. The
non-strict bounds (14) and (15) are due to the fact that any kernel, conditional or
not, does not increase the Birkhoff distance between two measures.

2. At this stage of the proof we will show how the Harnack inequality implies (16).
Denote by Γ the parabolic boundary of the cylinder {(t, x, x̃) : 0 ≤ t ≤ 1; |x| ≤
R + 1, |x̃| ≤ R + 1}. Then the version of the parabolic Harnack inequality from
[12] applied to the pair (X, X̃), which is a diffusion process of dimension 2d, may
be formulated in the following way: for every non-negative function ϕ on Γ such
that ϕ(t, x, x̃) ≡ 0, ∀ 0 ≤ t ≤ 1/4, and E0,01(D0)ϕ(τ,Xτ , X̃τ ) > 0, we have,

sup
|x0(1)|,|x̃0(1)|,|x0(2)|,|x̃0(2)|≤R

Ex0(1),x̃0(1) 1(D0)ϕ(τ,Xτ , X̃τ )

Ex0(2),x̃0(2) 1(D0)ϕ(τ,Xτ , X̃τ )
≤ C, (17)

where τ = inf(t : 0 ≤ t ≤ 1, |Xt| ≥ R + 1), with the convention inf(∅) = 1.
The inequality (17) implies (16). Indeed, as |x0(1)|∨|x̃0(1)|∨|x0(2)|∨|x̃0(2)| ≤

R, the inequality (17) implies,

Px0(1),x̃0(1)(D0 ∩ {(X1, X̃1) ∈ D}) ≤ C Px0(2),x̃0(2)(D0 ∩ {(X1, X̃1) ∈ D}). (18)

Now we will establish a similar inequality for the conditional linearized dynamics,
under the assumption ∆0(Y ) = sup0≤s≤1 |Ys−Y0| ≤ L, and with some new constant
C, in particular, depending on L and R.

In the Girsanov exponentials here we perform integration by parts (since h ∈
C2
b ), or Itô’s formula, to get the following, – we show the term ρ0,1(X, Y ) only,

and drop the part exp(−1
2

∫ 1

0
h2(Xs) ds), because it is bounded and bounded away

from zero on D0,

exp(

∫ 1

0

h(Xs) dYs) = exp(h(X1)
∗(Y1 − Y0)−

∫ 1

0

(Ys − Y0) dh(Xs))

= exp(h(X1)
∗(Y1 − Y0)−

∫ 1

0

(Ys − Y0)
∗∇h(Xs) (dWs + b(Xs) ds))

12



× exp(−1

2

∫ 1

0

(Ys − Y0)∆h(Xs) ds)

≡ exp(−
∫ 1

0

(Ys − Y0)
∗∇h(Xs) dWs −

1

2

∫ 1

0

‖(Ys − Y0)
∗∇h(Xs)‖2 ds)

× exp(h(X1)(Y1 − Y0)−
1

2

∫ 1

0

(Ys − Y0)
∗∆h(Xs) ds)

× exp(

∫ 1

0

{
1

2
‖(Ys − Y0)

∗∇h(Xs)‖2 − (Ys − Y0)
∗∇h(Xs)b(Xs)

}
ds).

Here everywhere ∆h is understood as a vector with components ∆hi, where h =
(hi, 1 ≤ i ≤ `); ∇h is a matrix ` × d; and all expressions like Y h mean scalar
products, 〈Y, h〉; in some more complicated cases we also use transposition signs,
like Y ∗∇h dWs.

The second exponential with X̃, can be similarly transformed to

exp(

∫ 1

0

h(X̃s) dYs) = exp(h(X̃1)(Y1 − Y0)−
∫ 1

0

(Ys − Y0)
∗ dh(X̃s))

= exp(−
∫ 1

0

(Ys − Y0)
∗∇h(X̃s) dW̃s −

∫ 1

0

‖(Ys − Y0)
∗∇h(X̃s)‖2 ds)

× exp(h(X̃1)(Y1 − Y0)−
∫ 1

0

(Ys − Y0)∆h(X̃s) ds)

× exp(

∫ 1

0

{
1

2
‖(Ys − Y0)

∗∇h(X̃s)‖2 − (Ys − Y0)
∗∇h(X̃s)b(X̃s)

}
ds).

We will treat here the term

γ̂ := exp(−
∫ 1

0

(Ys − Y0)
∗∇h(Xs) dWs −

∫ 1

0

(Ys − Y0)
∗∇h(X̃s) dW̃s)

× exp(−1

2

∫ 1

0

‖(Ys − Y0)
∗∇h(Xs)‖2 ds−

1

2

∫ 1

0

‖(Ys − Y0)
∗∇h(X̃s)‖2 ds)

as a new Girsanov exponential which changes the drift b(Xs) of our diffusion X
by a new one, b(Xs) − (Ys − Y0)

∗∇h(Xs), and, similarly, the drift b(X̃s) of the
component X̃ is to be changed to b(X̃s)−(Ys−Y0)

∗∇h(X̃s). In the other words, by
changing measure, we transform our process (X, Y, X̃, Ỹ ) on [0, 1], which satisfies
the system of equations under the original measure P,

dXs = b(Xs) ds+ dWs,
dYs = h(Xs) ds+ dBs,

dX̃s = b(X̃s) ds+ dW̃s,

dỸs = h(X̃s) ds+ dB̃s,

(19)
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with initial data X0, Y0, X̃0, Ỹ0, to the following one with respect to P̂, on the same
interval [0, 1],

dXs = (b(Xs)− (Ys − Y0)
∗∇h(Xs)) ds+ dWs,

dYs = dBs,

dX̃s = (b(X̃s)− (Ys − Y0)
∗∇h(X̃s)) ds+ dW̃s,

dỸs = dB̃s,

(20)

and with the same initial data. Of course, all Wiener processes in (20) are new.
The measure P̂ reads,

dP̂
dPγ

(ω) := γ̂(ω).

Notice that this operation, of course, does not change trajectories of all processes
X, X̃, Y, Ỹ . Due to the Bayes – Kallianpur – Striebel formula (8) again, we have,

Eγ
x,x̃

(
1(D0 ∩ {(X1, X̃1) ∈ D})ρ0,1(X, Y )ρ0,1(X̃, Ỹ ) | Y, Ỹ

)
(21)

=
Êx,x̃

(
1(D0 ∩ {(X1, X̃1) ∈ D})ρ0,1(X, Y )ρ0,1(X̃, Ỹ )γ̂−1(X, X̃, Y ) | Y, Ỹ

)
Êx,x̃

(
γ̂−1(X, X̃, Y ) | Y, Ỹ

) .

Correspondingly,

Eγ
x̃,x

(
1(D0 ∩ {(X1, X̃1) ∈ D})ρ0,1(X, Y )ρ0,1(X̃, Ỹ ) | Y, Ỹ

)
(22)

=
Ê x̃,x

(
1(D0 ∩ {(X1, X̃1) ∈ D})ρ0,1(X, Y )ρ0,1(X̃, Ỹ )γ̂−1(X, X̃, Y ) | Y, Ỹ

)
Ê x̃,x

(
γ̂−1(X, X̃, Y ) | Y, Ỹ

) .

Let us consider the enumerator here. The “main part”, – that is, the part with
stochastic integrals, – of the expression

ρ0,1(X, Y )ρ0,1(X̃, Ỹ )γ̂−1(X, X̃, Y )

is the following exponential,

exp
(
−
∫ 1

0
(Ys − Y0)

∗∇h(Xs) dWs −
∫ 1

0
(Ys − Y0)

∗∇h(X̃s) dW̃s

)
×

× exp
(
+
∫ 1

0
(Ys − Y0)

∗∇h(Xs) dWs +
∫ 1

0
(Ys − Y0)

∗∇h(X̃s) dW̃s

)
≡ 1.

In the other words, the stochastic part here vanishes, providing a multiple which
equals one. The rest is bounded on the set {sup0≤s≤1 |Ys − Y0| ≤ L} (remind that
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we are working with the system (20) under the measure P̂, so that Ỹ does not
show up here):

exp(h(X1)(Y1 − Y0)−
1

2

∫ 1

0

(Ys − Y0)∆h(Xs) ds−
1

2

∫ 1

0

‖(Ys − Y0)
∗∇h(Xs)‖2 ds)

× exp(

∫ 1

0

{
1

2
‖(Ys − Y0)

∗∇h(Xs)‖2 − (Ys − Y0)
∗∇h(Xs)b(Xs)

}
ds)

× exp(h(X̃1)(Y1 − Y0)−
1

2

∫ 1

0

(Ys − Y0)∆h(X̃s) ds−
1

2

∫ 1

0

‖(Ys − Y0)
∗∇h(X̃s)‖2 ds)

× exp(

∫ 1

0

{
1

2
‖(Ys − Y0)

∗∇h(X̃s)‖2 − (Ys − Y0)
∗∇h(X̃s)b(X̃s)

}
ds) ≤ C(L,R) <∞,

due to the assumptions; we also have a similar lower bound for the left hand side,
≥ C(L,R)−1, which is not used here but will be useful in the sequel. Hence, we
have the following bound,

Êx,x̃

(
1(D0 ∩ {(X1, X̃1) ∈ D})ρ0,1(X, Y )ρ0,1(X̃, Ỹ )γ̂−1(X, X̃, Y ) | Y, Ỹ

)
≤ C(L,R)Êx,x̃

(
1(D0 ∩ {(X1, X̃1) ∈ D}) | Y, Ỹ

)
= C(L,R)Êx,x̃

(
1(D0 ∩ {(X1, X̃1) ∈ D}) | Y

)
,

the last step because Ỹ is independent of X, X̃, Y under P̂, due to the system (20).

Here is it reasonable to modify slightly the definition of D0. Indeed, the first
two requirements, |X0| ≤ R and |X̃0| ≤ R are not important, and can be dropped
without any harm to the meaning, because they are restrictions on x and x̃. Now
we will allow any values x, x̃ ∈ R2d, but will use the conclusions related only to x, x̃
separated from the boundary, as this is needed for Harnack’s inequality. Hence,
let

D′
0 :=

{
max

(
sup

0≤s≤1
|Xs|, sup

0≤s≤1
|X̃s|

)
< R + 1

}
.

Then, for |x|, |x̃| ≤ R, we have an identity,

Êx,x̃

(
1(D0 ∩ {(X1, X̃1) ∈ D}) | Y

)
= Êx,x̃

(
1(D′

0 ∩ {(X1, X̃1) ∈ D}) | Y
)
.

We are going to show the inequality for regular conditional measures,

Êx,x̃

(
1(D′

0 ∩ {(X1, X̃1) ∈ D}) | Y
)

(23)

≤ C(L,R)Êx′,x̃′

(
1(D′

0 ∩ {(X1, X̃1) ∈ D}) | Y
)
,
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on the set {sup0≤s≤1 |Ys − Y0| ≤ L}. To this aim, it suffices to show a similar
inequality with any non-negative continuous bounded function ϕ, or even for any
non-negative ϕ ∈ C2

b ,

Êx,x̃

(
1(D′

0)ϕ(X1, X̃1) | Y
)

(24)

≤ C(L,R)Êx′,x̃′

(
1(D′

0)ϕ (X1, X̃1) | Y
)
.

The expression Êx,x̃

(
1(D′

0)ϕ(X1, X̃1)) | Y
)

can be treated as a solution uψ(s, x, x̃)

at s = 0 of a linear parabolic PDE with a non-homogeneous first order term
determined by the random process Y ,

us +
1

2
uxx +

1

2
ux̃x̃ + (b(x)− (ψs − ψ0)

∗∇h(x))ux

+(b(x̃)− (ψs − ψ0)
∗∇h(x̃))ux̃ = 0, max(|x|, |x̃|) < R + 1, 0 ≤ s < 1,

(25)

u(1, x, x̃) = ϕ(x, x̃), & u(s, x, x̃) = 0, 0 < s < 1, max(|x|, |x̃| = R + 1),

with a replacement ψ = Y ; hence, we can use the notation uY . In all cases the
curve (ψs, 0 ≤ s ≤ 1) will be considered continuous; in particular, it is bounded.
For every ϕ ∈ C2

b , there is a unique solution of the equation (25) in the Sobolev
class of functions (see [16]); for ϕ ∈ Cb only this is also correct, see [23]). Notice
that discontinuous initial functions ϕ could be used, too, however, PDE references
are simpler with ϕ smooth. Let us justify the equality,

Ê0,x,x̃

(
1(D′

0)ϕ(X1, X̃1) | Y
)

= uY (0, x, x̃). (26)

Here the right hand side in (26) is just a solution of the equation (25) with a
substitution ψ = Y .

The almost sure equality (26) is intuitively evident, given that Y is solved
independently of X and X̃, and that Y and (X, X̃) are independent under Pζ .
However, for the completeness of presentation we prefer to give an independent
justification below. Notice that the most natural way, – to fix Y , use Itô – Krylov’s
formula and take conditional expectation, – requires some technical measurability
lemmae for solutions of SDEs which depend on the trajectory Y as a parameter,
as well as SDE uniqueness theorems in the sense of ODEs which we decided to
avoid. By the way, if we used the original measure, we would not get a linear PDE
as above; this shows that despite the intuitive evidence, some precautions should
be made at this point.

Notice that due to the a priori bounds for solutions of PDEs [16], the function
uψ depends on the trajectory ψ continuously, and this will be used directly. Let
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us take any bounded continuous function g(·) defined on C[0, 1], and show that

Ê0,x,x̃g(Y )Ê0,x,x̃

(
1(D′

0)ϕ(X1, X̃1) | Y
)

= Ê0,x,x̃g(Y )uY (0, x, x̃), (27)

which is another form of the equality (26). One more version is,

Ê0,x,x̃g(Y )1(D′
0)ϕ(X1, X̃1) = Ê0,x,x̃g(Y )uY (0, x, x̃), (28)

Consider the exponential,

ζ = ζ(Y ) := exp

(∫ 1

0

(Ys − Y0)
∗∇h(Xs)dWs +

∫ 1

0

(Ys − Y0)
∗∇h(X̃s)dW̃s

−1

2

∫ 1

0

|(Ys − Y0)
∗∇h(Xs)|2 + |(Ys − Y0)

∗∇h(X̃s)|2)ds
)
,

and the measure
dPζ/dP̂(ω) := ζ(Y ).

Then, (28) may be rewritten as

Eζ
0,x,x̃ζ

−1(Y )g(Y )1(D′
0)ϕ(X1, X̃1) = Eζ

0,x,x̃ζ
−1(Y )g(Y )uY (0, x, x̃), (29)

Under Pζ , the system becomes
dXs = b(Xs) ds+ dWs, X0 = x,
dYs = dBs,

dX̃s = b(X̃s) ds+ dW̃s,

dỸs = dB̃s,

as usual, with new Wiener processes.

3. Next argument is to use an epsilon net in order to approximate Y , the latter
being a Wiener process under both P̂ and Pζ . Due to the properties of a d-
dimensional Wiener process, and Ulam’s Theorem on measure tightness, given
any ε′ > 0, we can find a compact K ⊂ C[0, 1], such that

Pζ(Y − Y0 ∈ K) > 1− ε′. (30)

Now, with any ε > 0, let us choose some ε-net, {ψi, 1 ≤ i ≤ N} for this compact
K. Denote by induction,

U1 := {ψ : ‖ψ − ψ1‖C < ε};
U2 := {ψ : ‖ψ − ψ2‖C < ε} \ U1;

. . .

Uk+1 := {ψ : ‖ψ − ψk+1‖C < ε} \ Uk;

. . .
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Then, since Y and (X, X̃) are independent under Pζ , we have,

Eζ
0,x,x̃ζ

−1(Y )g(Y )1(D′
0 ∩ {(X1, X̃1) ∈ D})

=
∑
i

Eζ
0,x,x̃1(Y ∈ U i)ζ−1(Y )g(Y )1(D′

0 ∩ {(X1, X̃1) ∈ D})

+Eζ
0,x,x̃1(Y 6∈

⋃
i

U i)ζ−1(Y )g(Y )1(D′
0 ∩ {(X1, X̃1) ∈ D})

≈
∑
i

Eζ
0,x,x̃1(Y ∈ U i)ζ−1(ψi)g(ψi)1(D′

0 ∩ {(X1, X̃1) ∈ D}),

the latter approximative equality is claimed as ε→ 0. Indeed, we estimate,

|
∑
i

Eζ
0,x,x̃1(Y ∈ U i)ζ−1(Y )g(Y )1(D′

0 ∩ {(X1, X̃1) ∈ D})

+Eζ
0,x,x̃1(Y 6∈

⋃
i

U i)ζ−1(Y )g(Y )1(D′
0 ∩ {(X1, X̃1) ∈ D})

−
∑
i

Eζ
0,x,x̃1(Y ∈ U i)ζ−1(ψi)g(ψi)1(D′

0 ∩ {(X1, X̃1) ∈ D}) |

≤ Eζ
0,x,x̃1(Y 6∈

⋃
i

U i)ζ−1(Y )g(Y )1(D′
0 ∩ {(X1, X̃1) ∈ D})

+
∑
i

Eζ
0,x,x̃1(Y ∈ U i)|ζ−1(Y )g(Y )− ζ−1(ψi)g(ψi)|1(D′

0 ∩ {(X1, X̃1) ∈ D}).

Here the term

Eζ
0,x,x̃1(Y 6∈

⋃
i

U i)ζ−1(Y )g(Y )1(D′
0 ∩ {(X1, X̃1) ∈ D})

is small due to (30). Moreover, since g is bounded and continuous in C[0, 1], it
suffices to estimate, for example, the expression,∑

i

Eζ
0,x,x̃1(Y ∈ U i)|ζ−1(Y )− ζ−1(ψi)|1(D′

0 ∩ {(X1, X̃1) ∈ D}),

and, more than that, the last indicator may be dropped here while estimating from
above. We have,∑
i

Eζ
0,x,x̃1(Y ∈ U i)|ζ−1(Y )− ζ−1(ψi)| =

∑
i

Eζ
0,x,x̃1(Y ∈ U i)ζ−1(Y )|1− ζ−1(ψi) ζ(Y )|

=
∑
i

Eζ
0,x,x̃1(Y ∈ U i)ζ−1(Y )Eζ

0,x,x̃

(∣∣∣∣1− exp

(
1∫
0

(Ys − Y0)
∗∇h(Xs)dWs

+
1∫
0

(Ys − Y0)
∗∇h(X̃s)dW̃s −

1∫
0

(ψis − ψi0)∗∇h(Xs)dWs −
1∫
0

(ψis − ψi0)∗∇h(X̃s)dW̃s

−1
2

1∫
0

(|(Ys − Y0)
∗∇h(Xs)|2 − |(ψis − ψi0)∗∇h(Xs)|2

+|(Ys − Y0)∇h(X̃s)|2 − |(ψis − ψi0)∗∇h(X̃s)|2) ds
)∣∣∣∣ | Y) .
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Here, using the fact that under Pζ , the processes Y and (X, X̃,W, W̃ ) are inde-
pendent, we can integrate with respect to W and W̃ , treating Y as a non-random
trajectory. Let us apply the Cauchy – Bouniakovsky – Schwarz (CBS) inequal-
ity for conditional expectations, and then estimate this conditional expectation
squared : Eζ

0,x,x̃

∣∣∣∣∣∣1− exp

 1∫
0

(Ys − Y0)
∗∇h(Xs)dWs

+

1∫
0

(Ys − Y0)
∗∇h(X̃s)dW̃s −

1∫
0

(ψis − ψi0)∗∇h(Xs)dWs −
1∫

0

(ψis − ψi0)∗∇h(X̃s)dW̃s

−1

2

1∫
0

( |(Ys − Y0)
∗∇h(Xs)|2 − |(ψis − ψi0)∗∇h(Xs)|2

+|(Ys − Y0)∇h(X̃s)|2 − |(ψis − ψi0)∗∇h(X̃s)|2) ds

∣∣∣∣∣∣ | Y
2

≤ Eζ
0,x,x̃

∣∣∣∣∣∣1− exp

 1∫
0

(Ys − Y0)
∗∇h(Xs)dWs +

∫ 1

0

(Ys − Y0)
∗∇h(X̃s)dW̃s

−
1∫

0

(ψis − ψi0)∗∇h(Xs)dWs −
1∫

0

(ψis − ψi0)∗∇h(X̃s) dW̃s

−1

2

1∫
0

( |(Ys − Y0)
∗∇h(Xs)|2 − |(ψis − ψi0)∗∇h(Xs)|2

+|(Ys − Y0)∇h(X̃s)|2 − |(ψis − ψi0)∗∇h(X̃s)|2) ds

∣∣∣∣∣∣
2

| Y

 .

= 1 + Eζ
0,x,x̃

exp

 1∫
0

2(Ys − Y0)
∗∇h(Xs)dWs +

∫ 1

0

2(Ys − Y0)
∗∇h(X̃s)dW̃s

−
1∫

0

2(ψis − ψi0)∗∇h(Xs)dWs −
∫ 1

0

2(ψis − ψi0)∗∇h(X̃s)dW̃s

−
1∫

0

( |(Ys − Y0)
∗∇h(Xs)|2 − |(ψis − ψi0)∗∇h(Xs)|2
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+|(Ys − Y0)∇h(X̃s)|2 − |(ψis − ψi0)∗∇h(X̃s)|2) ds

 | Y


−2Eζ
0,x,x̃ exp

 1∫
0

(Ys − Y0)
∗∇h(Xs)dWs +

∫ 1

0

(Ys − Y0)
∗∇h(X̃s)dW̃s

−
1∫

0

(ψis − ψi0)∗∇h(Xs)dWs −
1∫

0

(ψis − ψi0)∗∇h(X̃s)dW̃s

−1

2

1∫
0

( |(Ys − Y0)
∗∇h(Xs)|2 − |(ψis − ψi0)∗∇h(Xs)|2

+|(Ys − Y0)∇h(X̃s)|2 − |(ψis − ψi0)∗∇h(X̃s)|2) ds

 | Y
 .

Clearly, on the set Y ∈ U i, both expectations in the latter expression are uniformly
close to one, so that the whole sum is of the order oε(1). Thus, the whole expres-
sion is uniformly close to zero. More precisely, by using exponential martingale
properties, we easily get,

oε(1) is of the order ε. (31)

This shows Hölder continuity of the order 1/2 of each term of the sum∑
i

Eζ
0,x,x̃1(Y ∈ U i)ζ−1(ψi)g(ψi)1(D′

0 ∩ {(X1, X̃1) ∈ D}) | (32)

with respect to ψ. We notice that the same arguments provide us Hölder continuity
of conditional expectations mentioned in the beginning of the proof. Let us show
(31). Indeed, for generic adapted processes ys, zs, 0 ≤ s ≤ 1, under a condition
sups(|ys|+ |zs|) ≤ ε <∞, with ε > 0 small, we have, with a d-dimensional Wiener
process W , E

exp

 1∫
0

z∗sdWs −
1∫

0

ys ds

1/2

=

E

exp

 1∫
0

z∗sdWs ∓
1∫

0

|zs|2 ds

− 1∫
0

ys ds

1/2

≤

E exp

 1∫
0

2z∗sdWs − 2

1∫
0

|zs|2 ds

1/4 E exp

 1∫
0

2(|zs|2 − ys) ds

1/4

≤ exp(Cε) ∼ 1 + Cε.
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Similarly, due to the version of the same inequality that could be called CBS
inequality from below, Eξη ≥ Eξ1/2(Eη−1)−1/2 for ξ, η > 0, there is a lower bound,

E

exp

 1∫
0

z∗sdWs −
1∫

0

ys ds


= E

exp

− 1∫
0

z∗sdWs ±
1

2

1∫
0

|zs|2 ds

− 1∫
0

ys ds



≥

E exp

 1∫
0

z∗sdWs −
1

2

1∫
0

|zs|2 ds

−1/2 E exp

 1∫
0

(−1

4
|zs|2 −

1

2
ys) ds


≥ exp(−Cε) ∼ 1− Cε.

Here in both cases ∼ means equivalence after we subtract 1; we have used

ξ = exp

−1

2

1∫
0

|zs|2 ds−
1∫

0

ys ds

 , and η = exp

 1∫
0

z∗sdWs +
1

2

1∫
0

|zs|2 ds

 .

In other words, the difference between E exp

(
1∫
0

z∗sdWs −
1∫
0

ys ds

)
and 1 is of the

order ε, at most. Hence, the value

Eζ
0,x,x̃

∣∣∣∣∣∣1− exp

 1∫
0

(Ys − Y0)
∗∇h(Xs)dWs

+

1∫
0

(Ys − Y0)
∗∇h(X̃s)dW̃s −

1∫
0

(ψis − ψi0)∗∇h(Xs)dWs −
1∫

0

(ψis − ψi0)∗∇h(X̃s)dW̃s

−1

2

1∫
0

((Ys − Y0)− (ψis − ψi0))∗∇h(Xs)|2 + |((Ys − Y0)− (ψis − ψi0))∗∇h(X̃s)|2)ds

∣∣∣∣∣∣ | Y


is, at most, of the order ε, which shows (31). Notice that using Hölder’s inequality
instead of CBS, it is possible to improve it up to any order less than one; but for
our goal any positive order suffices.

To establish continuity of the right hand side of (29), we will use an approach
based on PDE estimates, also mentioned in the beginning of the proof.

By virtue of [16, Theorem 4.9.1], for every ψ with ‖ψ‖C ≤ K, there exists a
unique solution uψ of the equation (25), in the class

C([0, 1]×B⊗2
R+1) ∩ ∩p>1W

1,2
p ([0, 1]×B⊗2

R+1),
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where B⊗2
R+1 = {(x, x̃) : |x| ≤ R + 1, |x̃| ≤ R + 1}. In particular, for every p > 0,

uψx ∈ Lp,

moreover, for a given K, – an upper bound for ‖ψ‖C , – the norms ‖uψx‖Lp are
uniformly bounded. Hence, for any two trajectories ψ, ψ′ with the same bound K,
the difference v = uψ − uψ′ satisfies the equation

Lψv = −(ψt − ψ′t)uψ
′

x ,

with a zero boundary and initial values. If we treat here the right hand side as a
given vector-function uψ

′
x ∈ ∩p>1Lp with a small multiple −(ψt−ψ′t), the Theorem

4.9.1 [16] provides the a priori bound,

‖uψ − uψ′‖W 1,2
p
≤ N‖ψ − ψ′‖C .

Therefore, due to Sobolev’s embedding theorems [16, Lemma 2.3.3], see also, [16,
Corollary to the Theorem 4.9.1], we conclude that there exist N,α > 0 (here N
is, generally speaking, different, and α could be chosen arbitrarily close to 1 such
that

‖uψ − uψ′‖C ≤ N‖ψ − ψ′‖αC .
Hence, we also have,

Eζζ−1(Y )g(Y )uY (0, x, x̃)

=
∑
i

Eζ1(Y ∈ U i)ζ−1(Y )g(Y )uY (0, x, x̃)

+Eζ1(Y 6∈
⋃
i

U i)ζ−1(Y )g(Y )uY (0, x, x̃)

≈
∑
i

Eζ1(Y ∈ U i)ζ−1(ψi)g(ψi)uψ
i

(0, x, x̃).

The multiples g(ψi) and Eζ
0,x,x̃1(Y ∈ U i) in each term of the two sums,∑

i

Eζ1(Y ∈ U i)Eζ
0,x,x̃ζ

−1(ψi)g(ψi)uψ
i

(0, x, x̃),

and (32), are the same, therefore, to prove (29) and, hence, (27), it suffices to show
that

Eζ
0,x,x̃ζ

−1(ψi)1(D′
0)ϕ(X1, X̃1) = uψ

i

(0, x, x̃)Eζζ−1(ψi). (33)

Since Eζζ−1(ψi) = 1, the right hand side is simply the solution of the equation

us +
1

2
∆xxu+

1

2
∆x̃x̃u+ (b(x)− (ψis − ψi0)∇h(x))∇u

+(b(x̃)− (ψis − ψi0)∇h(x̃))∇u = 0, 0 ≤ s < 1, max(|x|, |x̃| < R + 1),

(34)

u(1, x, x̃) = ϕ(x, x̃), & u(s, x, x̃) = 0, ∀ 0 ≤ s < 1, max(|x|, |x̃| = R + 1),
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in the corresponding Sobolev function class. The boundary conditions are also
evident. But the fact that the left hand side of (33) satisfies (34) is well known,
see, e.g., [11].

Thus, (26) holds true (a.s.). Next, all coefficients of the equation (20) and,
hence, (25) are bounded, and the Harnack inequality, see [12], gives us,

uY (0, x, x̃) ≤ C(L,R)uY (0, x′, x̃′),

with a constant C(L,R) which depends only on the bounds on coefficients, but
not on D. This can be rewritten exactly as (24), or, equivalently, as (23).

The denominator common for (21) and (22) can be estimated as follows,

Ê x̃,x

(
γ̂−1(X, X̃, Y ) | Y

)
= Ê x̃,x

(
exp(+

∫ 1

0

(Ys − Y0)
∗∇h(Xs) dWs +

∫ 1

0

(Ys − Y0)
∗∇h(X̃s) dW̃s)

× exp(+
1

2

∫ 1

0

‖(Ys − Y0)
∗∇h(Xs)‖2 ds+

1

2

∫ 1

0

‖(Ys − Y0)
∗∇h(X̃s)‖2 ds) | Y, Ỹ

)

= Ê x̃,x

(
exp(+

∫ 1

0

(Ys − Y0)
∗∇h(Xs) dWs +

∫ 1

0

(Ys − Y0)
∗∇h(X̃s) dW̃s)

× exp(−1

2

∫ 1

0

‖(Ys − Y0)
∗∇h(Xs)‖2 ds−

1

2

∫ 1

0

‖(Ys − Y0)
∗∇h(X̃s)‖2 ds)

× exp(+

∫ 1

0

‖(Ys − Y0)
∗∇h(Xs)‖2 ds+

∫ 1

0

‖(Ys − Y0)
∗∇h(X̃s)‖2 ds) | Y, Ỹ

)
.

On the set {∆0(Y ) ≤ L}, here the latter exponential possesses the bounds,

C−1 ≤ exp(+

∫ 1

0

‖(Ys − Y0)
∗∇h(Xs)‖2 ds+

∫ 1

0

‖(Ys − Y0)
∗∇h(X̃s)‖2 ds) ≤ C,

with some C = C(L,R).

Combining all representations and inequalities after the bounds (21) and (22),
we finally get, on the set ∆0(Y ) = sup0≤s≤1 |Ys − Y0| ≤ L,

sup
x,x̃∈BR

Eγ
x,x̃

(
1(D0 ∩ {(X1, X̃1) ∈ D})ρ0,1(X,Y )ρ0,1(X̃, Y ) | Y

)
≤ C(L,R) inf

x′,x̃′∈BR

Eγ
x′,x̃′

(
1(D0 ∩ {(X1, X̃1) ∈ D})ρ0,1(X, Y )ρ0,1(X̃, Y ) | Y

)
, (35)
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as required. This is a so-called “mixing condition” in the sense of [17] for con-
ditional measures, or (conditional) kernels, and, due to the Proposition 3.9 [17],

this bound implies (16), as required, with some πR(L) ≤ C(L,R)2 − 1
C(L,R)2 + 1

, where

C(L,R) is a constant from (35). For the sake of completeness, we show the cal-
culus that leads to (35). For any |x|, |x′|, |x̃|, |x̃′| ≤ R, and always on the set
∆0(Y ) = sup0≤s≤1 |Ys − Y0| ≤ L,

Eγ
x,x̃

(
1(D0 ∩ {(X1, X̃1) ∈ D})ρ0,1(X, Y )ρ0,1(X̃, Y ) | Y

)

=
Êx,x̃

(
1(D0 ∩ {(X1, X̃1) ∈ D})ρ0,1(X, Y )ρ0,1(X̃, Y )γ̂−1 | Y

)
Êx,x̃ (γ̂−1 | Y )

≤ C(L,R)Êx,x̃

(
1(D0 ∩ {(X1, X̃1) ∈ D}) | Y

)
≤ C(L,R)Êx′,x̃′

(
1(D0 ∩ {(X1, X̃1) ∈ D}) | Y

)
,

and similarly,

Eγ
x,x̃

(
1(D0 ∩ {(X1, X̃1) ∈ D})ρ0,1(X,Y )ρ0,1(X̃, Y ) | Y

)

=
Êx,x̃

(
1(D0 ∩ {(X1, X̃1) ∈ D})ρ0,1(X,Y )ρ0,1(X̃, Y )γ̂−1 | Y

)
Êx,x̃ (γ̂−1 | Y )

≥ C(L,R)−1 Êx,x̃

(
1(D0 ∩ {(X1, X̃1) ∈ D}) | Y

)
≥ C(L,R)−1 Êx′,x̃′

(
1(D0 ∩ {(X1, X̃1) ∈ D}) | Y

)
.

Thus, indeed, (35) follows.

4. Denote by #1(δ) the (non-random) number of ones in the vector δ, and
by #1(δ, L) the (random) number of those of them, say, with an index “i”, which
enjoys the property ∆i(Y ) ≤ L on the corresponding unit intervals. Then, by
induction from n to 2, we get from (16),

h((µ0, ν0)Ŝ
Y ;R;δ;µ0,ν0
t , (ν0, µ0)Ŝ

Y ;R;δ;µ0,ν0
t ) ≡ h

(
(µ0, ν0)S

Y ;R;δ
t , (ν0, µ0)S

Y ;R;δ
t

)
= h

(
(µ0, ν0)

n−1∏
i=0

SY ;R;δ
i:i+1 , (ν0, µ0)

n−1∏
i=0

SY ;R;δ
i:i+1

)
≤ Cπ

(#1(δ,L)−2)+
R . (36)

We use the fact that even if the starting measures µ0 and ν0 are not comparable in
the sense of the Birkhoff metric, they become comparable after the first application
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of the inequality (35). So, we may lose up to two units from #1(δ, L) in the
exponential bound. From (13) and (36), it follows that

Eµ0‖µ0S̄
Y ;µ0
n − ν0S̄

Y ;ν0
n ‖TV ≤ C Eµ0,ν0

∑
δ∈∆ π

(#1(δ,L)−2)+
R eY ;δ;µ0,ν0

n

= C Eµ0,ν0

∑
#1(δ,L)≥εn π

#1(δ,L)−2
R eY ;δ;µ0,ν0

n

+C Eµ0,ν0

∑
#1(δ,L)<εn π

(#1(δ,L)−2)+
R eY ;δ;µ0,ν0

n . (37)

Notice that whatever ε > 0 (assuming only εn ≥ 2), we have,

Eµ0,ν0

∑
δ:#1(δ,L)≥εn π

#1(δ,L)−2
R eY ;δ;µ0,ν0

n

≤ Eµ0,ν0π
εn−2
R

∑
δ:#1(δ,L)≥εn Eµ0,ν0(1δ(X, Y ) | Y, Ỹ ) |Ỹ=Y

= πR(L)εn−2Eµ0,ν0 Eµ0,ν0(
⋃
δ: #1(δ,L)≥εn 1δ(X, Y ) | Y, Ỹ ) |Ỹ=Y≤ πR(L)εn−2. (38)

In the second sum for the terms with #1(δ, L) < 2 we will not use the Birkhoff
metric at all, nor will we use contraction in that metric in such a case. In particular,
the question of comparability of µ0 and ν0 will not be important.

5. Hence, our main task remains to estimate the second term of the sum,

Eµ0,ν0

∑
δ:#1(δ,L)<εn

π
(#1(δ,L)−2)+
R

(
Eµ0,ν0(1δ(X, Y ) | Y, Ỹ ) |Ỹ=Y

)
≤ Eµ0,ν0

∑
δ:#1(δ,L)<εn

(
Eµ0,ν0(1δ(X, Y ) | Y, Ỹ ) |Ỹ=Y

)
.

In turn, we will split this sum into two parts, as follows. Let ε′ > ε. Then,

Eµ0,ν0

∑
δ:#1(δ,L)<εn

(
Eµ0,ν0(1δ(X, Y ) | Y, Ỹ ) |Ỹ=Y

)
= Eµ0,ν0

∑
δ:#1(δ,L)<εn,#1(δ)<ε′n

(
Eµ0,ν0(1δ(X,Y ) | Y, Ỹ ) |Ỹ=Y

)
+Eµ0,ν0

∑
δ: #1(δ,L)<εn,#1(δ)≥ε′n

(
Eµ0,ν0(1δ(X, Y ) | Y, Ỹ ) |Ỹ=Y

)
≤ Eµ0,ν0

∑
δ:#1(δ)<ε′n

(
Eµ0,ν0(1δ(X, Y ) | Y, Ỹ ) |Ỹ=Y

)
+Eµ0,ν0

∑
δ:#1(δ,L)<εn,#1(δ)≥ε′n 1. (39)
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Let us show how to tackle the second term in (39). We fix any ε satisfying
0 < ε < ε′. Denote pL = P(sup0≤s≤1 |Ys − Y0| ≤ L), and qL = 1 − pL; notice that
pL ≈ 1, if L is large enough. We have,

Eµ0,ν0

∑
δ: #1(δ,L)<εn,#1(δ)≥ε′n 1

= Pµ0,ν0 (#1(δ, L) < εn, #1(δ) ≥ ε′n)

= Pµ0,ν0 (there is at least (ε′ − ε)n unit intervals where ∆i(Y ) > L)

≤
∑n

k=(ε′−ε)nC
k
nq

k
Lp

n−k
L ≤ (2 qε

′−ε
L )n, (40)

which can be made less than any exponential by choosing L large enough. Notice
that up to this point, the proof of the Theorem 2 will be identical.

6. Let us estimate the first term in (39). We have,∑
δ:#1(δ)<εn

Eµ0

(
Eµ0,ν0(1δ(X, X̃) | Y, Ỹ )

∣∣∣
Ỹ=Y

)

= Eµ0

 ∑
δ:#1(δ)<εn

Eµ0,ν0(1δ(X, X̃) | Y, Ỹ )
∣∣∣
Ỹ=Y


= Eµ0

Eµ0,ν0(
∑

δ:#1(δ)<εn

1δ(X, X̃) | Y, Ỹ )
∣∣∣
Ỹ=Y

 . (41)

Let us introduce some new notations:

#1(X)R :=
n−1∑
k=0

1(|Xk| ≤ R, sup
k≤s≤1

|Xs| < R + 1),

#0(X)R := n−#1(X)R.

By the Dirichlet principle we notice,

1(#1(X)R ≥
1 + ε

2
n, #1(X̃)R ≥

1 + ε

2
n)

∑
δ: #1(δ)<εn

1δ(X, X̃) = 0, (42)

Indeed, notice that
∑

δ:#1(δ)<εn 1δ(X, X̃) = 1(
∑n−1

i=0 1(Di) < εn). If #1(X)R =

n, #1(X̃)R = n, then
∑n−1

i=0 1(Di) = n. If we decrease either of the terms
#1(X)R = n or #1(X̃)R = n by one, this can decrease the value

∑n−1
i=0 1(Di)

at most by one. Therefore, to make this sum less than εn, we must have
#0(X)R + #0(X̃)R > n− εn, and so, either #0(X)R > (1− ε)n/2, or #0(X̃)R >
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(1− ε)n/2. But both inequalities contradict #1(X)R ≥ 1+ε
2
n, & #1(X̃)R ≥ 1+ε

2
n,

which implies (42), as required.

Hence, we get,

Eµ0

Eµ0,ν0(
∑

δ:#1(δ)<εn

1δ(X, X̃) | Y, Ỹ )
∣∣∣
Ỹ=Y


≤ Eµ0

(
Eµ0,ν0

(
1(#1(X)R <

1 + ε

2
n) | Y, Ỹ

) ∣∣∣
Ỹ=Y

)
+Eµ0

(
Eµ0,ν0

(
1(#1(X̃)R <

1 + ε

2
n) | Y, Ỹ

) ∣∣∣
Ỹ=Y

)
.

= Eµ0

(
1(Eµ0

(
1(#1(X)R <

1 + ε

2
n) | Y

))
(43)

+Eµ0

(
Eν0

(
1(#1(X̃)R <

1 + ε

2
n) | Ỹ

) ∣∣∣
Ỹ=Y

)
,

becauseX does not depend on Ỹ , nor X̃ depends on Y . Remind that we always use
versions of conditional expectations continuous with respect to Y, Ỹ . We estimate,

Eµ0

(
Eµ0

(
1(#1(X)R <

1 + ε

2
n) | Y

))
= Eµ01(#1(X)R <

1 + ε

2
n).

Next, we estimate the other term, with the help of (A3), because Eµ0F (X, Y ) ≤
CEν0F (X, Y ), ∀F ≥ 0, and Eν0F (X, Y ) = Eν0F (X̃, Ỹ ),

Eµ0

(
Eν0

(
1(#1(X̃)R <

1 + ε

2
n) | Ỹ

) ∣∣∣
Ỹ=Y

)
≤ C Eν0

(
Eν0

(
1(#1(X̃)R <

1 + ε

2
n) | Ỹ

) ∣∣∣
Ỹ=Y

)
= C Eν0

(
1(#1(X̃)R <

1 + ε

2
n)

)
,

7. Due to the bounds which easily follow from [24] and [25], the latter expec-
tation possesses an appropriate bound, exponential or polynomial, depending on
the value p, if R is chosen large enough, namely,

Eµ01(#1(X)R < ε′′n) ≤
{
Cmn

−m, p = 1, ∀ m > 0,
C exp(−cn), p = 0.

(44)

The same inequality holds true for ν0 and X̃, also. This follows from the hitting
time estimates for τ̂ = inf(t ≥ 0 : |Xt| ≤ R), from [24] and [25], – see some details
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about a reduction to a simple one-dimensional diffusion below in the proof of the
Theorem 2, –{

Exτ̂
k ≤ Cm(1 + |x|m) (∀m > 2k) (p = 1, ∀k > 0),

Ex exp(ατ̂) ≤ C exp(c|x|) (∃C, c, α > 0) (p = 0),
(45)

due to the bound Pµ0(#1(X)R < ε′′n) ≤ Pµ0(τ̂ε′′n > n), – where τ̂1 = τ̂ , and
by induction τ̂n+1 := inf(t ≥ τ̂n : |Xt| ≤ R), n ≥ 1, – and due to exponential
Chebyshev’s inequality in the case p = 0, and by standard inequalities for
semi-martingales in the case p = 1. Indeed, by virtue of (45), we have by
induction, in each case:

[p = 0] We have,

Px(τ̂ε′′n > n) ≤ exp(−αn+ ε′′n lnC + c|x|),

where the value C := sup|x|≤R E exp(ατ̂) can be done arbitrarily close to one, by
choosing R large enough. This provides an exponential bound for the probability
Px(τ̂ε′′n > n).

[p = 1] Let ε′′ < ε′′′ < 1, and let R be large enough, so that ε′′ sup|x′|≤R Ex′((τ̂k−
τ̂k−1) | Xτ̂k−1

) < ε′′′ < 1. As it was proved in [25], with any k > 0 and any
m > 2k > 0,

Px(τ̂ε′′n > n) = Px(
ε′′n∑
i=1

(τ̂k − τ̂k−1) > n) ≤ Cm(1 + |x|m)((1− ε′′′)n)−knk/2.

This is a consequence of the simple fact that the moment

Ex

(∑ε′′n
i=1(τ̂k − τ̂k−1)− E(τ̂k − τ̂k−1 | Fτ̂k−1

)
)k

grows not faster than nk/2. The in-

equality gives any polynomial bound for the probability Px(τ̂ε′′n > n). Hence, in
both cases we have the bound (44).

8. Due to (43) and (44) we get estimate for the expression in (41):

Eµ0

Eµ0,ν0(
∑

δ:#1(δ)<εn

1δ(X, X̃) | Y, Ỹ )
∣∣∣
Ỹ=Y

 ≤ { Cmn
−m, p = 1,

C exp(−cn), p = 0.

for all m > 0 in the case p = 1. Combining this with the earlier inequalities (37) –
(39), and (40), we obtain the final estimate, (10), in the case p = 0 possibly with
a new constant c in the exponential. The Theorem 1 is proved.

4 Proof of Theorem 2

1 (6). Remind that we continue the proof starting from the estimates (39)–(40),
and our chosen enumeration style of its steps ((1 (6)), (2 (7)), etc.) refers to
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this point. In particular, the assumption h ∈ C2 has been already used. Remind
also that now we cannot use the assumption (A3), and it was not used earlier.

Let us apply the formula (8) to the combined process (X, Y, X̃, Ỹ ):

Eµ0,ν0(1δ(X, X̃) | Y, Ỹ )

=
Eγ
µ0,ν0

(
1δ(X, X̃)γ−1(X, Y ; X̃, Ỹ ) | Y, Ỹ

)
Eγ
µ0,ν0

(γ−1 | Y, Ỹ )

. (46)

Next, due to the Cauchy–Bouniakovsky–Schwarz inequality, for the conditional
expectation we estimate the numerator in (46),

Eγ
µ0,ν0

(
1δ(X, X̃)γ−1 | Y, Ỹ

)
≤
(

Eγ
µ0,ν0

(
1δ(X, X̃) | Y, Ỹ

))1/2 (
Eγ
µ0,ν0

(
γ−2 | Y, Ỹ

))1/2

.

The denominator will be treated separately.
The further plan uses the following idea. Firstly, under Pγ, the couples of

processes (X, X̃) and (Y, Ỹ ) are independent on [0, t], – in fact, here even all four
components are independent, – so that

Eγ
µ0,ν0

(
1δ(X, X̃) | Y, Ỹ

)
= Eγ

µ0,ν0
1δ(X, X̃) = Eµ0,ν01δ(X, X̃),

which is a non-random value. Secondly, we will show that the expectation of the
second factor divided by the denominator, with respect to P (not Pγ),

Eµ0

(
Eγ
µ0,ν0

(
γ−2 | Y, Ỹ

)
|Ỹ=Y

)1/2

Eγ
µ0,ν0

(γ−1 | Y, Ỹ ) |Ỹ=Y

= Eγ
µ0
γ−1

(
Eγ
µ0,ν0

(
γ−2 | Y, Ỹ

)
|Ỹ=Y

)1/2

Eγ
µ0,ν0

(γ−1 | Y, Ỹ ) |Ỹ=Y

, (47)

does not exceed some exponential exp(Ct), with a constant C that depends only
on ‖h‖B but not on R. Finally, it will be shown that the expression Eγ

µ0,ν0
1δ(X, Y )

can be made smaller that exp(−Ct) with any C > 0, by an appropriate choice of
R, if #1(δ, L) < εn. Hence, we will get an exponential bound for the first part of
the sum (37). Let us start this programme.

2 (7). Denominator in (47). We are going to estimate it from below. We have,

Eγ
µ0,ν0

(γ−1 | Y, Ỹ ) |Ỹ=Y
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= Eγ
µ0,ν0

(exp(

∫ t

0

h(Xs) dYs −
1

2

∫
h2(Xs) ds

+

∫ t

0

h(X̃s) dỸs −
1

2

∫ t

0

h2(X̃s) ds) | Y, Ỹ ) |Ỹ=Y

≥ e−CtEγ
µ0,ν0

(exp(

∫ t

0

h(Xs) dYs +

∫ t

0

h(X̃s) dỸs | Y, Ỹ ) |Ỹ=Y

= e−CtEγ
µ0,ν0

(exp(

∫ t

0

h(Xs) dYs) | Y )Eγ
µ0,ν0

(exp(

∫ t

0

h(X̃s) dỸs) | Ỹ ) |Ỹ=Y

≥ e−Ct(Eγ
µ0,ν0

(exp(−
∫ t

0

h(Xs) dYs) | Y ))−1(Eγ
µ0,ν0

(exp(−
∫ t

0

h(X̃s) dỸs) | Ỹ ))−1 |Ỹ=Y .

In other words, (
Eγ
µ0,ν0

(γ−1 | Y, Ỹ ) |Ỹ=Y

)−1

≤ e+Ct(Eγ
µ0,ν0

(exp(−
∫ t

0

h(Xs) dYs) | Y ))(Eγ
µ0,ν0

(exp(−
∫ t

0

h(X̃s) dỸs) | Ỹ )) |Ỹ=Y .

Remind that both conditional expectations here are continuous functions of Y
and Ỹ , correspondingly, and both suit well our further applications of the CBS
inequality. We have, with p > 1, r = 2p,(

Eγ
µ0,ν0

(Eγ
µ0,ν0

(exp(−
∫ t

0

h(X̃s) dYs) | Y ))p
)1/p

≤
(

Eγ
µ0,ν0

(Eγ
µ0,ν0

(exp(−p
∫ t

0

h(X̃s) dYs) | Y ))

)1/p

=

(
Eγ
µ0,ν0

exp(−p
∫
h(X̃s) dYs)

)1/p

=

(
Eγ
µ0,ν0

exp(−p
∫ t

0

h(X̃s) dYs − r
∫ t

0

h(X̃s)
2 ds+ r

∫ t

0

h(X̃s)
2 ds)

)1/p

≤
(

Eγ
µ0,ν0

exp(−2p

∫ t

0

h(X̃s) dYs − 2r

∫ t

0

h(X̃s)
2 ds)

)1/2p

×
(

Eγ
µ0,ν0

exp(2r

∫ t

0

h(X̃s)
2 ds)

)1/2p

=

(
Eγ
µ0,ν0

exp(−2p

∫ t

0

h(X̃s) dYs −
4p2

2

∫ t

0

h(X̃s)
2 ds)

)1/2p
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×
(

Eγ
µ0,ν0

exp(2r

∫ t

0

h(X̃s)
2 ds)

)1/2p

≤ (eCt)1/2p = eCt.

Similarly, – in fact, even easier, – we estimate the term(
Eγ
µ0,ν0

(Eγ
µ0,ν0

(exp(−
∫ t

0

h(Xs) dYs) | Y ))p
)1/p

≤ (Eγ
µ0,ν0

(exp(−p
∫ t

0

h(Xs) dYs)))
1/p ≤ eCt.

3 (8). A bound for the numerator in (47). We are to estimate it from above.
We have,

Eγ
µ0,ν0

(γ−2 | Y, Ỹ ) |Ỹ=Y

= Eγ
µ0,ν0

(exp(2

∫ t

0

h(Xs) dYs −
∫
h2(Xs) ds)

× exp(2

∫ t

0

h(X̃s) dỸs −
∫ t

0

h(X̃s)
2 ds) | Y, Ỹ ) |Ỹ=Y

≤ e+CtEγ
µ0,ν0

(exp(2

∫ t

0

h(Xs) dYs + 2

∫ t

0

h(X̃s) dỸs | Y, Ỹ ) |Ỹ=Y

= e+CtEγ
µ0,ν0

(exp(2

∫ t

0

h(Xs) dYs) | Y )Eγ
µ0,ν0

(exp(

∫ t

0

h(X̃s) dỸs) | Ỹ )

≤ e+Ct(Eγ
µ0,ν0

(exp(2

∫ t

0

h(Xs) dYs) | Y ))(Eγ
µ0,ν0

(exp(2

∫ t

0

h(X̃s) dỸs) | Ỹ )) |Ỹ=Y .

In other words, (
Eγ
µ0,ν0

(γ−2 | Y, Ỹ ) |Ỹ=Y

)
≤ e+Ct(Eγ

µ0,ν0
(exp(2

∫ t

0

h(Xs) dYs) | Y ))(Eγ
µ0,ν0

(exp(2

∫ t

0

h(X̃s) dỸs) | Ỹ )) |Ỹ=Y .

The rest is standard. Whence, we get the following estimate,

Eγ
µ0
γ−1

(
Eγ
µ0,ν0

(
γ−2 | Y, Ỹ

)
|Ỹ=Y

)1/2

Eγ
µ0,ν0

(γ−1 | Y, Ỹ ) |Ỹ=Y

≤ exp(+Ct), (48)
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with some finite non-random C > 0.

4 (9). The term Eµ0,ν01δ(X, X̃) = Eµ0,ν01δ(Z). Emphasize that we are looking
for a bound of this non-conditional probability, which should be less than any
exponential, if the value R is chosen large enough. Intuitively, this looks reasonable
under (A1), given that this assumption is sufficient for an exponential beta-mixing.
The reasoning is similar to establishing the bounds (44). However, since we need
an exponential bound with any constant, we will provide more details here. Here
we do not separate X and X̃ as above, because it does not really simplify the
calculus.

Given the recurrent Markov diffusion Zt ∈ R2d, let us firstly construct a one-
dimensional Itô process with reflection which dominates the process |Zt|, – which
is, generally speaking, non-Markov, – and secondly, construct a one-dimensional
Markov diffusion, ζt, t ≥ 0, which dominates this Itô process, and which will help
us estimate from above the value Eµ0,ν01δ(Z). Notice that we could use the same
Dirichlet principle idea as in the previous Theorem; however, this does not simplify
the calculus, so we work with the couple (X, X̃).

The process Ẑt := |Zt| ∨ (R − 2) is a one-dimensional reflected Itô process, –
although, generally speaking, not Markov, – with some finite drift βt, and with a
unit diffusion coefficient on Ẑt > R− 2. Indeed,

d|Zt|2 = dX2
t + dX̃2

t = 2
∑

X i
tdX

i
t +
∑

(dX i
t)

2 + 2
∑

X̃ i
tdX̃

i
t +
∑

(dX̃ i
t)

2

= (2d+ 2
∑
i

X i
tb
i(Xt) + 2

∑
i

X̃ i
tb
i(X̃t))dt+ 2

∑
X i
tdW

i
t + 2

∑
X̃ i
tdW̃

i
t .

Notice that there is no local time here, which is correct, because 2d-dimensional
process (Xt, X̃t) with independent components whose distributions are equivalent
to standard 2d-dimensional Wiener measure cannot attain zero at any positive
time. Hence, P(|Zt| > 0, t > 0) = 1, and, applying Itô’s formula, we get, also
without any local time,

d|Zt| = d(|Zt|2)1/2 = 1

2|Zt|
d|Zt|2 − 1

8|Zt|3
(d|Zt|2)2

= |Zt|−1(d+
∑

iX
i
tb
i(Xt) +

∑
i X̃

i
tb
i(X̃t))dt

+|Zt|−1
∑
X i
tdW

i
t + |Zt|−1

∑
X̃ i
tdW̃

i
t −

X2
t + X̃2

t

2|Zt|3
dt.

Let us notice that on the set |Zt| ≥ R − 2 > 0, the values of |Zt| are separated
away from zero. So, applying Ito-Tanaka’s formula, see [22], to |Zt| ∨ (R− 2), we
get,

dẐt = β̂tdt+ 1(Ẑt > R− 2)dŴt + dϕ̂t,
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with a standard Wiener process Ŵt,

Ŵt :=

∫ t

0

(
|Zs|−1

∑
X i
sdW

i
s + |Zs|−1

∑
X̃ i
sdW̃

i
s

)
,

e.g., due to the Lévy characterization theorem, cf. [18, Theorem 4.1], and

β̂t =

(
(d+

∑
iX

i
tb
i(Xt) +

∑
i X̃

i
tb
i(X̃t))

|Zt|
− X2

t + X̃2
t

2|Zt|3

)
1
(
|Xt|2 + |X̃t|2 > (R− 2)2

)
.

Here ϕ̂t is a local time of Ẑt at R − 2. Notice that if |Zt| is large enough, then β̂t
is a negative value with a large modulus, which follows easily from the assump-
tion (A1).

Consider the process Z̄t with values in [R − 2,∞) satisfying the stochastic
differential equation with non-sticky reflection atR−2, – hence, it is strong Markov,
e.g., because of the strong uniqueness, –

dZ̄t = β̄dt+ dŴt + dϕ̄t, Z̄t ≥ R− 2, Z̄0 = max(|X0|, R− 2),

with a unit diffusion, and a constant large negative drift,

β̄ := sup
|Zt|>R−2

β̂t,

where ϕ̄ is the local time of the process Z̄t at R− 2.
Notice that

1(|Zt| ≥ R− 2) β̄ ≥ 1(|Zt| > R− 2) β̂t.

A routine comparison theorem shows that with probability one for all t ≥ 0,

Ẑt ≤ Z̄t, t ≥ 0.

For the reader’s convenience and because for this particular comparison setting
the authors do not know any good reference, we provide the proof, although, of
course, it looks very standard. Denote

g(x) = x41(x > 0).

Then, g ∈ C2
b , and due to the Itô formula,

dg(Ẑt − Z̄t) = 1(Ẑt > Z̄t)d(Ẑt − Z̄t)4

= 1(Ẑt > Z̄t)
12
2
(Ẑt − Z̄t)2(1(Ẑt > R− 2)− 1)2dt

+1(Ẑt > Z̄t)× 4(Ẑt − Z̄t)3
(
(β̂t − β̄)dt+ (1(Ẑt > R− 2)− 1)dW̃t + (dϕ̂t − dϕ̄t)

)
≤ 0,
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because 1(Ẑt > R− 2)− 1 = −1(Ẑt ≤ R− 2), and since almost surely

1(Ẑt > Z̄t)× (Ẑt − Z̄t)3(β̂t − β̄) ≤ 0,

1(Ẑt > Z̄t)× 1(Ẑt ≤ R− 2) = 0,

and
1(Ẑt > Z̄t)(Ẑt − Z̄t)3(dϕ̂t − dϕ̄t) ≤ 0.

Hence,
Eg(Ẑt − Z̄t) = 0, ∀t ≥ 0,

which implies
P(Ẑt ≤ Z̄t, t ≥ 0) = 1.

5 (10). Now the bound will be established for the process Z̄. Let

τ0 := inf(s ≥ 0 : Z̄s ≤ R− 1), inf(∅) = n,

(remind that n = [t]), and

τ ′1 := inf(s > [τ0]+ : Z̄s ≥ R),

where we denote by [a]+ the minimal integer which is not less than a, or, in other
words, [a]+ = −[−a];

τ1 := inf(s ≥ τ ′1 : Z̄s ≤ R− 1),

etc. Further, let τk − τ ′k =: `k. Denote N = sup(k : τ ′k ≤ n). Notice that

(#1(Z) ≤ ε′n) ⊂
(
#1(Z̄) ≤ ε′n

)
=
(
#0(Z̄) > (1− ε′)n

)
,

where

#1(Z̄) =
n−1∑
i=0

1(Zi ≤ R; sup
i≤s≤i+1

Zs < R + 1) ,

and, naturally, #0(Z̄) = n−#1(Z̄). Let us choose ε′ < 1/8.

Further, #0(Z̄) > (1−ε′)n implies that at least (1−ε′)n intervals of length one
with integer endpoints from the set [0, 1], . . . , [n− 1, n] contain at least one point
where Z̄ ≥ R; and, of course, every time, with probability one this is not just one
point, but also Z̄ ≥ R in some its neighbourhood. There are three possibilities
for every such interval I: (1) either a period where Z̄ ≥ R starts in this interval;
(2) or such a period ends in this interval (of course, (2) may occur along with (1)
on the same interval); (3) or neither (1) nor (2), but Z̄ ≥ R on the whole I. The
number of I’s of the kind (1) and (2) together does not exceed 2N (because the
total number of such intervals does not exceed N , by definition of N). Hence, on
the set N < n/8, the number of the I’s of the 3rd kind is at least 6n/8, which
implies that on this set

∑
`k ≥ 6n/8. Therefore, we have shown that
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(
#0(Z̄) > 7n/8

)
⊂ (N ≥ n/8) ∪

 n/8∑
k=1

`k(Z̄) ≥ 6n/8

 .

We estimate,

Pµ0,ν0

 n/8∑
k=1

`k(Z̄) ≥ 6

8
n

 ≤ exp(−6cn/8)(E
n/8∏
k=1

exp(c`k(Z̄))).

Notice that, for c > 0 fixed, by choosing R large enough, one can make the value
Eµ0,ν0(exp(c`k(Z̄)) | Z̄τk−1

) be arbitrary close to one, uniformly with respect to
k ≥ 1 and ω. Here we use the second part of the assumption (A1) to tackle k = 1.
Hence, we firstly fix c large, and secondly R large, so that, say,

Pµ0,ν0

 n/8∑
k=1

`k(Z̄) ≥ 6

8
n

 ≤ exp(−5cn/8).

Finally,

Pµ0,ν0 (N ≥ n/8) = Pµ0,ν0

(
τ ′n/8(Z̄) ≤ n

)
.

Remind that τ ′k+1 = inf(t ≥ [τk]+ : Z̄t ≥ R), and let us show that for R large
enough the event τ ′n/8(Z̄) ≤ n is highly improbable. Indeed, denote by q the
probability

q := sup
0≤s≤1

P( sup
[s]+≤t≤[s]++1

Zt ≥ R, or Z[s]++1 > R− 1 | Z̄s = R− 1);

this value is arbitrarily small if R is large enough; the idea is that if, given
Z̄s = R − 1, the event 0(Z̄)[s]+ occurs, then certainly either sup[s]+≤t≤[s]++1 Zt ≥
R, or Z[s]++1 > R − 1 occurs, too; in fact, the first must occur, and the second is
just complementary.

Then, using the strong Markov property of Z̄, and the well-known combinato-
rial identity

∑
k1+...+km=r 1 = Cm

r+m for any fixed m and r, we conclude that the

probability P
(
τn/8(Z̄) ≤ n

)
does not exceed the following sum, with m := [n/8]

and every ki ≥ 0,

Pµ0,ν0

(
τn/8(Z̄) ≤ n

)
≤

∑
k1+...+km≤n

qm1k1+...+km

≤ qm
n∑
r=0

∑
k1+...+km=r

1 = qm
n∑
r=0

Cm
r+m ≤ qm

n∑
r=0

2r+m ≤ qm2n+m+1

= exp ((9n/8) ln 2 + (ln q)[n/8] + ln 2) .
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Indeed, let us comment on the first inequality here. If τn/8(Z̄) ≤ n, then we
have at least n/8 intervals where Z̄ ≥ R, and which start in a special manner
(see the definition of τ and τ ′ above). After the next return to the level R − 1,
and starting from the next integer value of time, say, t = m (before that no new
exceeds of any level count), the process tries to exceed the level R during the
interval [m,m+ 1], or exceed the level R− 1 only at m+ 1. Once either of these
happens, we wait till the next τ ′, which might yet have not occurred, and repeat
this procedure. The condition τn/8(Z̄) ≤ n guarantees that this occurs sooner or
later at least n/8 times before n. Denote by km the number of integer intervals
until this event occurs for the m-th time after the previous occurrence. Then,
the probability Pµ0,ν0(τn/8(Z̄) ≤ n) can be estimated from above by the value∑

k1+...+km≤n q
m1k1+...+km , if we just estimate by 1 every (conditional) probability

that the rare event does not occur, and by q the (also conditional) probability that
it does occur.

More formally, let us consider another sequence of stopping times, where m is
integer,

τ̃k+1 := inf(t > [τk]+ : Z̄t ≥ R) ∧ inf(m ≥ [τk]+ : Z̄m ≥ R− 1)).

Notice that we use the “old” stopping times τk in this definition. Naturally, for
every k, τ̃k ≤ τ ′k; in particular, τ̃n/8 ≤ τ ′n/8. Hence,

Pµ0,ν0(τn/8 ≤ n) ≤ Pµ0,ν0(τ̃n/8 ≤ n).

Now, the event τ̃n/8 ≤ n implies that the combined set of intervals

∪−1+n/8
k=0 [τk, [τ̃k+1]−] has a total length not exceeding n. Hence, the total length

of unit intervals with integer endpoints within this sum does not exceed n. We
estimate from above by q every (conditional) probability that on the next interval
there is a stop τ̃ , and simply by 1 the probability that there is no stop. The whole
probability of the latter event is thence estimated from above by the sum,∑

k1+...+km≤n

qm1k1+...+km ,

and the rest of the calculus readily follows. Choosing q small enough, we can get
here an exponential bound exp(−cn) for the first term in (39), with any c > 0
(remind that n = [t]),

Eµ0,ν0

∑
δ: #1(δ)<ε′n

(
Eµ0,ν0(1δ(X,Y ) | Y, Ỹ ) |Ỹ=Y

)
≤ C0 exp(−Ct). (49)

Combining (49) with earlier estimates (37), (38), (39), and (40), as well as (48),
we get the final estimate (11). The Theorem 2 is proved.

Remark 4. The proof suggests that the second part of the assumption (A1)
could be relaxed to some polynomial moments on both initial measures. This
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should probably imply the final polynomial bound for the difference of the two
filters. In the Theorem 2 itself, most likely, exponential moments for both initial
measures with “every c > 0” could be replaced by “some c large enough”.
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