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PROBLEM

We consider the linear dynamic

dXt = −ϑXt dt + dW H
t , X0 = 0, t ≥ 0. (1)

where W H = (W H
t , t ≥ 0) is a normalized fBm with Hurst parameter H

of covariance function

EW H
s W H

t =
1
2
(
|s|2H + |t |2H − |s − t |2H) .

System (1) has a uniquely defined solution process X which is Gaus-
sian but neither Markovian nor a semimartingale for H 6= 1

2 .
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Estimation problem

PROBLEM

We consider the linear dynamic

dXt = −ϑXt dt + dW H
t , X0 = 0, t ≥ 0. (1)

Suppose that parameter ϑ > 0 is unknown and is to be estimated
given the observed trajectory Y T = (Yt , 0 ≤ t ≤ T ) with :

I Y T = X T = (Xt , 0 ≤ t ≤ T ) (complete observation problem) ;

I Y T defined by dYt = µXt dt + dV H
t , Y0 = 0, 0 ≤ t ≤ T .

(partially observed problem)
I Y T defined by Yt = µXt + V H

t 0 ≤ t ≤ T .
(partially observed problem with dependent noise)
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PROBLEM

We consider the linear dynamic

dXt = −ϑXt dt + dW H
t , X0 = 0, t ≥ 0.

dYt = µXt dt + dV H
t , Y0 = 0, t ≥ 0.

For a fixed value of the parameter ϑ, let PT
ϑ denote the probability

measure, induced by (X T ,Y T ) on the function space C[0,T ]×C[0,T ] and
let FY

t be the natural filtration of Y , FY
t = σ (Ys,0 ≤ s ≤ t).
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Introduction

Estimation problem

PROBLEM

We consider the linear dynamic

dXt = −ϑXt dt + dW H
t , X0 = 0, t ≥ 0.

dYt = µXt dt + dV H
t , Y0 = 0, t ≥ 0.

For a fixed value of the parameter ϑ, let PT
ϑ denote the probability

measure, induced by (X T ,Y T ) on the function space C[0,T ]×C[0,T ] and
let FY

t be the natural filtration of Y , FY
t = σ (Ys,0 ≤ s ≤ t).

Let L(ϑ,Y T ) be the likelihood, i.e. the Radon-Nikodym derivative of
PT
ϑ , restricted to FY

T with respect to some reference measure on C[0,T ].
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Introduction

Result

THEOREM (PARTIALLY OBSERVED PROBLEM)

The MLE ϑ̂T is uniformly on compacts K ⊂ R+
∗ consistent, uniformly

asymptotically normal

√
T
(
ϑ̂T − ϑ

)
law

=⇒ N
(
0, I(ϑ)−1)

where I(ϑ) does not depend on H:

I(ϑ) =
1

2ϑ
− 2ϑ
α(α + ϑ)

+
ϑ2

2α3

and α =
√
µ2 + ϑ2. We have the uniform on ϑ ∈ K convergence of

the moments: for any p > 0,

lim
T→∞

Eϑ
∣∣∣√T

(
ϑ̂T − ϑ

)∣∣∣p = E
∣∣∣I(ϑ)−

1
2 ζ
∣∣∣p ζ ∼ N (0,1) .
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Transformation of the observation model

TRANSFORMATION OF THE OBSERVATION MODEL

Even if fBm are not martingales, there are simple integral transforma-
tions which change the fBm to martingales.

In particular, defining for 0 < s < t , H > 1
2 ,

kH(t , s) = κ−1
H s

1
2−H (t − s)

1
2−H

, κH = 2HΓ

(
3
2
− H

)
Γ

(
1
2

+ H
)
,

Mt =

∫ t

0
kH(t , s)dW H

s ,

then the process M = (Mt , t ≥ 0) is a Gaussian martingale, the funda-
mental martingale.
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Even if fBm are not martingales, there are simple integral transforma-
tions which change the fBm to martingales.

In particular, defining for 0 < s < t , H > 1
2 ,

kH(t , s) = κ−1
H s

1
2−H (t − s)

1
2−H

, κH = 2HΓ

(
3
2
− H

)
Γ

(
1
2

+ H
)
,

Mt =

∫ t

0
kH(t , s)dW H

s ,

then the process M = (Mt , t ≥ 0) is a Gaussian martingale, the funda-
mental martingale.

Moreover, the natural filtration of the martingale M coincides with the
natural filtration of the fBm W H .
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sociated to X , namely
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∫ t
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Complete observation problem

Transformation of the observation model

TRANSFORMATION OF THE OBSERVATION MODEL

Let us introduce Z = (Zt , t ≥ 0) the fundamental semimartingale as-
sociated to X , namely

Zt =

∫ t

0
kH(t , s)dXs .

Then ζ = (ζt , t ≥ 0) =

(
Zt∫ t

0 s2H−1dZs

)
is the solution of

dζt = −ϑλA(t)ζtd〈M〉t + b(t)dMt , ζ0 = 0 ,

with

A(t) =

(
t2H−1 1
t4H−2 t2H−1

)
and b(t) =

(
1

t2H−1

)
.
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Complete observation problem

Proof of Theorem 1

SKETCH OF THE PROOF

We have

L(ϑ,X T ) =
dPϑ
dP0

(
ζT )

= exp

(
−ϑλ

∫ T

0
(Aζs)∗ B+dζs −

ϑ2λ2

2

∫ T

0
(Aζs)∗ B+Aζsd〈M〉s

)
,

where B+ = b (b∗b)−2 b∗ and, by derivating w.r.t. ϑ

√
T
(
ϑ̂T − ϑ

)
= −

1√
T

∫ T
0 λl(s)∗ζsdMs

1
T

∫ T
0 λ2ζ∗s l(s)l(s)∗ζsd〈M〉s

l(t) =

(
t2H−1

1

)
.
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Complete observation problem

Proof of Theorem 1

From

√
T
(
ϑ̂T − ϑ

)
= −

1√
T

∫ T
0 λl(s)∗ζsdMs

1
T

∫ T
0 λ2ζ∗s l(s)l(s)∗ζsd〈M〉s

l(t) =

(
t2H−1

1

)
.

and the explicit expression of the Laplace transform

LT (a, ϑ) = Eϑ exp

{
−aλ2

∫ T

0
ζ∗s l(s)l(s)∗ζs d〈M〉s

}

that implies that

lim
T→∞

LT

( a
T
, ϑ
)

= exp
{
−a

1
2ϑ

}
,
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Complete observation problem

Proof of Theorem 1

From

√
T
(
ϑ̂T − ϑ

)
= −

1√
T

∫ T
0 λl(s)∗ζsdMs

1
T

∫ T
0 λ2ζ∗s l(s)l(s)∗ζsd〈M〉s

l(t) =

(
t2H−1

1

)
.

we have the convergence of the following integrals:

1
T

∫ T

0
λ2ζ∗s l(s)l(s)∗ζsd〈M〉s −→

1
2ϑ

a.s.,

1√
T

∫ T

0
λl(s)∗ζsdMs

law
=⇒ N

(
0,

1
2ϑ

)
.
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(
Z O

t , t ≥ 0
)

the fundamental semimartingale
associated to Y , namely

Z O
t =

∫ t

0
kH(t , s)dYs .
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Partially observed problem

TRANSFORMATION OF THE OBSERVATION MODEL

Let us introduce Z O =
(
Z O

t , t ≥ 0
)

the fundamental semimartingale
associated to Y , namely

Z O
t =

∫ t

0
kH(t , s)dYs .

It is governed by the dynamic

dZ O
t = µλl(t)∗ζtd〈N〉t + dNt , Z O

0 = 0 ,

where, for recall, ζ = (ζt , t ≥ 0) is the solution of:

dζt = −ϑλA(t)ζtd〈M〉t + b(t)dMt , ζ0 = 0 ,

l(t) =

(
t2H−1

1

)
, A(t) =

(
t2H−1 1
t4H−2 t2H−1

)
and b(t) =

(
1

t2H−1

)
.
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Partially observed problem

TRANSFORMATION OF THE OBSERVATION MODEL

Classical Girsanov theorem and the general filtering theorem give the
following likelihood explicit function

LT (ϑ,Z O,T ) = exp

{
µλ

∫ T

0
l∗πt (ζ)dZ 0

t −
µ2λ2

2

∫ T

0
πt (ζ)ll∗πt (ζ)∗d〈N〉t

}
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∫ T

0
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2

∫ T

0
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}
where the conditional expectation πt (ζ) = Eϑ

(
ζt |FY

t
)

satisfies:

dπt (ζ) =
(
−ϑλA− µ2λ2γζ,ζ ll∗

)
πt (ζ)d〈N〉t + µλγζζ ldZ O

t , π0(ζ) = 0 .
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t −
µ2λ2
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∫ T

0
πt (ζ)ll∗πt (ζ)∗d〈N〉t

}
where the conditional expectation πt (ζ) = Eϑ

(
ζt |FY

t
)

satisfies:

dπt (ζ) =
(
−ϑλA− µ2λ2γζ,ζ ll∗

)
πt (ζ)d〈N〉t + µλγζζ ldZ O

t , π0(ζ) = 0 .

and the filtering error γζ,ζ(t) = Eϑ (ζt − πt (ζ))∗ (ζt − πt (ζ)) is the solu-
tion of the Ricatti equation: γζζ(0) = 0 and

dγζζ(t) =
(
−ϑλ (Aγζζ + γζζA∗) + bb∗ − µ2λ2γζζ ll∗γζζ

)
d〈N〉t .
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Partially observed problem

TRANSFORMATION OF THE OBSERVATION MODEL

Conditional expectation dynamic can be rewritten in the equivalent
form

dπt (ζ) = −ϑλAπt (ζ)d〈N〉t + µλγζζ ldνt

where the innovation process (νt , t ≥ 0) is defined by:

dνt = dZ O
t − µλl(t)∗πt (ζ)d〈N〉t , ν0 = 0 .
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Conditional expectation dynamic can be rewritten in the equivalent
form

dπt (ζ) = −ϑλAπt (ζ)d〈N〉t + µλγζζ ldνt

For any ϑ1 ∈ R, let us define by πϑ1
t (ζ) and by γϑ1

ζζ the solutions of
equations, both where ϑ = ϑ1.
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Partially observed problem

TRANSFORMATION OF THE OBSERVATION MODEL

Conditional expectation dynamic can be rewritten in the equivalent
form

dπt (ζ) = −ϑλAπt (ζ)d〈N〉t + µλγζζ ldνt

For any ϑ1 ∈ R, let us define by πϑ1
t (ζ) and by γϑ1

ζζ the solutions of
equations, both where ϑ = ϑ1.

Then, the likelihood ratio ZT (ϑ1, ϑ2,Z O,T ) =

=
LT (ϑ2, ζ

O,T )

LT (ϑ1, ζO,T )
=

dPT
ϑ2

dPT
ϑ1

/FY
T ,

= exp

{
µλ

∫ T

0
l∗δϑ1,ϑ2dν

ϑ1
t −

µ2λ2

2

∫ T

0
δ∗ϑ1,ϑ2

ll∗δϑ1,ϑ2d〈N〉t

}

where δϑ1,ϑ2 (t) is the difference πϑ2
t (ζ)− πϑ1

t (ζ).
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Partially observed problem

IBRAGIMOV-KHASMINSKII PROGRAM

From Ibragimov-Khasminskii, it is sufficient to check the three following
conditions: (here ZT (u,Z O,T ) = ZT (ϑ, ϑ+ u√

T
,Z O,T ))

(A.1)

ZT (u,Z O,T )
law

=⇒ exp
{

u.η − u2

2
I(ϑ)

}
︸ ︷︷ ︸

Z (u)

with η ∼ N (0, I(ϑ)) ,

(A.2) for some C, χ > 0: for all u such that ϑ+ u√
T
∈ K ⊂ R+

∗ ,

Eϑ
√
ZT (u,Z O,T ) ≤ C exp

(
−χu2) ,

(A.3) there exists C > 0 such that, for all |u1| < R and |u2| < R,

Eϑ
(√
ZT (u1,Z O,T )−

√
ZT (u2,Z O,T )

)2

≤ C|u1 − u2|2 .
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Partially observed problem

Sketch of the proof of Theorem 2

Let LT (a, ϑ1, ϑ2) be the Laplace transform of the integral of the
quadratic form of the difference δϑ1,ϑ2 (t) = πϑ2

t (ζ)− πϑ1
t (ζ):

LT (a, ϑ1, ϑ2) = Eϑ1 exp

{
−a

µ2λ2

2

∫ T

0
δ∗ϑ1,ϑ2

ll∗δϑ1,ϑ2d〈N〉t

}
.
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µ2λ2
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0
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Let us introduce the following condition (L): There exists a0 < 0 such
that for all a > a0, ∀u1,u2 ∈ R,

lim
T→∞

LT (a, ϑ+
u1√
T
, ϑ+

u2√
T

) = exp

(
−a

(u2 − u1)2

2
I (ϑ)

)
,

and for all T , LT (a, ϑ+ u1√
T
, ϑ+ u2√

T
) ≤ C exp

(
−aχ (u1 − u2)2

)
.
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Let LT (a, ϑ1, ϑ2) be the Laplace transform of the integral of the
quadratic form of the difference δϑ1,ϑ2 (t) = πϑ2

t (ζ)− πϑ1
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−a

µ2λ2

2
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0
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ll∗δϑ1,ϑ2d〈N〉t

}
.

Let us introduce the following condition (L): There exists a0 < 0 such
that for all a > a0, ∀u1,u2 ∈ R,

lim
T→∞

LT (a, ϑ+
u1√
T
, ϑ+

u2√
T

) = exp

(
−a

(u2 − u1)2

2
I (ϑ)

)
,

and for all T , LT (a, ϑ+ u1√
T
, ϑ+ u2√

T
) ≤ C exp

(
−aχ (u1 − u2)2

)
.

PROPOSITION
Suppose condition (L) is satisfied. Then properties (A.1.–A.3) hold.
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Partially observed problem

Sketch of the proof of Theorem 2

PROOF OF PROPOSITION

Actually, (A.1) is a direct consequence of (L). Indeed, for u1 = 0 and
u2 = u, we have:

lim
T→∞

LT (a, ϑ, ϑ +
u√
T

) = exp
(
−a

u2

2
I(ϑ)

)
.
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PROOF OF PROPOSITION

Actually, (A.1) is a direct consequence of (L). Indeed, for u1 = 0 and
u2 = u, we have:

lim
T→∞

LT (a, ϑ, ϑ +
u√
T

) = exp
(
−a

u2

2
I(ϑ)

)
.

It gives the convergence of the following integrals:

µ2λ2

2

∫ T

0
δ∗ϑ,u,T ll∗δϑ,u,T d〈N〉t −→

u2

2
I (ϑ) a.s.

and

µλ

∫ T

0
l∗δϑ,u,T dνt

law
=⇒ N

(
0,u2I (ϑ)

)
,

which achieves the proof of (A.1).
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PROOF OF PROPOSITION

The condition (A.2) holds thanks to: Eϑ
√
ZT (u) =

= Eϑ exp

(
µλ

2

∫ T

0
l∗δϑ,u,T dνϑt −

µ2λ2

4

∫ T

0
δ∗ϑ,u,T ll∗δϑ,u,T d〈N〉t

)

= Eϑ exp

(
µλ

2

∫ T

0
l∗δϑ,u,T dνϑt −

µ2λ2p
8

∫ T

0
δ∗ϑ,u,T ll∗δϑ,u,T d〈N〉t

)
×

×exp

(
µ2λ2

4

(p
2
− 1
)∫ T

0
δ∗ϑ,u,T ll∗δϑ,u,T d〈N〉t

)
(a)

≤

(
Eϑ exp

(
µλp

2

∫ T

0
l∗δϑ,u,T dνϑt −

µ2λ2p2

8

∫ T

0
δ∗ϑ,u,T ll∗δϑ,u,T d〈N〉t

)) 1
p

×

×

(
Eϑ exp

(
µ2λ2q

4

(p
2
− 1
)∫ T

0
δ∗ϑ,u,T ll∗δϑ,u,T d〈N〉t

)) 1
q
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PROOF OF PROPOSITION

To prove (A.3), let us note that

Eϑ
(√
ZT (u1)−

√
ZT (u2)

)2
= 2

(
1− EϑZT (u1)

√
ZT (u2)

ZT (u1)

)
= 2

(
1− Eϑ1

√
ZT (ϑ1, ϑ2)

)
≤ 2

(
1− exp

(
−χ (u2 − u1)2

))
≤ C|u1 − u2|2 .
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PROOF OF PROPOSITION

To prove (A.3), let us note that

Eϑ
(√
ZT (u1)−

√
ZT (u2)

)2
= 2

(
1− EϑZT (u1)

√
ZT (u2)

ZT (u1)

)
= 2

(
1− Eϑ1

√
ZT (ϑ1, ϑ2)

)
≤ 2

(
1− exp

(
−χ (u2 − u1)2

))
≤ C|u1 − u2|2 .
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The computation of the Laplace transform is based on the Cameron-
Martin formula.
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SATISFYING CONDITION (L)
The computation of the Laplace transform is based on the Cameron-
Martin formula.

Let us recall that, for ϑ = ϑ1, the optimal filter πϑ1
t (ζ) and the difference

δϑ1,ϑ2 (t) = πϑ2
t (ζ)− πϑ1

t (ζ) are governed by:

d π̃t = A(t)π̃td〈N〉t + B(t)dνϑ1
t ,

where π̃t =

(
πϑ1

t (ζ)
δϑ1,ϑ2

)
, Aϑ2 (t) = −ϑ2λA(t)− µ2λ2γϑ2

ζ,ζ ll
∗,

Dϑ1,ϑ2
γ = γϑ2

ζζ (t)− γϑ1
ζζ (t) ,

A(t) =

(
−ϑ1λA 0

−(ϑ2 − ϑ1)λA Aϑ2

)
and B(t) = µλ

(
γϑ1
ζζ (t)

Dϑ1,ϑ2
γ

)
l(t) .
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SATISFYING CONDITION (L)
Then, LT (a, ϑ1, ϑ2) =

= Eϑ1 exp

{
−a

µ2λ2

2

∫ T

0
δ∗ϑ1,ϑ2

ll∗δϑ1,ϑ2d〈N〉t

}

= Eϑ1 exp

{
−a

µ2λ2

2

∫ T

0

(
πϑ1

t (ζ)
δϑ1,ϑ2

)∗
M(t)

(
πϑ1

t (ζ)
δϑ1,ϑ2

)
d〈N〉t

}

= exp

{
−a

µ2λ2

2

∫ T

0
trace(H(t)M(t))d〈N〉t

}
,

whereM(t) =

(
0 0
0 ll∗

)
and H(t) is the solution of Ricatti

differential equation: H(0) = 0,

dH(t)
d〈N〉t

= A(t)H(t) +H(t)A(t)∗ + B(t)B(t)∗ − aλ2µ2H(t)M(t)H(t) .
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SATISFYING CONDITION (L)

It is known that solution H(t) can be written as H(t) = Ψ−1
1 (t)Ψ2(t),

where the pair of 4× 4 matrices (Ψ1,Ψ2) satisfies the system of linear
differential equations:

dΨ1(t)
d〈N〉t

= −Ψ1(t)A(t) + aλ2µ2Ψ2(t)M(t) Ψ1(0) = Id

dΨ2(t)
d〈N〉t

= Ψ1(t)B(t)B(t)∗ + Ψ2(t)A∗(t) Ψ2(t) = 0 ,

and Id is the 4× 4 identity matrix.



Asymptotic properties of MLE for partially observed diffusion system

Partially observed problem

Satisfying condition (L)

SATISFYING CONDITION (L)

It is known that solution H(t) can be written as H(t) = Ψ−1
1 (t)Ψ2(t),

where the pair of 4× 4 matrices (Ψ1,Ψ2) satisfies the system of linear
differential equations:

dΨ1(t)
d〈N〉t

= −Ψ1(t)A(t) + aλ2µ2Ψ2(t)M(t) Ψ1(0) = Id

dΨ2(t)
d〈N〉t

= Ψ1(t)B(t)B(t)∗ + Ψ2(t)A∗(t) Ψ2(t) = 0 ,

and Id is the 4× 4 identity matrix.

Now,

LT (a, ϑ1, ϑ2) = exp

{
−1

2

∫ T

0
traceA(t)d〈N〉t

}
(det Ψ1(T ))−

1
2 .
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The explicit representation of γϑζ,ζ imply that we can replace γϑζ,ζ by
∆−1γ∞∆−1 in the coefficients of Equation and therefore

lim
T→∞

LT (a, ϑ1, ϑ2) = lim
T→∞

exp

{
−1

2

∫ T

0
traceA∞(t)d〈N〉t

}
(detΨ1,∞(T ))−

1
2 ,

where

dΨ1,∞(t)
d〈N〉t

= −Ψ1,∞(t)A∞(t) + aλ2µ2Ψ2,∞(t)M(t) Ψ1,∞(0) = Id

dΨ2,∞(t)
d〈N〉t

= Ψ1(t)B∞(t)B∞(t)∗ + Ψ2,∞(t)A∗∞(t) Ψ2,∞(t) = 0 ,

with

A∞(t) =

(
−ϑ1 0

−(ϑ2 − ϑ1) −α2

)
⊗λA , B∞B∗∞ =

(
g2

1 g1g2
g1g2 g2

2

)
⊗λAJ ,

α2 =
√
ϑ2

2 + µ2, g1 = µ√
λ(α1+ϑ1)

, g2 = µ√
λ(α2+ϑ2)

− µ√
λ(α1+ϑ1)

and ⊗ is
the Kronecker product.
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Linear system (1) can be rewritten as

d (Ψ1(t),Ψ2(t)⊗ J)

d〈N〉t
= (Ψ1(t),Ψ2(t)⊗ J) · (i⊗ λA(t))

where

i =


ϑ1 0 g2

1 g1g2
(ϑ2 − ϑ1) α2 g1g2 g2

2
0 0 −ϑ1 −(ϑ2 − ϑ1)
0 aλµ2 0 −α2

 .
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Clearly, system (5) has an explicit solution:

(Ψ1(t),Ψ2(t)⊗ J) = (Id ,0) · (P ⊗ Id)G
(
P−1 ⊗ Id

)
where G = diag (G1,G2,G3,G4) and

dGi (t)
d〈N〉t

= λxiGiA Gi (0) = Id , i = 1 . . . 4 ,

with (xi )i=1...4 the eigenvalues of matrix i and P the matrix of its
eigenvectors.
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For ϑ1 = ϑ+ u1√
T

and ϑ2 = ϑ+ u2√
T

, we can compute the eigenvalues
and we obtain:

x1 = ϑ1 + C1
(u2 − u1)2

T
+ o

(
1
T

)
,

x2 = −ϑ1 + C2
(u2 − u1)2

T
+ o

(
1
T

)
,

x3 = α2 + C3
(u2 − u1)2

T
+ o

(
1
T

)
,

x4 = −α2 + C4
(u2 − u1)2

T
+ o

(
1
T

)
,

where C1 = aµ2

2ϑα2(α+ϑ)2

(
α2 + 2αϑ

)
and C3 = aµ2

2α3(α+ϑ)2

(
−ϑ2 − 2αϑ

)
.
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It can be easily checked that

detΨ1,∞(T ) = det (G1.G3)

(
1 + o

(
1
T

))
= exp ((x1 + x3)T )

(
1 + o

(
1
T

))
.

Finally,

lim
T→∞

LT (a, ϑ+
u1√
T
, ϑ+

u2√
T

) = lim
T→∞

exp
{
−1

2
(x1 + x3 − α2 − ϑ1)T

}
= lim

T→∞
exp

{
−1

2
(C1 + C3) (u2 − u1)2

}
= exp

(
−a

(u2 − u1)2

2
I (ϑ)

)
.
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2

CASE H < 1
2

Thanks to Jost, for H < 1/2, we have the link between fBm processes
of indexes H and 1− H:

W H
t =

(
2H

Γ(2H)
Γ(3− 2H)

) 1
2
∫ t

0
(t − s)2H−1 dW 1−H

s .
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Case H < 1
2

CASE H < 1
2

Thanks to Jost, for H < 1/2, we have the link between fBm processes
of indexes H and 1− H:

W H
t =

(
2H

Γ(2H)
Γ(3− 2H)

) 1
2
∫ t

0
(t − s)2H−1 dW 1−H

s .

The observation model becomes:{
dX̃t = −ϑX̃tdt + dw1−H

t , X̃0 = 0 ,

dỸt = µX̃tdt + dv1−H
t , Ỹ0 = 0 ,

with, for instance,

X̃t =

(
2H

Γ(2H)
Γ(3− 2H)

) 1
2
∫ t

0
(t − s)1−2H dXs .
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DEPENDENT NOISES CASE{
dXt = −ϑXtdt + dWt , X0 = 0 ,

Yt = µXt + Vt ,
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dXt = −ϑXtdt + dWt , X0 = 0 ,

dYt = −µϑXtdt + µdWt + dVt ,
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Dependent noises case

DEPENDENT NOISES CASE{
dXt = −ϑXtdt + dWt , X0 = 0 ,

dYt = −µϑXtdt + µdWt + dVt ,

In this case, we can show that,

(1 + µ2)
dγζ,ζ(t)
d〈N〉t

= −ϑλ (Aγζ,ζ + γζ,ζA∗) + bb∗ − (µϑ)2
λ2γζ,ζ ll∗γζ,ζ .
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