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L Estimation problem

PROBLEM
We consider the linear dynamic
aX; = —I9Xdt+dWH, Xo=0, t>0, (1)

where W = (WH,t > 0) is a normalized fBm with Hurst parameter H
of covariance function

1

EW/W = = (I + (12" — |s — t]2) .
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L Estimation problem

PROBLEM
We consider the linear dynamic
aX; = —9Xdt+dWf, Xo=0, t>0. (1)

where W = (W[, t > 0) is a normalized fBm with Hurst parameter H
of covariance function

’
EW'wWH = 5 (I8P + [t2H — |s — t?H) .

System (1) has a uniquely defined solution process X which is Gaus-
sian but neither Markovian nor a semimartingale for H # }.
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given the observed trajectory Y7 = (Y, 0 <t < T) with :
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» YT = X" =(X;, 0 <t< T) (complete observation problem) ;

» YT definedby dY; = uXedt+dVf, Yo=0, 0<t<T.
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L Estimation problem

PROBLEM
We consider the linear dynamic
aX; = —I9Xdt+dWH, Xo=0, t>0. (1)

Suppose that parameter ¥ > 0 is unknown and is to be estimated
given the observed trajectory Y7 = (Y, 0 <t < T) with :

» YT = X" =(X;, 0 <t< T) (complete observation problem) ;

» YT definedby dY; = uXedt+dVf, Yo=0, 0<t<T.
(partially observed problem)

» YT definedby Y;=puX; + V! 0<t<T.
(partially observed problem with dependent noise)
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L Estimation problem

PROBLEM
We consider the linear dynamic

aX; = —9Xdt+dW/, Xo=0, t>0.
ay; = uXz dt + thH, Yo=0, t>0.

For a fixed value of the parameter 9, let P} denote the probability
measure, induced by (X7, YT) on the function space Cjo,7) x Cjo,7} and
let 7Y be the natural filtration of Y, 7)Y = o (Ys,0 < s < t).
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L Estimation problem

PROBLEM
We consider the linear dynamic

aX; = —9Xdt+dWf, Xo=0, t>0.
dYt = /LX[ at + thH, YO = 0, t Z 0.

For a fixed value of the parameter 9, let P} denote the probability
measure, induced by (X, YT) on the function space Cp 1 x Cjo,7; and
let 7Y be the natural filtration of Y, 7)Y = o (Ys,0 < s < t).

Let £(9, YT) be the likelihood, i.e. the Radon-Nikodym derivative of
P/, restricted to FY with respect to some reference measure on Clo, -
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THEOREM (PARTIALLY OBSERVED PROBLEM)

The MLE {7 is uniformly on compacts KK c IR} consistent, uniformly
asymptotically normal

VT (97 - v) 22 N (0.2(9) ")
where Z(J) does not depend on H:

1 29 19_2

=55 "ty

and a = /p? + 92. We have the uniform on 9 € K convergence of
the moments: for any p > 0,

g &7 ()] el

¢ ~N(0,1).
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TRANSFORMATION OF THE OBSERVATION MODEL

Even if fBm are not martingales, there are simple integral transforma-
tions which change the fBm to martingales.
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Lec plete observation pi

LTransiormalion of the observation model

TRANSFORMATION OF THE OBSERVATION MODEL

Even if fBm are not martingales, there are simple integral transforma-
tions which change the fBm to martingales.

In particular, defining for 0 < s < t, H > 3,

1
kn(t,8) = k' 85 M (t—9) "y =2HT (2 - ”) ' <2 + H) ,

M; = /kHtdeH

then the process M = (M, t > 0) is a Gaussian martingale, the funda-
mental martingale.
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Lec plete observation pi

LTransiormalion of the observation model

TRANSFORMATION OF THE OBSERVATION MODEL

Even if fBm are not martingales, there are simple integral transforma-
tions which change the fBm to martingales.

In particular, defining for 0 < s < t, H > 3,

1
kn(t,8) = k' 85 M (t—9) "y =2HT (2 - ”) ' <2 + H) ,

M; = / ku(t, s)dwl |
then the process M = (M, t > 0) is a Gaussian martingale, the funda-

mental martingale.

Moreover, the natural filtration of the martingale M coincides with the
natural filtration of the fBm W*.
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Lec plete observation p

LTransformation of the observation model

TRANSFORMATION OF THE OBSERVATION MODEL

Let us introduce Z = (Z;, t > 0) the fundamental semimartingale as-
sociated to X, namely

t
Z= / ku(t, s)dXs .
0
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Lec plete observation p

LTransformation of the observation model

TRANSFORMATION OF THE OBSERVATION MODEL

Let us introduce Z = (Z;, t > 0) the fundamental semimartingale as-
sociated to X, namely

t
Z = / ki(t, s)dXs .
0

Z
Then ¢ = (¢, t > 0) = < Ik sZHi‘dZS ) is the solution of
0

dCt = —ﬁAA(f)Ctd<M>t + b(t)thv CO = 0,

with
t2H—1 1 1
A(t) = ( fAH—2  2H-1 ) and b(t) = ( f2H—1 ) :
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Lec plete observation p
L Proof of Theorem 1

SKETCH OF THE PROOF

We have
dP
T _ 9 T

2y2
— exp ( I\ / (AG) BYdlcs — T v B+A<Sd<M>s>
0
where B = b(b*b) 2 b* and, by derivating w.r.t. ¥

R f M(s)*¢sdMs f2H—1
YT = oo, (%)
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N f M(s)*¢sdMs f2H—1
I _ .
VT (=) TGy edmy, (%)
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L Proof of Theorem 1

From

R f M(s)*¢sdMs f2H—1
I _ .
VT (=) TGy edmy, (%)

and the explicit expression of the Laplace transform

Lr(ad) = Eaexp{—akz/ G1(s)I(s)" (s df >}

that implies that

lim Ly (%19) - exp{ a;—ﬂ} :
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Lec plete observation p
L Proof of Theorem 1

From

R f M(s)*¢sdMs f2H—1
VT (i) TGSy Gy, (%)

we have the convergence of the following integrals:

1 /7 1
= /0 NGHS)I(S) Csd(M)s — - as,

1 T * law 1
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L Partially observed problem

TRANSFORMATION OF THE OBSERVATION MODEL

Let us introduce Z° = (ZP,t > 0) the fundamental semimartingale
associated to Y, namely

t
Z0 - / Ku(t, $)dYs .
0
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L Partially observed problem

TRANSFORMATION OF THE OBSERVATION MODEL

Let us introduce Z° = (ZP,t > 0) the fundamental semimartingale
associated to Y, namely

t
Z0 - / Ku(t, $)dYs .
0

It is governed by the dynamic
dzZP = pM(t)*Gd(N) + dNy, ZP =0,
where, for recall, ¢ = ({;,t > 0) is the solution of:

d¢t = —9AA(1)Cd (M) + b(t)dM;,  Go =0,

t2H71 t2H—1 1 1
/(t):< 1 ) , A(t) = ( fH-2  2H-1 > and b(t) = ( f2H—1

).
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L Partially observed problem

TRANSFORMATION OF THE OBSERVATION MODEL

Classical Girsanov theorem and the general filtering theorem give the
following likelihood explicit function

2)\2

L7V ZOT)—exp{/M/ IFme(¢)dZP —
0

(C)//*m(C)*d<N>t}
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L Partially observed problem

TRANSFORMATION OF THE OBSERVATION MODEL

Classical Girsanov theorem and the general filtering theorem give the
following likelihood explicit function

2)\2
0

L7(9,Z2°97) = exp { ") / IFme(¢)dZP — (()l/*m(()*d(N)t}
where the conditional expectation m;(¢) = Ey ((;|F/) satisfies:

dmi(€) = (—0AA — 12N 1) w(Q)A(NY; + pdyecldZP,  70(¢) = 0.
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L Partially observed problem

TRANSFORMATION OF THE OBSERVATION MODEL

Classical Girsanov theorem and the general filtering theorem give the
following likelihood explicit function

T N2>‘2 T
£r(0.29T) = expdux [ I(Q)dze - 15
0 0

ﬂt(C)//*m(C)*dW)r}
where the conditional expectation m;(¢) = Ey ((;|F/) satisfies:

dmi(€) = (—0AA — 12N 1) w(Q)A(NY; + pdyecldZP,  70(¢) = 0.

and the filtering error v¢ ¢(t) = Ey (¢ — m:(€))" (¢ — m(€)) is the solu-
tion of the Ricatti equation: v¢.(0) = 0 and

dvec(t) = (—0X (Ayee + e A™) + bb* — PNyl yee) d(N); .
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L Partially observed problem

TRANSFORMATION OF THE OBSERVATION MODEL

Conditional expectation dynamic can be rewritten in the equivalent
form
dT('t(C) = —19)\A7Tt(<)d<N>t + ,U'/\’}/CCIth

where the innovation process (v, t > 0) is defined by:

dvy = dZP — pM(t)* 7 (Q)d(N)y, 15 =0.
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TRANSFORMATION OF THE OBSERVATION MODEL

Conditional expectation dynamic can be rewritten in the equivalent
form
dT('t(C) = —19)\A7Tt(<)d<N>t + ,U'/\’}/CCIth

For any 9, € IR, let us define by =;"(¢) and by /! the solutions of
equations, both where ¥ = 4.
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L Partially observed problem

TRANSFORMATION OF THE OBSERVATION MODEL

Conditional expectation dynamic can be rewritten in the equivalent
form
dT('((C) = —19)\A7Tt(<)d<N>t + u/\’}/ccldvt

For any 9, € IR, let us define by =;"(¢) and by /! the solutions of
equations, both where 9 = 9.

Then, the likelihood ratio Z7 (9,92, Z°7T) =

L1(02,¢°T) dPj,
Lr(01,¢T) — dP].

T MZ)\Z T
exp M)\/ I*69,0,dv;" — 5 / 65,0511 91,0, d (N ¢
0 0

/FT,

where 85, 4,(t) is the difference 7}2(¢) — 77" (€).
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IBRAGIMOV-KHASMINSKII PROGRAM

From Ibragimov-Khasminskii, it is sufficient to check the three following
conditions: (here Zr(u,Z%T) = Zr(0,9 + £, 297))
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L Partially observed problem

IBRAGIMOV-KHASMINSKII PROGRAM

From Ibragimov-Khasminskii, it is sufficient to check the three following
conditions: (here Zr(u,Z%T) = Zr(0,9 + £, 297))

(A.1)

2
Zr(u, Z9T) L exp {u.n - %1(19)} with  n ~ N (0,Z(9)) ,

Z(u)
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L Partially observed problem

IBRAGIMOV-KHASMINSKII PROGRAM

From Ibragimov-Khasminskii, it is sufficient to check the three following
conditions: (here Zr(u,Z%T) = Zr(0,9 + £, 297))

(A.1)

2
Zr(u, Z9T) L exp {u.n - %1(19)} with  n ~ N (0,Z(9)) ,

Z(u)

(A.2) for some C,x > 0: for all u such that ¥ + \/LT c Kc R,

Eﬁ\/ ZT(U, ZO’T) < Cexp (—XUZ) s
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L Partially observed problem

IBRAGIMOV-KHASMINSKII PROGRAM

From Ibragimov-Khasminskii, it is sufficient to check the three following
conditions: (here Z7(u,Z%7) = Z7(9,9 + ﬁ,ZO M)

(A.1)

2
Zr(u, Z9T) L exp {u.n - L;I(ﬂ)} with  n ~ N (0,Z(9)) ,

Z(u)

(A.2) for some C,x > 0: for all u such that ¥ + # c Kc R,

Eyy/ ZT(U, ZO’T) < Cexp (—XUZ) )

(A.3) there exists C > 0 such that, for all |u1| < R and |uz| < R,

2
E, <\/ZT(U1,ZOVT) — \/ZT(Ug,ZO’T)) < C|U1 - U2|2.



R I B BB,
Asymptotic properties of MLE for partially observed diffusion system

L Partially observed problem
L Sketch of the proof of Theorem 2

Let Lr(a,¢1,92) be the Laplace transform of the integral of the
quadratic form of the difference 8y, 4,(t) = 72(¢) — 7' (¢):

Lr(a,¥1,92) = Ey, exp {—a—/ 05, 0,100, ,9,d(N)¢ } .
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L Partially observed problem
L Sketch of the proof of Theorem 2

Let Lr(a,¢1,92) be the Laplace transform of the integral of the

quadratic form of the difference 8y, 4,(t) = 72(¢) — 7' (¢):

Lr(a,¥1,92) = Ey, exp {—a—/ 05, 0,100, ,9,d(N)¢ } .

Let us introduce the following condition (L): There exists ag < 0 such
that for all a > ag, Vuy, u» € R,

VAR

and for all T, Ly(a, 9+ 4.0 + %) < Cexp (—ax(u1 - ug)z).

I|m Lr(a,d+ —=,0 + —=) = exp (—aMI (19)) ,
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L Partially observed problem
L Sketch of the proof of Theorem 2

Let Ly(a,¥1,92) be the Laplace transform of the integral of the
quadratic form of the difference 8y, 4,(t) = 72(¢) — 7' (¢):

2/\2 T
Lr(a,01,92) = Eg, exp{—a”2 /0 55, 5,59, 9, d (N b .

Let us introduce the following condition (L): There exists ag < 0 such
that for all a > ag, Vuy, u» € R,

VAR

and for all T, Lr(a,0 + 4,9+ ) < Cexp (—ax(u1 - U2)2).

I|m Lr(a,9 + —=,9 + —) = exp (_a(uz—m)zz (19)) ,

PROPOSITION
Suppose condition (L) is satisfied. Then properties (A.1.—A.3) hold.
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L Sketch of the proof of Theorem 2

PROOF OF PROPOSITION

Actually, (A.1) is a direct consequence of (L). Indeed, for uy = 0 and
U, = u, we have:

u

Tlilnm Lr(a, 9,9+ \/7') = exp (—aEI(ﬂ)) .



Asymptotic properties of MLE for partially observed diffusion system
L Partially observed problem
L Sketch of the proof of Theorem 2

PROOF OF PROPOSITION

Actually, (A.1) is a direct consequence of (L). Indeed, for uy = 0 and
U, = u, we have:

, u u?
Tlinoo Lr(a, 9,9+ ﬁ') = exp (—331(19)) .

It gives the convergence of the following integrals:

u2
/ 0.u,7l 09 uTd(N)t — ?I(ﬂ) a.s.

2)\2

and -
) / 16,5 70dv 2% N (0, 1PT (9))
0

which achieves the proof of (A.1).
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PROOF OF PROPOSITION

The condition (A.2) holds thanks to: Ey+/Z7(u) =

= Egexp / 89y 7dvy — / 05,0, 00,u,Td{N)¢

2/\2
= EﬂeX ( / IdﬁquVt— p/ 519uT”619UTd< >>
2)\2
X exp (MT (g - 1) /0 61’;’U’T//*519,L,’Td<N>t)

1
A T 2A2 T . P
<E19 exp (%)/0 I*éﬂ,u,TdV?_ & 8,02/0 519,u,T”*519,u,Td<N>t

1

2)2 T q
x (Eﬁ exp (” (8- 1)/0 5;,U7T//*5ﬂ,u,rd<N>t>>

N
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PROOF OF PROPOSITION

To prove (A.3), let us note that

Ey (\/ZT(U1) - \/ZT(U2)>2 = 2 (1 —EyzZr(n) ZEZ?;)

2 (1 —Ey, \/27(191,192))
2 (1 —exp (—x(uz — u1)2)>

C|U1 - U2|2 .

IN

IN



Asymptotic properties of MLE for partially observed diffusion system
L Partially observed problem
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PROOF OF PROPOSITION

To prove (A.3), let us note that

Ey (\/ZT(U1) - \/ZT(U2)>2 = 2 (1 —EyzZr(n) ZEZ?;)

2 (1 —Ey, \/27(191,192))
2 (1 —exp (—x(uz — u1)2)>

C|U1 - U2|2 .

IN

IN
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SATISFYING CONDITION (L)

The computation of the Laplace transform is based on the Cameron-
Martin formula.
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SATISFYING CONDITION (L)

The computation of the Laplace transform is based on the Cameron-
Martin formula.

Let us recall that, for ¥ = 194, the optimal filter7r;91 (¢) and the difference
89,.9,(1) = 7 2(¢) — )" (C) are governed by:

dity = A(t)#d(N); + B(t)dv)"

9
where #; = ( 7:5’1 © )Aﬂz(f) = —U2AA(t) — PNy L2 I,

1,02
91,00 _ O 9
DI = ’Yggz(t) —’yd(f),

— 4
A(t) = ( _(19219_‘?91A)AA A ) and B(t)z;M( g%c(f;) >/(t).
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SATISFYING CONDITION (L)
Then, LT(a, 191 s 192) =
2)\2 T

= Ey, exp{—a“T i 5;1,192//*5191,ﬂ2d<N>,}

2)2 T s * a0
= evon{ 2 [ (1O ) (1 Yo}
2/\2

;

_ exp{_a“T / trace(H(t)M(t))d(N)t} ,
0

0 0 . . -

where M(t) = 0 I and H(t) is the solution of Ricatti

differential equation: H(0) = 0,

_ZZ{N_(;} = A(H(t) + H(DAD)" + B()B(1)" — ax*i®H(HM(tYH(1)
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LSatislying condition (L)
|

SATISFYING CONDITION (L)

It is known that solution #(t) can be written as H(t) = Wi (f)Wa(t),
where the pair of 4 x 4 matrices (V4, V) satisfies the system of linear

differential equations:

?(I;v(;) = WU (DA(L) + a2V (HM(t) Wy (0) = Zd
auy(t) ) * )
G = W OBWBD) +va(DA(D) V()= 0.

and Zd is the 4 x 4 identity matrix.
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SATISFYING CONDITION (L)

It is known that solution #(t) can be written as H(t) = Wi (f)Wa(t),
where the pair of 4 x 4 matrices (V4, V) satisfies the system of linear
differential equations:

?(I;v(;) = W (DA() + a3 PV (HM(t) W(0) = Zd
OC',\IZ,Z\,(;) = U (OB(HB(1)* + Wa(t)A*(t) Wa(t) =0,

and Zd is the 4 x 4 identity matrix.
Now,

Lr(a,¥1,92) = exp {—; /Ttrace A(t)d(N)t} (det\lﬁ(T))_% .
0
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LSatislying condition (L)

The explicit representation of v/ . imply that we can replace v/ . by
A", A" in the coefficients of Equation and therefore

o=

;
Tlim Lr(a,d1,92) = Tlim exp{;/ tracero(t)d<N>t}(det\lltoo(T))
— 00 — 00 0

where

dvy (1)
d{N):

adVs (1)
d{N):

with

= Uy () Ax(t) + aN2pPVy o (HM(E) Wy (0) = Zd

V1(1)Boo (1) Boo (1)" + V2,00 (1) A% (1) W2,00(t) =0,

—14 0 X 92 019 )
() = M, BB = ! AAJ,
As(1) ( —(V2 =) —a )® > ( 99 92 “

_ 2 2 N _ 2 _ M ;
02 =\ + 1% 0 = FO55 R = e ey 214 @18
the Kronecker product.
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L Partially observed problem
LSatislying condition (L)

Linear system (1) can be rewritten as

d(Wq(t), Va(t) ®J)
d(N); = (W4 (1), Wa(t) @ J) - (3@ AA(L))
where
V4 0 92 919
a9 (V2 —v1) a2 G100 g
0 0 — —(192 - 191)

0 a)\uz 0 —Q
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L Partially observed problem
LSatislying condition (L)

Clearly, system (5) has an explicit solution:
(W1(1), Va(t) @J) = (Zd,0) - (P2 1d)G (P~ @ Id)
where G = diag (G1, Gz, G3, G4) and

aGi(t) |~ o .
W—AX,G,A G,(O)—Id, I—‘|...47
with (x;);_; , the eigenvalues of matrix J and P the matrix of its
eigenvectors.



Asymptotic properties of MLE for partially observed diffusion system
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LSatislying condition (L)

For 9y =9 + \‘}—1? and 9o =9 + \j—& we can compute the eigenvalues
and we obtain:

2
U —u 1
Xy = 191+C1M+0<_>’

T T
Xo = —191+02M+0(1T),
X3 = a2+C3M+o<lT>,
X2 = —042+C4M+0(1T>,

2 2
where C1 = Taiﬁ?ﬂ)z (012 + 20[19) and Cg = mao%ﬂ)z (—192 — 2(1’[9)
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L Partially observed problem
LSatislying condition (L)

It can be easily checked that

det (Gi.Gs) <1 +0 (lr»

exp((x1 +x3)T) (1 +o0 <1T>) .

detw .. (T)

Finally,

I|m Lr(ad+ —=,0+ —= t2

\/_ i (X1+X3—042—191)T}

= 7_|En(><J exp {— (C1 + C3) (U2 — U4 )2}

= exp (—aMI(ﬁ)) .
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LCaseH < %

CASEH < }

Thanks to Jost, for H < 1/2, we have the link between fBm processes
of indexes Hand 1 — H:

W = (r(ZTIL)r(S - 2H))

1
2

t
/ (t— s Tawl-H.
0
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LCaseH < %

CASEH < }

Thanks to Jost, for H < 1/2, we have the link between fBm processes
of indexes Hand 1 — H:

Wl = <ﬂr(3 - 2H)> z /t (t—s)*" T dw".
I(2H) 0
The observation model becomes:
dX; = —vXdt+aw ", X% =0,
{ d¥%v =  pXdt+av/ ", Yo=0,

with, for instance,

X; = (%r(s - 2H)>; /Ot (t—s)" 2" ax;.
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L Dependent noises case

DEPENDENT NOISES CASE

aXy = —uvXdt+dW;, Xo=0,
Yo = pXi+ Wi,
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L Dependent noises case

DEPENDENT NOISES CASE

aX;
aY;

—0Xedt + dW; , Xo=0,
—pdXedt + pdWs + dVi
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L Partially observed problem

L Dependent noises case

DEPENDENT NOISES CASE

aXy = —9Xdt + dW, Xo =0,
aY; = —pdXedt+ pdWi + dVs,
In this case, we can show that,
d t * >k *
(1+ uz)gf#ggt) = — X (Avcc + e, cAY) + bb* — (1) Nre e c -
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L Dependent noises case
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