ASYMPTOTIC PROPERTIES OF MAXIMUM LIKELIHOOD ESTIMATOR FOR PARTIALLY OBSERVED FRACTIONAL DIFFUSION SYSTEM

Alexandre Brouste & Marina Kleptsyna

Statistique Asymptotique des Processus Stochastiques VII

OUTLINE

INTRODUCTION Estimation problem Result

COMPLETE OBSERVATION PROBLEM Transformation of the observation model Proof of Theorem 1

PARTIALLY OBSERVED PROBLEM Sketch of the proof of Theorem 2 Satisfying condition (L) Case $H < \frac{1}{2}$ Dependent noises case

-Introduction

Estimation problem

Problem

We consider the linear dynamic

(

$$dX_t = -\vartheta X_t dt \qquad X_0 = 0, \quad t \ge 0. \tag{1}$$

Introduction

Estimation problem

PROBLEM

We consider the linear dynamic

$$dX_t = -\vartheta X_t dt + dW_t^H, \quad X_0 = 0, \quad t \ge 0,$$
(1)

where $W^H = (W_t^H, t \ge 0)$ is a normalized fBm with Hurst parameter *H* of covariance function

$$\mathbf{E} W_{s}^{H} W_{t}^{H} = rac{1}{2} \left(|s|^{2H} + |t|^{2H} - |s-t|^{2H}
ight) \,.$$

Introduction

Estimation problem

PROBLEM

We consider the linear dynamic

$$dX_t = -\vartheta X_t dt + dW_t^H, \quad X_0 = 0, \quad t \ge 0.$$
(1)

where $W^H = (W_t^H, t \ge 0)$ is a normalized fBm with Hurst parameter *H* of covariance function

$$\mathbf{E} W_s^H W_t^H = \frac{1}{2} \left(|s|^{2H} + |t|^{2H} - |s - t|^{2H} \right) .$$

System (1) has a uniquely defined solution process *X* which is Gaussian but neither Markovian nor a semimartingale for $H \neq \frac{1}{2}$.

Introduction

- Estimation problem

PROBLEM

We consider the linear dynamic

$$dX_t = -\vartheta X_t dt + dW_t^H, \quad X_0 = 0, \quad t \ge 0.$$
(1)

- ▶ $Y^T = X^T = (X_t, 0 \le t \le T)$ (complete observation problem) ;
- ► Y^T defined by $dY_t = \mu X_t dt + dV_t^H$, $Y_0 = 0$, $0 \le t \le T$. (partially observed problem)
- ► Y^T defined by $Y_t = \mu X_t + V_t^H$ $0 \le t \le T$. (partially observed problem with dependent noise)

Introduction

- Estimation problem

PROBLEM

We consider the linear dynamic

$$dX_t = -\vartheta X_t dt + dW_t^H, \quad X_0 = 0, \quad t \ge 0.$$
(1)

- $Y^T = X^T = (X_t, 0 \le t \le T)$ (complete observation problem);
- ► Y^T defined by $dY_t = \mu X_t dt + dV_t^H$, $Y_0 = 0$, $0 \le t \le T$. (partially observed problem)
- ► Y^T defined by $Y_t = \mu X_t + V_t^H$ $0 \le t \le T$. (partially observed problem with dependent noise)

Introduction

- Estimation problem

PROBLEM

We consider the linear dynamic

$$dX_t = -\vartheta X_t dt + dW_t^H, \quad X_0 = 0, \quad t \ge 0.$$
(1)

- $Y^T = X^T = (X_t, 0 \le t \le T)$ (complete observation problem);
- ► Y^T defined by $dY_t = \mu X_t dt + dV_t^H$, $Y_0 = 0$, $0 \le t \le T$. (partially observed problem)
- ► Y^T defined by $Y_t = \mu X_t + V_t^H$ $0 \le t \le T$. (partially observed problem with dependent noise)

Introduction

- Estimation problem

PROBLEM

We consider the linear dynamic

$$dX_t = -\vartheta X_t dt + dW_t^H, \quad X_0 = 0, \quad t \ge 0.$$
(1)

- $Y^T = X^T = (X_t, 0 \le t \le T)$ (complete observation problem);
- ► Y^T defined by $dY_t = \mu X_t dt + dV_t^H$, $Y_0 = 0$, $0 \le t \le T$. (partially observed problem)
- ► Y^T defined by $Y_t = \mu X_t + V_t^H$ $0 \le t \le T$. (partially observed problem with dependent noise)

Introduction

Estimation problem

PROBLEM

We consider the linear dynamic

$$\begin{array}{rcl} dX_t &=& -\vartheta X_t \, dt + dW_t^H, & X_0 = 0, & t \geq 0. \\ dY_t &=& \mu X_t \, dt + dV_t^H, & Y_0 = 0, & t \geq 0. \end{array}$$

For a fixed value of the parameter ϑ , let $\mathbf{P}_{\vartheta}^{T}$ denote the probability measure, induced by (X^{T}, Y^{T}) on the function space $\mathcal{C}_{[0,T]} \times \mathcal{C}_{[0,T]}$ and let \mathcal{F}_{t}^{Y} be the natural filtration of Y, $\mathcal{F}_{t}^{Y} = \sigma (Y_{s}, 0 \leq s \leq t)$.

Introduction

- Estimation problem

PROBLEM

We consider the linear dynamic

$$\begin{array}{rcl} dX_t &=& -\vartheta X_t \, dt + dW_t^H, & X_0 = 0, & t \geq 0. \\ dY_t &=& \mu X_t \, dt + dV_t^H, & Y_0 = 0, & t \geq 0. \end{array}$$

For a fixed value of the parameter ϑ , let $\mathbf{P}_{\vartheta}^{T}$ denote the probability measure, induced by (X^{T}, Y^{T}) on the function space $\mathcal{C}_{[0,T]} \times \mathcal{C}_{[0,T]}$ and let \mathcal{F}_{t}^{Y} be the natural filtration of Y, $\mathcal{F}_{t}^{Y} = \sigma (Y_{s}, 0 \leq s \leq t)$.

Let $\mathcal{L}(\vartheta, Y^T)$ be the likelihood, *i.e.* the Radon-Nikodym derivative of \mathbf{P}_{ϑ}^T , restricted to \mathcal{F}_T^Y with respect to some reference measure on $\mathcal{C}_{[0,T]}$.

Introduction

Result

THEOREM (PARTIALLY OBSERVED PROBLEM)

The MLE $\hat{\vartheta}_{\mathcal{T}}$ is uniformly on compacts $\mathbb{K}\subset\mathbb{R}^+_*$ consistent, uniformly asymptotically normal

$$\sqrt{T}\left(\hat{\vartheta}_{T}-\vartheta\right)\overset{\textit{law}}{\Longrightarrow}\mathcal{N}\left(0,\mathcal{I}(\vartheta)^{-1}\right)$$

where $\mathcal{I}(\vartheta)$ does not depend on *H*:

$$\mathcal{I}(artheta) = rac{1}{2artheta} - rac{2artheta}{lpha(lpha+artheta)} + rac{artheta^2}{2lpha^3}$$

and $\alpha = \sqrt{\mu^2 + \vartheta^2}$. We have the uniform on $\vartheta \in \mathbb{K}$ convergence of the moments: for any p > 0,

$$\lim_{T\to\infty}\mathbf{E}_{\vartheta}\left|\sqrt{T}\left(\hat{\vartheta}_{T}-\vartheta\right)\right|^{\rho}=\mathbf{E}\left|\mathcal{I}(\vartheta)^{-\frac{1}{2}}\zeta\right|^{\rho}\quad \zeta\sim\mathcal{N}(0,1)\,.$$

- Complete observation problem

INTRODUCTION Estimation problem Result

COMPLETE OBSERVATION PROBLEM Transformation of the observation model Proof of Theorem 1

PARTIALLY OBSERVED PROBLEM Sketch of the proof of Theorem 2 Satisfying condition (L) Case $H < \frac{1}{2}$ Dependent noises case

- Transformation of the observation model

TRANSFORMATION OF THE OBSERVATION MODEL

Even if fBm are not martingales, there are simple integral transformations which change the fBm to martingales.

- Transformation of the observation model

TRANSFORMATION OF THE OBSERVATION MODEL

Even if fBm are not martingales, there are simple integral transformations which change the fBm to martingales.

In particular, defining for 0 < s < t, $H > \frac{1}{2}$,

$$k_H(t,s) = \kappa_H^{-1} s^{\frac{1}{2}-H} \left(t-s\right)^{\frac{1}{2}-H}, \quad \kappa_H = 2H\Gamma\left(\frac{3}{2}-H\right)\Gamma\left(\frac{1}{2}+H\right),$$

$$M_t = \int_0^t k_H(t,s) dW_s^H ,$$

then the process $M = (M_t, t \ge 0)$ is a Gaussian martingale, the *funda*mental martingale.

- Transformation of the observation model

TRANSFORMATION OF THE OBSERVATION MODEL

Even if fBm are not martingales, there are simple integral transformations which change the fBm to martingales.

In particular, defining for 0 < s < t, $H > \frac{1}{2}$,

$$k_H(t,s) = \kappa_H^{-1} s^{\frac{1}{2}-H} \left(t-s\right)^{\frac{1}{2}-H}, \quad \kappa_H = 2H\Gamma\left(\frac{3}{2}-H\right)\Gamma\left(\frac{1}{2}+H\right),$$

$$M_t = \int_0^t k_H(t,s) dW_s^H ,$$

then the process $M = (M_t, t \ge 0)$ is a Gaussian martingale, the *funda*mental martingale.

Moreover, the natural filtration of the martingale M coincides with the natural filtration of the fBm W^{H} .

- Transformation of the observation model

TRANSFORMATION OF THE OBSERVATION MODEL

.

Let us introduce $Z = (Z_t, t \ge 0)$ the *fundamental semimartingale* associated to *X*, namely

$$Z_t = \int_0^t k_H(t,s) dX_s$$
 .

- Transformation of the observation model

TRANSFORMATION OF THE OBSERVATION MODEL

Let us introduce $Z = (Z_t, t \ge 0)$ the *fundamental semimartingale* associated to *X*, namely

$$Z_t = \int_0^t k_{\mathcal{H}}(t,s) dX_s$$
 .

Then
$$\zeta = (\zeta_t, t \ge 0) = \begin{pmatrix} Z_t \\ \int_0^t s^{2H-1} dZ_s \end{pmatrix}$$
 is the solution of
$$d\zeta_t = -\vartheta \lambda \mathbf{A}(t) \zeta_t d\langle M \rangle_t + b(t) dM_t, \quad \zeta_0 = 0,$$

.

with

$$\mathbf{A}(t) = \begin{pmatrix} t^{2H-1} & \mathbf{1} \\ t^{4H-2} & t^{2H-1} \end{pmatrix} \text{ and } b(t) = \begin{pmatrix} \mathbf{1} \\ t^{2H-1} \end{pmatrix}.$$

- Complete observation problem

Proof of Theorem 1

SKETCH OF THE PROOF

We have

$$\mathcal{L}(\vartheta, X^{T}) = \frac{d\mathbf{P}_{\vartheta}}{d\mathbf{P}_{0}} \left(\zeta^{T}\right)$$
$$= \exp\left(-\vartheta\lambda \int_{0}^{T} \left(\mathbf{A}\zeta_{s}\right)^{*} \mathbf{B}^{+} d\zeta_{s} - \frac{\vartheta^{2}\lambda^{2}}{2} \int_{0}^{T} \left(\mathbf{A}\zeta_{s}\right)^{*} \mathbf{B}^{+} \mathbf{A}\zeta_{s} d\langle M \rangle_{s}\right)$$

where $\mathbf{B}^+ = b (b^* b)^{-2} b^*$ and, by derivating w.r.t. ϑ

$$\sqrt{T}\left(\hat{\vartheta}_{T}-\vartheta\right)=-\frac{\frac{1}{\sqrt{T}}\int_{0}^{T}\lambda I(s)^{*}\zeta_{s}dM_{s}}{\frac{1}{T}\int_{0}^{T}\lambda^{2}\zeta_{s}^{*}I(s)I(s)^{*}\zeta_{s}d\langle M\rangle_{s}}\quad I(t)=\left(\begin{array}{c}t^{2H-1}\\1\end{array}\right).$$

- Complete observation problem

Proof of Theorem 1

From

$$\sqrt{T}\left(\hat{\vartheta}_{T}-\vartheta\right) = -\frac{\frac{1}{\sqrt{T}}\int_{0}^{T}\lambda I(s)^{*}\zeta_{s}dM_{s}}{\frac{1}{T}\int_{0}^{T}\lambda^{2}\zeta_{s}^{*}I(s)I(s)^{*}\zeta_{s}d\langle M\rangle_{s}} \quad I(t) = \begin{pmatrix} t^{2H-1} \\ 1 \end{pmatrix}.$$

- Complete observation problem

- Proof of Theorem 1

From

$$\sqrt{T}\left(\hat{\vartheta}_{T}-\vartheta\right) = -\frac{\frac{1}{\sqrt{T}}\int_{0}^{T}\lambda I(s)^{*}\zeta_{s}dM_{s}}{\frac{1}{T}\int_{0}^{T}\lambda^{2}\zeta_{s}^{*}I(s)I(s)^{*}\zeta_{s}d\langle M\rangle_{s}} \quad I(t) = \begin{pmatrix} t^{2H-1} \\ 1 \end{pmatrix}.$$

and the explicit expression of the Laplace transform

$$L_T(a,\vartheta) = \mathbf{E}_{\vartheta} \exp\left\{-a\lambda^2 \int_0^T \zeta_s^* l(s) l(s)^* \zeta_s d\langle M \rangle_s\right\}$$

that implies that

$$\lim_{T\to\infty} L_T\left(\frac{a}{T},\vartheta\right) = \exp\left\{-a\frac{1}{2\vartheta}\right\}\,,$$

- Complete observation problem

Proof of Theorem 1

From

$$\sqrt{T}\left(\hat{\vartheta}_{T}-\vartheta\right) = -\frac{\frac{1}{\sqrt{T}}\int_{0}^{T}\lambda I(s)^{*}\zeta_{s}dM_{s}}{\frac{1}{T}\int_{0}^{T}\lambda^{2}\zeta_{s}^{*}I(s)I(s)^{*}\zeta_{s}d\langle M\rangle_{s}} \quad I(t) = \begin{pmatrix} t^{2H-1} \\ 1 \end{pmatrix}.$$

we have the convergence of the following integrals:

$$\frac{1}{T} \int_0^T \lambda^2 \zeta_s^* I(s) I(s)^* \zeta_s d\langle M \rangle_s \longrightarrow \frac{1}{2\vartheta} \quad \text{a.s.},$$
$$\frac{1}{\sqrt{T}} \int_0^T \lambda I(s)^* \zeta_s dM_s \stackrel{law}{\Longrightarrow} \mathcal{N}\left(0, \frac{1}{2\vartheta}\right).$$

Partially observed problem

INTRODUCTION Estimation problem Result

COMPLETE OBSERVATION PROBLEM Transformation of the observation model Proof of Theorem 1

PARTIALLY OBSERVED PROBLEM Sketch of the proof of Theorem 2 Satisfying condition (L) Case $H < \frac{1}{2}$ Dependent noises case

Let us introduce $Z^{O} = (Z_{t}^{O}, t \ge 0)$ the fundamental semimartingale associated to Y, namely

$$Z^O_t = \int_0^t k_{H}(t,s) dY_s$$
 .

Let us introduce $Z^{O} = (Z_{t}^{O}, t \ge 0)$ the fundamental semimartingale associated to Y, namely

$$Z_t^O = \int_0^t k_H(t,s) dY_s.$$

It is governed by the dynamic

$$dZ_t^O = \mu \lambda I(t)^* \zeta_t d \langle N \rangle_t + dN_t, \quad Z_0^O = 0,$$

where, for recall, $\zeta = (\zeta_t, t \ge 0)$ is the solution of:

$$d\zeta_t = -\vartheta \lambda \mathbf{A}(t)\zeta_t d\langle M \rangle_t + b(t)dM_t, \quad \zeta_0 = 0,$$
$$I(t) = \begin{pmatrix} t^{2H-1} \\ 1 \end{pmatrix}, \quad \mathbf{A}(t) = \begin{pmatrix} t^{2H-1} & 1 \\ t^{4H-2} & t^{2H-1} \end{pmatrix} \quad \text{and} \quad b(t) = \begin{pmatrix} 1 \\ t^{2H-1} \end{pmatrix}$$

Classical Girsanov theorem and the general filtering theorem give the following likelihood **explicit** function

$$\mathcal{L}_{T}(\vartheta, Z^{O,T}) = \exp\left\{\mu\lambda \int_{0}^{T} I^{*}\pi_{t}(\zeta) dZ_{t}^{0} - \frac{\mu^{2}\lambda^{2}}{2} \int_{0}^{T} \pi_{t}(\zeta) I I^{*}\pi_{t}(\zeta)^{*} d\langle N \rangle_{t}\right\}$$

Classical Girsanov theorem and the general filtering theorem give the following likelihood **explicit** function

$$\mathcal{L}_{T}(\vartheta, Z^{O,T}) = \exp\left\{\mu\lambda \int_{0}^{T} I^{*}\pi_{t}(\zeta) dZ_{t}^{0} - \frac{\mu^{2}\lambda^{2}}{2} \int_{0}^{T} \pi_{t}(\zeta) II^{*}\pi_{t}(\zeta)^{*} d\langle N \rangle_{t}\right\}$$

where the conditional expectation $\pi_t(\zeta) = \mathbf{E}_{\vartheta}\left(\zeta_t | \mathcal{F}_t^{\mathsf{Y}}\right)$ satisfies:

$$d\pi_t(\zeta) = \left(-\vartheta\lambda \mathbf{A} - \mu^2\lambda^2\gamma_{\zeta,\zeta}II^*\right)\pi_t(\zeta)d\langle N\rangle_t + \mu\lambda\gamma_{\zeta\zeta}IdZ_t^O, \quad \pi_0(\zeta) = 0.$$

Classical Girsanov theorem and the general filtering theorem give the following likelihood **explicit** function

$$\mathcal{L}_{T}(\vartheta, Z^{O,T}) = \exp\left\{\mu\lambda \int_{0}^{T} I^{*}\pi_{t}(\zeta) dZ_{t}^{0} - \frac{\mu^{2}\lambda^{2}}{2} \int_{0}^{T} \pi_{t}(\zeta) II^{*}\pi_{t}(\zeta)^{*} d\langle N \rangle_{t}\right\}$$

where the conditional expectation $\pi_t(\zeta) = \mathbf{E}_{\vartheta} \left(\zeta_t | \mathcal{F}_t^{\mathsf{Y}} \right)$ satisfies:

$$d\pi_t(\zeta) = \left(-\vartheta\lambda \mathbf{A} - \mu^2\lambda^2\gamma_{\zeta,\zeta}II^*\right)\pi_t(\zeta)d\langle N\rangle_t + \mu\lambda\gamma_{\zeta\zeta}IdZ_t^O, \quad \pi_0(\zeta) = 0.$$

and the filtering error $\gamma_{\zeta,\zeta}(t) = \mathbf{E}_{\vartheta} \left(\zeta_t - \pi_t(\zeta)\right)^* \left(\zeta_t - \pi_t(\zeta)\right)$ is the solution of the Ricatti equation: $\gamma_{\zeta\zeta}(0) = 0$ and

$$d\gamma_{\zeta\zeta}(t) = \left(-artheta\lambda \left(\mathbf{A}\gamma_{\zeta\zeta} + \gamma_{\zeta\zeta}\mathbf{A}^*
ight) + bb^* - \mu^2\lambda^2\gamma_{\zeta\zeta}II^*\gamma_{\zeta\zeta}
ight) d\langle N
angle_t.$$

Conditional expectation dynamic can be rewritten in the equivalent form

$$d\pi_t(\zeta) = -artheta\lambda\mathbf{A}\pi_t(\zeta)d\langle N
angle_t + \mu\lambda\gamma_{\zeta\zeta} \mathit{I}d
u_t$$

where the innovation process ($\nu_t, t \ge 0$) is defined by:

$$d\nu_t = dZ_t^O - \mu \lambda I(t)^* \pi_t(\zeta) d\langle N \rangle_t, \quad \nu_0 = 0.$$

Conditional expectation dynamic can be rewritten in the equivalent form

$$d\pi_t(\zeta) = -\vartheta\lambda \mathbf{A}\pi_t(\zeta) d\langle \mathbf{N} \rangle_t + \mu\lambda\gamma_{\zeta\zeta} \mathbf{I} d\nu_t$$

For any $\vartheta_1 \in \mathbb{R}$, let us define by $\pi_t^{\vartheta_1}(\zeta)$ and by $\gamma_{\zeta\zeta}^{\vartheta_1}$ the solutions of equations, both where $\vartheta = \vartheta_1$.

Conditional expectation dynamic can be rewritten in the equivalent form

$$d\pi_t(\zeta) = -artheta\lambda \mathbf{A}\pi_t(\zeta) d\langle \mathbf{N}
angle_t + \mu\lambda\gamma_{\zeta\zeta} \mathit{I} d
u_t$$

For any $\vartheta_1 \in \mathbb{R}$, let us define by $\pi_t^{\vartheta_1}(\zeta)$ and by $\gamma_{\zeta\zeta}^{\vartheta_1}$ the solutions of equations, both where $\vartheta = \vartheta_1$.

Then, the likelihood ratio $\mathcal{Z}_{T}(\vartheta_{1}, \vartheta_{2}, Z^{O,T}) =$

$$= \frac{\mathcal{L}_{T}(\vartheta_{2},\zeta^{O,T})}{\mathcal{L}_{T}(\vartheta_{1},\zeta^{O,T})} = \frac{d\mathbf{P}_{\vartheta_{2}}^{T}}{d\mathbf{P}_{\vartheta_{1}}^{T}}/\mathcal{F}_{T}^{Y},$$

$$= \exp\left\{\mu\lambda\int_{0}^{T}I^{*}\delta_{\vartheta_{1},\vartheta_{2}}d\nu_{t}^{\vartheta_{1}} - \frac{\mu^{2}\lambda^{2}}{2}\int_{0}^{T}\delta_{\vartheta_{1},\vartheta_{2}}^{*}II^{*}\delta_{\vartheta_{1},\vartheta_{2}}d\langle N\rangle_{t}\right\}$$

where $\delta_{\vartheta_1,\vartheta_2}(t)$ is the difference $\pi_t^{\vartheta_2}(\zeta) - \pi_t^{\vartheta_1}(\zeta)$.

From Ibragimov-Khasminskii, it is sufficient to check the three following conditions: (here $\mathcal{Z}_T(u, Z^{O,T}) = \mathcal{Z}_T(\vartheta, \vartheta + \frac{u}{\sqrt{T}}, Z^{O,T})$)

(A.1)

$$\mathcal{Z}_{T}(u, Z^{O,T}) \stackrel{\text{law}}{\Longrightarrow} \underbrace{\exp\left\{u.\eta - \frac{u^{2}}{2}\mathcal{I}(\vartheta)\right\}}_{Z(u)} \text{ with } \eta \sim \mathcal{N}\left(0, \mathcal{I}(\vartheta)\right),$$

(A.2) for some $C, \chi > 0$: for all u such that $\vartheta + \frac{u}{\sqrt{\tau}} \in \mathbf{K} \subset \mathbb{R}^+_*$,

$$\mathbf{E}_{artheta}\sqrt{\mathcal{Z}_{T}(u,Z^{O,T})} \leq C\exp\left(-\chi u^{2}
ight) \,,$$

$$\mathbf{E}_{\vartheta}\left(\sqrt{\mathcal{Z}_{T}(u_{1}, Z^{O,T})} - \sqrt{\mathcal{Z}_{T}(u_{2}, Z^{O,T})}\right)^{2} \leq C|u_{1} - u_{2}|^{2}.$$

From Ibragimov-Khasminskii, it is sufficient to check the three following conditions: (here $\mathcal{Z}_T(u, Z^{O,T}) = \mathcal{Z}_T(\vartheta, \vartheta + \frac{u}{\sqrt{\tau}}, Z^{O,T})$)

(A.1)

$$\mathcal{Z}_{T}(u, Z^{O,T}) \stackrel{\text{law}}{\Longrightarrow} \underbrace{\exp\left\{u.\eta - \frac{u^{2}}{2}\mathcal{I}(\vartheta)\right\}}_{Z(u)} \text{ with } \eta \sim \mathcal{N}\left(\mathbf{0}, \mathcal{I}(\vartheta)\right),$$

(A.2) for some $C, \chi > 0$: for all u such that $\vartheta + \frac{u}{\sqrt{\tau}} \in \mathbf{K} \subset \mathbb{R}^+_*$,

$$\mathbf{E}_{artheta}\sqrt{\mathcal{Z}_{T}(u,Z^{O,T})} \leq C\exp\left(-\chi u^{2}
ight) \,,$$

$$\mathbf{E}_{\vartheta}\left(\sqrt{\mathcal{Z}_{T}(u_{1}, Z^{O,T})} - \sqrt{\mathcal{Z}_{T}(u_{2}, Z^{O,T})}\right)^{2} \leq C|u_{1} - u_{2}|^{2}.$$

From Ibragimov-Khasminskii, it is sufficient to check the three following conditions: (here $\mathcal{Z}_T(u, Z^{O,T}) = \mathcal{Z}_T(\vartheta, \vartheta + \frac{u}{\sqrt{T}}, Z^{O,T})$)

(A.1)

$$\mathcal{Z}_{T}(u, Z^{O,T}) \stackrel{\text{law}}{\Longrightarrow} \underbrace{\exp\left\{u.\eta - \frac{u^{2}}{2}\mathcal{I}(\vartheta)\right\}}_{Z(u)} \text{ with } \eta \sim \mathcal{N}\left(\mathbf{0}, \mathcal{I}(\vartheta)\right),$$

(A.2) for some $C, \chi > 0$: for all u such that $\vartheta + \frac{u}{\sqrt{\tau}} \in \mathbf{K} \subset \mathbb{R}^+_*$,

$$\mathbf{E}_{artheta}\sqrt{\mathcal{Z}_{T}(u, Z^{O,T})} \leq C \exp\left(-\chi u^{2}
ight) \,,$$

$$\mathbf{E}_{\vartheta}\left(\sqrt{\mathcal{Z}_{T}(u_{1}, Z^{O,T})} - \sqrt{\mathcal{Z}_{T}(u_{2}, Z^{O,T})}\right)^{2} \leq C|u_{1} - u_{2}|^{2}.$$

From Ibragimov-Khasminskii, it is sufficient to check the three following conditions: (here $\mathcal{Z}_T(u, Z^{O,T}) = \mathcal{Z}_T(\vartheta, \vartheta + \frac{u}{\sqrt{T}}, Z^{O,T})$)

(A.1)

$$\mathcal{Z}_{T}(u, Z^{O,T}) \stackrel{\text{law}}{\Longrightarrow} \underbrace{\exp\left\{u.\eta - \frac{u^{2}}{2}\mathcal{I}(\vartheta)\right\}}_{Z(u)} \text{ with } \eta \sim \mathcal{N}\left(\mathbf{0}, \mathcal{I}(\vartheta)\right),$$

(A.2) for some $C, \chi > 0$: for all u such that $\vartheta + \frac{u}{\sqrt{7}} \in \mathbf{K} \subset \mathbb{R}^+_*$,

$$\mathbf{E}_{artheta}\sqrt{\mathcal{Z}_{T}(u,Z^{O,T})}\leq C\exp\left(-\chi u^{2}
ight)\,,$$

$$\mathbf{E}_{\vartheta}\left(\sqrt{\mathcal{Z}_{T}(u_{1}, Z^{O,T})} - \sqrt{\mathcal{Z}_{T}(u_{2}, Z^{O,T})}\right)^{2} \leq C|u_{1} - u_{2}|^{2}.$$

Sketch of the proof of Theorem 2

Let $L_T(a, \vartheta_1, \vartheta_2)$ be the Laplace transform of the integral of the quadratic form of the difference $\delta_{\vartheta_1, \vartheta_2}(t) = \pi_t^{\vartheta_2}(\zeta) - \pi_t^{\vartheta_1}(\zeta)$:

$$L_{T}(\boldsymbol{a},\vartheta_{1},\vartheta_{2}) = \mathbf{E}_{\vartheta_{1}} \exp\left\{-a\frac{\mu^{2}\lambda^{2}}{2}\int_{0}^{T}\delta_{\vartheta_{1},\vartheta_{2}}^{*}\boldsymbol{l}\boldsymbol{l}^{*}\delta_{\vartheta_{1},\vartheta_{2}}\boldsymbol{d}\langle\boldsymbol{N}\rangle_{t}\right\}.$$

- Sketch of the proof of Theorem 2

Let $L_T(a, \vartheta_1, \vartheta_2)$ be the Laplace transform of the integral of the quadratic form of the difference $\delta_{\vartheta_1, \vartheta_2}(t) = \pi_t^{\vartheta_2}(\zeta) - \pi_t^{\vartheta_1}(\zeta)$:

$$L_{T}(\boldsymbol{a},\vartheta_{1},\vartheta_{2}) = \mathbf{E}_{\vartheta_{1}} \exp\left\{-a\frac{\mu^{2}\lambda^{2}}{2}\int_{0}^{T}\delta_{\vartheta_{1},\vartheta_{2}}^{*}II^{*}\delta_{\vartheta_{1},\vartheta_{2}}d\langle N\rangle_{t}\right\}.$$

Let us introduce the following condition (L): There exists $a_0 < 0$ such that for all $a > a_0$, $\forall u_1, u_2 \in \mathbb{R}$,

$$\lim_{T\to\infty} L_T(a,\vartheta+\frac{u_1}{\sqrt{T}},\vartheta+\frac{u_2}{\sqrt{T}}) = \exp\left(-a\frac{(u_2-u_1)^2}{2}\mathcal{I}(\vartheta)\right),$$

and for all T, $L_T(a, \vartheta + \frac{u_1}{\sqrt{T}}, \vartheta + \frac{u_2}{\sqrt{T}}) \leq C \exp\left(-a\chi \left(u_1 - u_2\right)^2\right)$.

-Sketch of the proof of Theorem 2

Let $L_T(a, \vartheta_1, \vartheta_2)$ be the Laplace transform of the integral of the quadratic form of the difference $\delta_{\vartheta_1, \vartheta_2}(t) = \pi_t^{\vartheta_2}(\zeta) - \pi_t^{\vartheta_1}(\zeta)$:

$$L_{T}(a,\vartheta_{1},\vartheta_{2}) = \mathbf{E}_{\vartheta_{1}} \exp\left\{-a\frac{\mu^{2}\lambda^{2}}{2}\int_{0}^{T}\delta_{\vartheta_{1},\vartheta_{2}}^{*}II^{*}\delta_{\vartheta_{1},\vartheta_{2}}d\langle N\rangle_{t}\right\}.$$

Let us introduce the following condition (L): There exists $a_0 < 0$ such that for all $a > a_0$, $\forall u_1, u_2 \in \mathbb{R}$,

$$\lim_{T \to \infty} L_T(a, \vartheta + \frac{u_1}{\sqrt{T}}, \vartheta + \frac{u_2}{\sqrt{T}}) = \exp\left(-a\frac{(u_2 - u_1)^2}{2}\mathcal{I}(\vartheta)\right),$$

and for all *T*, $L_T(a, \vartheta + \frac{u_1}{\sqrt{T}}, \vartheta + \frac{u_2}{\sqrt{T}}) \leq C \exp\left(-a\chi \left(u_1 - u_2\right)^2\right).$

PROPOSITION

Suppose condition (L) is satisfied. Then properties (A.1.–A.3) hold.

- Partially observed problem

Sketch of the proof of Theorem 2

PROOF OF PROPOSITION

Actually, (A.1) is a direct consequence of (L). Indeed, for $u_1 = 0$ and $u_2 = u$, we have:

$$\lim_{T\to\infty} L_T(a,\vartheta,\vartheta+\frac{u}{\sqrt{T}}) = \exp\left(-a\frac{u^2}{2}\mathcal{I}(\vartheta)\right)$$

- Partially observed problem

-Sketch of the proof of Theorem 2

PROOF OF PROPOSITION

Actually, (A.1) is a direct consequence of (L). Indeed, for $u_1 = 0$ and $u_2 = u$, we have:

$$\lim_{T\to\infty} L_T(a,\vartheta,\vartheta+\frac{u}{\sqrt{T}}) = \exp\left(-a\frac{u^2}{2}\mathcal{I}(\vartheta)\right)$$

It gives the convergence of the following integrals:

$$\frac{\mu^2 \lambda^2}{2} \int_0^T \delta^*_{\vartheta, u, T} II^* \delta_{\vartheta, u, T} d\langle N \rangle_t \longrightarrow \frac{u^2}{2} \mathcal{I}(\vartheta) \quad \text{a.s.}$$

and

$$\mu\lambda\int_{0}^{T}I^{*}\delta_{\vartheta,u,T}d\nu_{t}\overset{\textit{law}}{\Longrightarrow}\mathcal{N}\left(0,u^{2}\mathcal{I}\left(\vartheta\right)\right)\,,$$

which achieves the proof of (A.1).

- Partially observed problem

Sketch of the proof of Theorem 2

PROOF OF PROPOSITION

The condition (A.2) holds thanks to: $\mathbf{E}_{\vartheta}\sqrt{\mathcal{Z}_{T}(u)} =$

$$= \mathbf{E}_{\vartheta} \exp\left(\frac{\mu\lambda}{2} \int_{0}^{T} l^{*} \delta_{\vartheta,u,T} d\nu_{t}^{\vartheta} - \frac{\mu^{2}\lambda^{2}}{4} \int_{0}^{T} \delta_{\vartheta,u,T}^{*} ll^{*} \delta_{\vartheta,u,T} d\langle N \rangle_{t}\right)$$

$$= \mathbf{E}_{\vartheta} \exp\left(\frac{\mu\lambda}{2} \int_{0}^{T} l^{*} \delta_{\vartheta,u,T} d\nu_{t}^{\vartheta} - \frac{\mu^{2}\lambda^{2}p}{8} \int_{0}^{T} \delta_{\vartheta,u,T}^{*} ll^{*} \delta_{\vartheta,u,T} d\langle N \rangle_{t}\right) \times$$

$$\times \exp\left(\frac{\mu^{2}\lambda^{2}}{4} \left(\frac{p}{2} - 1\right) \int_{0}^{T} \delta_{\vartheta,u,T}^{*} ll^{*} \delta_{\vartheta,u,T} d\langle N \rangle_{t}\right)$$

$$\stackrel{(a)}{\leq} \left(\mathbf{E}_{\vartheta} \exp\left(\frac{\mu\lambda p}{2} \int_{0}^{T} l^{*} \delta_{\vartheta,u,T} d\nu_{t}^{\vartheta} - \frac{\mu^{2}\lambda^{2}p^{2}}{8} \int_{0}^{T} \delta_{\vartheta,u,T}^{*} ll^{*} \delta_{\vartheta,u,T} d\langle N \rangle_{t}\right)\right)^{\frac{1}{p}}$$

$$\times \left(\mathbf{E}_{\vartheta} \exp\left(\frac{\mu^{2}\lambda^{2}q}{4} \left(\frac{p}{2} - 1\right) \int_{0}^{T} \delta_{\vartheta,u,T}^{*} ll^{*} \delta_{\vartheta,u,T} d\langle N \rangle_{t}\right)\right)^{\frac{1}{q}}$$

- Partially observed problem

- Sketch of the proof of Theorem 2

PROOF OF PROPOSITION

To prove (A.3), let us note that

$$\begin{aligned} \mathbf{E}_{\vartheta} \left(\sqrt{\mathcal{Z}_{T}(u_{1})} - \sqrt{\mathcal{Z}_{T}(u_{2})} \right)^{2} &= 2 \left(1 - \mathbf{E}_{\vartheta} \mathcal{Z}_{T}(u_{1}) \sqrt{\frac{\mathcal{Z}_{T}(u_{2})}{\mathcal{Z}_{T}(u_{1})}} \right) \\ &= 2 \left(1 - \mathbf{E}_{\vartheta_{1}} \sqrt{\mathcal{Z}_{T}(\vartheta_{1}, \vartheta_{2})} \right) \\ &\leq 2 \left(1 - \exp\left(-\chi \left(u_{2} - u_{1} \right)^{2} \right) \right) \\ &\leq C |u_{1} - u_{2}|^{2} \,. \end{aligned}$$

- Partially observed problem

- Sketch of the proof of Theorem 2

PROOF OF PROPOSITION

To prove (A.3), let us note that

$$\begin{aligned} \mathbf{E}_{\vartheta} \left(\sqrt{\mathcal{Z}_{T}(u_{1})} - \sqrt{\mathcal{Z}_{T}(u_{2})} \right)^{2} &= 2 \left(1 - \mathbf{E}_{\vartheta} \mathcal{Z}_{T}(u_{1}) \sqrt{\frac{\mathcal{Z}_{T}(u_{2})}{\mathcal{Z}_{T}(u_{1})}} \right) \\ &= 2 \left(1 - \mathbf{E}_{\vartheta_{1}} \sqrt{\mathcal{Z}_{T}(\vartheta_{1}, \vartheta_{2})} \right) \\ &\leq 2 \left(1 - \exp\left(-\chi \left(u_{2} - u_{1} \right)^{2} \right) \right) \\ &\leq C |u_{1} - u_{2}|^{2} \,. \end{aligned}$$

Partially observed problem

- Satisfying condition (L)

SATISFYING CONDITION (L)

The computation of the Laplace transform is based on the Cameron-Martin formula.

Partially observed problem

- Satisfying condition (L)

SATISFYING CONDITION (L)

The computation of the Laplace transform is based on the Cameron-Martin formula.

Let us recall that, for $\vartheta = \vartheta_1$, the optimal filter $\pi_t^{\vartheta_1}(\zeta)$ and the difference $\delta_{\vartheta_1,\vartheta_2}(t) = \pi_t^{\vartheta_2}(\zeta) - \pi_t^{\vartheta_1}(\zeta)$ are governed by:

$$d ilde{\pi}_t = \mathcal{A}(t) ilde{\pi}_t d\langle N \rangle_t + \mathcal{B}(t) d
u_t^{\vartheta_1},$$

where
$$\tilde{\pi}_t = \begin{pmatrix} \pi_t^{\vartheta_1}(\zeta) \\ \delta_{\vartheta_1,\vartheta_2} \end{pmatrix}$$
, $\underline{\mathbf{A}}^{\vartheta_2}(t) = -\vartheta_2 \lambda \mathbf{A}(t) - \mu^2 \lambda^2 \gamma_{\zeta,\zeta}^{\vartheta_2} II^*$,

$$\mathbf{D}_{\gamma}^{\vartheta_1,\vartheta_2} = \gamma_{\zeta\zeta}^{\vartheta_2}(t) - \gamma_{\zeta\zeta}^{\vartheta_1}(t) \,,$$

$$\mathcal{A}(t) = \begin{pmatrix} -\vartheta_1 \lambda \mathbf{A} & \mathbf{0} \\ -(\vartheta_2 - \vartheta_1) \lambda \mathbf{A} & \underline{\mathbf{A}}^{\vartheta_2} \end{pmatrix} \text{ and } \mathcal{B}(t) = \mu \lambda \begin{pmatrix} \gamma_{\zeta\zeta}^{\vartheta_1}(t) \\ \mathbf{D}_{\gamma}^{\vartheta_1,\vartheta_2} \end{pmatrix} I(t).$$

Partially observed problem

- Satisfying condition (L)

SATISFYING CONDITION (L)

Then,
$$L_{T}(a, \vartheta_{1}, \vartheta_{2}) =$$

$$= \mathbf{E}_{\vartheta_{1}} \exp\left\{-a \frac{\mu^{2} \lambda^{2}}{2} \int_{0}^{T} \delta_{\vartheta_{1}, \vartheta_{2}}^{*} II^{*} \delta_{\vartheta_{1}, \vartheta_{2}} d\langle N \rangle_{t}\right\}$$

$$= \mathbf{E}_{\vartheta_{1}} \exp\left\{-a \frac{\mu^{2} \lambda^{2}}{2} \int_{0}^{T} \left(\begin{array}{c} \pi_{t}^{\vartheta_{1}}(\zeta) \\ \delta_{\vartheta_{1}, \vartheta_{2}} \end{array}\right)^{*} \mathcal{M}(t) \left(\begin{array}{c} \pi_{t}^{\vartheta_{1}}(\zeta) \\ \delta_{\vartheta_{1}, \vartheta_{2}} \end{array}\right) d\langle N \rangle_{t}\right\}$$

$$= \exp\left\{-a \frac{\mu^{2} \lambda^{2}}{2} \int_{0}^{T} \operatorname{trace}(\mathcal{H}(t)\mathcal{M}(t)) d\langle N \rangle_{t}\right\},$$

where $\mathcal{M}(t) = \begin{pmatrix} 0 & 0 \\ 0 & ll^* \end{pmatrix}$ and $\mathcal{H}(t)$ is the solution of Ricatti differential equation: $\mathcal{H}(0) = 0$,

 $\frac{d\mathcal{H}(t)}{d\langle N\rangle_t} = \mathcal{A}(t)\mathcal{H}(t) + \mathcal{H}(t)\mathcal{A}(t)^* + \mathcal{B}(t)\mathcal{B}(t)^* - a\lambda^2\mu^2\mathcal{H}(t)\mathcal{M}(t)\mathcal{H}(t)\,.$

Partially observed problem

- Satisfying condition (L)

SATISFYING CONDITION (L)

It is known that solution $\mathcal{H}(t)$ can be written as $\mathcal{H}(t) = \Psi_1^{-1}(t)\Psi_2(t)$, where the pair of 4×4 matrices (Ψ_1, Ψ_2) satisfies the system of linear differential equations:

$$\begin{array}{lll} \displaystyle \frac{d\Psi_1(t)}{d\langle N\rangle_t} &=& -\Psi_1(t)\mathcal{A}(t) + a\lambda^2\mu^2\Psi_2(t)\mathcal{M}(t) \quad \Psi_1(0) = \mathcal{I} d \\ \displaystyle \frac{d\Psi_2(t)}{d\langle N\rangle_t} &=& \Psi_1(t)\mathcal{B}(t)\mathcal{B}(t)^* + \Psi_2(t)\mathcal{A}^*(t) \quad \Psi_2(t) = 0 \,, \end{array}$$

and $\mathcal{I}d$ is the 4 \times 4 identity matrix.

Partially observed problem

- Satisfying condition (L)

SATISFYING CONDITION (L)

It is known that solution $\mathcal{H}(t)$ can be written as $\mathcal{H}(t) = \Psi_1^{-1}(t)\Psi_2(t)$, where the pair of 4×4 matrices (Ψ_1, Ψ_2) satisfies the system of linear differential equations:

$$\begin{array}{lll} \displaystyle \frac{d\Psi_1(t)}{d\langle N\rangle_t} &=& -\Psi_1(t)\mathcal{A}(t) + a\lambda^2\mu^2\Psi_2(t)\mathcal{M}(t) \quad \Psi_1(0) = \mathcal{I} d \\ \displaystyle \frac{d\Psi_2(t)}{d\langle N\rangle_t} &=& \Psi_1(t)\mathcal{B}(t)\mathcal{B}(t)^* + \Psi_2(t)\mathcal{A}^*(t) \quad \Psi_2(t) = 0 \,, \end{array}$$

and $\mathcal{I}d$ is the 4 \times 4 identity matrix.

Now,

$$\mathcal{L}_{T}(a,\vartheta_{1},\vartheta_{2}) = \exp\left\{-\frac{1}{2}\int_{0}^{T}\operatorname{trace}\mathcal{A}(t)d\langle N\rangle_{t}\right\}(\det\Psi_{1}(T))^{-\frac{1}{2}}.$$

Partially observed problem

- Satisfying condition (L)

The explicit representation of $\gamma^{\vartheta}_{\zeta,\zeta}$ imply that we can replace $\gamma^{\vartheta}_{\zeta,\zeta}$ by $\Delta^{-1}\gamma_{\infty}\Delta^{-1}$ in the coefficients of Equation and therefore

$$\lim_{T\to\infty} L_T(a,\vartheta_1,\vartheta_2) = \lim_{T\to\infty} \exp\left\{-\frac{1}{2}\int_0^T \operatorname{trace} \mathcal{A}_\infty(t) d\langle N \rangle_t\right\} (\det \Psi_{1,\infty}(T))^{-\frac{1}{2}}$$

where

$$\begin{array}{lll} \displaystyle \frac{d\Psi_{1,\infty}(t)}{d\langle N\rangle_t} &=& -\Psi_{1,\infty}(t)\mathcal{A}_{\infty}(t) + a\lambda^2\mu^2\Psi_{2,\infty}(t)\mathcal{M}(t) \quad \Psi_{1,\infty}(0) = \mathcal{I}d \\ \displaystyle \frac{d\Psi_{2,\infty}(t)}{d\langle N\rangle_t} &=& \Psi_1(t)\mathcal{B}_{\infty}(t)\mathcal{B}_{\infty}(t)^* + \Psi_{2,\infty}(t)\mathcal{A}_{\infty}^*(t) \quad \Psi_{2,\infty}(t) = 0 \,, \end{array}$$

with

$$\mathcal{A}_{\infty}(t) = \begin{pmatrix} -\vartheta_1 & \mathbf{0} \\ -(\vartheta_2 - \vartheta_1) & -\alpha_2 \end{pmatrix} \otimes \lambda \mathbf{A}, \quad \mathcal{B}_{\infty}\mathcal{B}_{\infty}^* = \begin{pmatrix} g_1^2 & g_1g_2 \\ g_1g_2 & g_2^2 \end{pmatrix} \otimes \lambda \mathbf{AJ},$$

 $\alpha_2 = \sqrt{\vartheta_2^2 + \mu^2}, g_1 = \frac{\mu}{\sqrt{\lambda}(\alpha_1 + \vartheta_1)}, g_2 = \frac{\mu}{\sqrt{\lambda}(\alpha_2 + \vartheta_2)} - \frac{\mu}{\sqrt{\lambda}(\alpha_1 + \vartheta_1)}$ and \otimes is the Kronecker product.

- Satisfying condition (L)

Linear system (1) can be rewritten as

$$\frac{d\left(\Psi_{1}(t),\Psi_{2}(t)\otimes\mathbf{J}\right)}{d\langle N\rangle_{t}}=\left(\Psi_{1}(t),\Psi_{2}(t)\otimes\mathbf{J}\right)\cdot\left(\beth\otimes\lambda\mathbf{A}(t)\right)$$

where

$$\Box = \begin{pmatrix} \vartheta_{1} & 0 & g_{1}^{2} & g_{1}g_{2} \\ (\vartheta_{2} - \vartheta_{1}) & \alpha_{2} & g_{1}g_{2} & g_{2}^{2} \\ 0 & 0 & -\vartheta_{1} & -(\vartheta_{2} - \vartheta_{1}) \\ 0 & a\lambda\mu^{2} & 0 & -\alpha_{2} \end{pmatrix}$$

.

- Satisfying condition (L)

Clearly, system (5) has an explicit solution:

$$(\Psi_1(t), \Psi_2(t) \otimes \mathbf{J}) = (\mathcal{I}d, 0) \cdot (\mathcal{P} \otimes \mathbf{Id}) \mathcal{G} (\mathcal{P}^{-1} \otimes \mathbf{Id})$$

where $\mathcal{G}=\text{diag}\left(\boldsymbol{G}_{1},\boldsymbol{G}_{2},\boldsymbol{G}_{3},\boldsymbol{G}_{4}\right)$ and

$$\frac{d\mathbf{G}_i(t)}{d\langle N\rangle_t} = \lambda x_i \mathbf{G}_i \mathbf{A} \quad \mathbf{G}_i(0) = \mathbf{Id} \,, \quad i = 1 \dots 4 \,,$$

with $(x_i)_{i=1...4}$ the eigenvalues of matrix \beth and \mathcal{P} the matrix of its eigenvectors.

Partially observed problem

- Satisfying condition (L)

For $\vartheta_1 = \vartheta + \frac{u_1}{\sqrt{T}}$ and $\vartheta_2 = \vartheta + \frac{u_2}{\sqrt{T}}$, we can compute the eigenvalues and we obtain:

$$\begin{aligned} x_1 &= \vartheta_1 + C_1 \frac{(u_2 - u_1)^2}{T} + o\left(\frac{1}{T}\right) \,, \\ x_2 &= -\vartheta_1 + C_2 \frac{(u_2 - u_1)^2}{T} + o\left(\frac{1}{T}\right) \,, \\ x_3 &= \alpha_2 + C_3 \frac{(u_2 - u_1)^2}{T} + o\left(\frac{1}{T}\right) \,, \\ x_4 &= -\alpha_2 + C_4 \frac{(u_2 - u_1)^2}{T} + o\left(\frac{1}{T}\right) \,, \end{aligned}$$

where $C_1 = \frac{a_{\mu}^2}{2\vartheta \alpha^2 (\alpha + \vartheta)^2} \left(\alpha^2 + 2\alpha \vartheta \right)$ and $C_3 = \frac{a_{\mu}^2}{2\alpha^3 (\alpha + \vartheta)^2} \left(-\vartheta^2 - 2\alpha \vartheta \right)$.

- Partially observed problem

-Satisfying condition (L)

It can be easily checked that

$$det \Psi_{1,\infty}(T) = det (G_1.G_3) \left(1 + o\left(\frac{1}{T}\right)\right)$$
$$= exp ((x_1 + x_3)T) \left(1 + o\left(\frac{1}{T}\right)\right).$$

Finally,

$$\lim_{T \to \infty} L_T(a, \vartheta + \frac{u_1}{\sqrt{T}}, \vartheta + \frac{u_2}{\sqrt{T}}) = \lim_{T \to \infty} \exp\left\{-\frac{1}{2}(x_1 + x_3 - \alpha_2 - \vartheta_1)T\right\}$$
$$= \lim_{T \to \infty} \exp\left\{-\frac{1}{2}(C_1 + C_3)(u_2 - u_1)^2\right\}$$
$$= \exp\left(-a\frac{(u_2 - u_1)^2}{2}\mathcal{I}(\vartheta)\right).$$

Case $H < \frac{1}{2}$

Case $H < \frac{1}{2}$

Thanks to Jost, for H < 1/2, we have the link between fBm processes of indexes *H* and 1 - H:

$$W_t^H = \left(\frac{2H}{\Gamma(2H)}\Gamma(3-2H)\right)^{\frac{1}{2}}\int_0^t (t-s)^{2H-1} dW_s^{1-H}.$$

 \Box Case $H < \frac{1}{2}$

Case $H < \frac{1}{2}$

Thanks to Jost, for H < 1/2, we have the link between fBm processes of indexes *H* and 1 - H:

$$W_t^H = \left(\frac{2H}{\Gamma(2H)}\Gamma(3-2H)\right)^{\frac{1}{2}} \int_0^t (t-s)^{2H-1} \, dW_s^{1-H}$$

The observation model becomes:

$$\left\{ \begin{array}{rcl} d\tilde{X}_t &=& -\vartheta \tilde{X}_t dt + dw_t^{1-H}\,, & \tilde{X}_0 = 0\,, \\ d\tilde{Y}_t &=& \mu \tilde{X}_t dt + dv_t^{1-H}\,, & \tilde{Y}_0 = 0\,, \end{array} \right.$$

with, for instance,

$$\tilde{X}_t = \left(\frac{2H}{\Gamma(2H)}\Gamma(3-2H)\right)^{\frac{1}{2}}\int_0^t (t-s)^{1-2H}\,dX_s\,.$$

- Partially observed problem

Dependent noises case

DEPENDENT NOISES CASE

$$\begin{cases} dX_t = -\vartheta X_t dt + dW_t, \quad X_0 = 0, \\ Y_t = \mu X_t + V_t, \end{cases}$$

- Partially observed problem

Dependent noises case

DEPENDENT NOISES CASE

$$\begin{cases} dX_t = -\vartheta X_t dt + dW_t, & X_0 = 0, \\ dY_t = -\mu \vartheta X_t dt + \mu dW_t + dV_t, \end{cases}$$

- Partially observed problem

Dependent noises case

DEPENDENT NOISES CASE

$$\begin{cases} dX_t = -\vartheta X_t dt + dW_t, & X_0 = 0, \\ dY_t = -\mu \vartheta X_t dt + \mu dW_t + dV_t, \end{cases}$$

In this case, we can show that,

$$(1+\mu^2)\frac{d\gamma_{\zeta,\zeta}(t)}{d\langle N\rangle_t} = -\vartheta\lambda\left(\mathbf{A}\gamma_{\zeta,\zeta}+\gamma_{\zeta,\zeta}\mathbf{A}^*\right) + bb^* - (\mu\vartheta)^2\lambda^2\gamma_{\zeta,\zeta}II^*\gamma_{\zeta,\zeta}\,.$$

Partially observed problem

- Dependent noises case

REFERENCES

- M.L. Kleptsyna and A. Le Breton (2002) Extension of the Kalman-Bucy filter to Elementary Linear Systems with Fractional Brownian Noises, Stat. Inf. Stoch. Proc., 5:249–271.
- A. Brouste and M.L. Kleptsyna, Asymptotic properties of Maximum Likelihood Estimator for partially observed fractional diffusion system, submitted, http://www.univ-lemans.fr/ sciences/statist/download/Kleptsyna/BrKl.pdf.
- A. Brouste, Asymptotic properties of MLE for partially observed fractional diffusion system with dependent noises, preprint, http://www.univ-lemans.fr/sciences/statist/ download/Brouste/B09a.pdf

Thank you for your attention