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Outline

Part I: Introduction
• Motivation and basic concepts
• Penalized LSE and aggregation
• Bayesian interpretation

Part II: Risk bounds
• General oracle inequality
• Sparsity oracle inequality
• Discussion

Part III: Langevin Monte-Carlo
• Diffusions and stationarity
• Implementation
• Numerical experiments
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Part I: Introduction
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High-dimensional data

Technological innovations allow us to collect massive amount
of data with low cost:

• microarray data or magnetic resonance images in
biomedical studies,

• high resolution satellite imagery used in natural resource
discovery and agriculture,

• financial data (option prices, bond yields, etc) used in
financial engineering and risk management.

Statistical methods are vital for analyzing these data :

• finding sparse representations,
• performing variable selection,
• prediction and model estimation.
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Curse of dimensionality and sparsity

High-dimensionality has significantly challenged traditional
statistical theory.

• In linear regression, the accuracy of the LSE is of order
M/n, where M is the number of covariates.

• Applied statisticians are often interested in the case
where M is much larger than n.

Sparsity assumption provides compelling theoretical framework
for dealing with high dimension.

• Even if the number of parameters describing the model
in general setup is large, only few of them contribute
to the process of data generation.

• No a priori information on the set of relevant parameters
is available. It is only known that the cardinality of the set
of relevant parameters is small.
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Basic concepts

. Data: Dn = {(Z1,Y1), . . . , (Zn,Yn)} ⊂ Z × R.

. Model: {Zi} are deterministic and for some function
f ∈ F0,

ξi = Yi − f (Zi ), i = 1, . . . ,n

are iid with zero mean and finite variance σ2.

. Loss function: for a set F and for every g ∈ F ,

`(f ,g) =
1
n

n∑
i=1

[g(Zi )− f (Zi )]2 := ‖g − f‖2
n,

is the loss we suffer when we use a procedure g.

. Unbiased estimate: for every fixed g,

R[Dn,g] =
1
n

n∑
i=1

[Yi − g(Zi )]2 − σ2

is an unbiased estimator of the loss `(f ,g).
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Penalized RSS minimization

. Extended parametric setup: we are given a vast but
parametric family FΛ = {fλ : λ ∈ Λ}, with Λ ⊂ RM such
that d‖·‖n (f ,FΛ) is small.

. Penalized RSS estimator: f̂ PLSE = fλ̂PLSE with

λ̂PLSE = arg min
λ∈Λ

(
R[Dn, fλ]︸ ︷︷ ︸

data fidelity term

+ Pen(λ)︸ ︷︷ ︸
a priori penalization

)
.

. Common penalties:

• Pen(λ) = κ‖λ‖0 – BIC penalty,
• Pen(λ) = κ‖λ‖2

2 – ridge penalty,
• Pen(λ) = κ‖λ‖1 – Lasso penalty.
• SCAD, Elastic Net, etc.
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Exponentially weighted aggregate (EWA)

. Main idea: extend the search space and change the
penalty.

. Search space: P =
{

p : prob. s.t.
∫

Λ
‖fλ‖2

n p(dλ) <∞
}

.

. Rewriting PLSE: f̂ PLSE =
∫

Λ
fλ π̂PLSE(dλ) with

π̂PLSE = arg min
p∈P

{∫
Λ

R[Dn, fλ] p(dλ) +

∫
Λ

Pen(λ) p(dλ)
}
.

. KL-penalization: Let π ∈ P be a prior on Λ. Define the
EWA as f̂ EWA

n =
∫

Λ
fλπ̂n(dλ) where

π̂n = arg min
p∈P

{∫
Λ

R[Dn, fλ] p(dλ) + κK(p,π)
}
.

. Explicit form: π̂n(dλ) ∝ exp
{
− κ−1R[Dn, fλ]

}
π(dλ) .
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Bayesian interpretation

. Terminology: π̂n – posterior, κ – temperature.

. Bayesian posterior mean: If we consider the parametric
model

Yi = fλ(Zi ) + ξ̃i , i = 1, . . . ,n,

with ξ̃i
iid∼ N (0,nκ/2) and prior π on the parameter set Λ,

then π̂n is the posterior probability and f̂ EWA
n is the

posterior mean:

f̂ EWA
n (Zi ) = Eπ[fλ(Zi )|Dn], i = 1, . . . ,n.

. Notation: In what follows, we take

κ = β/n.
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Part II: Risk bounds
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General oracle inequality: assumptions

Assumption N
For any γ > 0 small enough, ∃ probability space and
2 r. v. ξ and ζ defined on it such that

i) ξ has the same distribution as the errors ξi ,
ii) ξ + ζ

D
= (1 + γ)ξ and E[ζ|ξ] = 0,

iii) ∃ bounded Borel function v : R→ R+ such that,

E[etζ |ξ = a] ≈ et2γv(a), γ → 0

for every a and ∀t ∈ [−t0, t0].

Assumption L
The set Λ satisfies

(λ, λ′) ∈ Λ2 =⇒ max
i
|fλ(Zi )− fλ′(Zi )| ≤ L

for some L ∈ [0,∞].
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General oracle inequality

Theorem (PAC-Bayesian bound)

Let Assumptions N and L be satisfied. Then for any prior
π and for any β ≥ max(4‖v‖∞,2L/t0) we have

Ef [`(f̂ EWA
n , f )] ≤ inf

p∈PΛ

(∫
Λ
`(fλ, f ) p(dλ) +

βK(p, π)

n

)
, (1)

where K(p, π) stands for the Kullback-Leibler divergence

K(p, π) =

{∫
Λ log

( dp
dπ (λ)

)
p(dλ), if p � π,

+∞, otherwise
.
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Comments

• If the cardinality of Λ is finite, say Λ =
{

1, . . . ,N
}

, and π is
uniform, then inequality (1) implies that

Ef [`(f̂ EWA
n , f )] ≤ min

j=1,...,N
`(fj , f ) +

β log N
n

.

This type of inequalities are usually called oracle
inequalities.

• If the noise is Gaussian, Rademacher, Uniform or a
countable convolution of these distributions, then one can
take L = +∞ and (1) holds for every β ≥ 4E[ξ2

1 ].

• For regression with Gaussian noise and finite set Λ,
bounds similar to (1) have been established in an earlier
work by Leung and Barron (2006).
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Linear family and sparsity prior

. Aim: by a proper choice of the prior, to adapt the EWA to
the setting of sparse estimation.

. Linear family: Assume that ‖φj‖n = 1 and

FΛ =
{ M∑

j=1

λjφj : λ ∈ RM
}
.

. Huber function: Define

ω(t) =

{
t2, if |t | ≤ 1
2|t | − 1, otherwise

.

. Sparsity prior: Let τ, α and R be > 0, we define the prior

π(dλ) ∝
{ M∏

j=1

e−ω(αλj )

(τ2 + λ2
j )2

}
dλ.
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Does π favor the sparsity ?

The scatter plots of a sample of size 10000 drawn from scaled
t(3)-distribution (left panel), Laplace distribution (central panel) and
Gaussian distribution (right panel). In all three cases the location
parameter is equal to zero and the scale parameter is set to 10−2.
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Sparsity Oracle inequality

Theorem
If Assumption N holds with t0 = +∞, then for every β ≥ 4‖v‖∞
the EWA based on the sparsity prior satisfies

Ef [`(f̂ EWA
n , f )] ≤ `(fλ∗ , f ) +

4β
n

{
α‖λ∗‖1 +

M∑
j=1

log
(

1 +
∣∣∣λ∗j
τ

∣∣∣)}
+R(M, τ, α), ∀λ∗ ∈ RM ,

where R(M, τ, α) = 12τ2M + 2β
n .
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Remarks

. Corollary: If there is a sparse λ∗ ∈ RM such that fλ∗ is
close to f , then by choosing α ∼ 1 and τ2 ∼ (Mn)−1, we
get

Ef [`(f̂ EWA
n , f )] ≤ `(fλ∗ , f ) +

C · ‖λ∗‖0 log(Mn)

n
.

. Optimality: the last inequality is an oracle inequality with
leading constant equal to one and a remainder term which
is “optimal”.

. Important: this result is obtained under no assumption on
the dictionary {φj}!
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Part III: Langevin Monte-Carlo
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Motivation

. Although the EWA can be written in an explicit form, its
computation is not trivial because of the M-fold integral.

. Naive Monte-Carlo methods fail in moderately large
dimensions (M = 50).

. A specific type of Markov Chain Monte-Carlo technique,
called Langevin Monte-Carlo, turns out to be very efficient.

. A path of a 1D diffusion process and its averaged version:
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The set-up

. We have Yi = X T
i λ∗ + ξi , i = 1, . . . ,n, where ξi are i.i.d.

and λ∗ ∈ RM is the parameter of interest.

. We wish to compute the EWA, which can be written as

λ̂n = λ̂
EWA

n = C
∫

λe−β
−1‖Y−Xλ‖2

2π(dλ),

where C is the constant of normalization.

. We can rewrite λ̂n =
∫

RM λpV (λ) dλ, where pV (λ) ∝ eV (λ)

is a density function and

V (λ) = −
‖Y − Xλ‖2

2
β

−
M∑

j=1

{
2 log(τ2 + λ2

j ) + ω(αλj )
}
,

with X = (X 1, . . . ,X n)T and Y = (Y1, . . . ,Yn)T .
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Multidimensional Langevin Diffusions

. Let L0 ∈ RM and W be an M-dimensional BM. For any
V ∈ C2(RM ; R) we call the solution to the SDE

dLt = ∇V (Lt ) dt +
√

2 dW t ,

the Langevin diffusion with potential V .

. Drift condition: There is a D ∈ C2(RM ; [1,∞)) and
a,b, r > 0 such that, for every λ ∈ RM ,

∇V (λ)T∇D(λ) + ∆D(λ) ≤ −aD(λ) + b1l(‖λ‖2 ≤ r).

. If supλ V (λ) <∞ and the drift condition is fulfilled, then L
is D-geometrically ergodic: ∃R, ρ > 0 s.t.

sup
‖h/D‖∞≤1

∣∣∣E[h(Lt )]−
∫

RM
h(λ) pV (dλ)

∣∣∣ ≤ R D(L0)e−ρt .

with pV (λ) ∝ e−V (λ) .
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Langevin Diffusion in our setup

. In our case

V (λ) = −
‖Y − Xλ‖2

2
β

−
M∑

j=1

{
2 log(τ2 + λ2

j ) + ω(αλj )
}
,

satisfies the drift condition with D(λ) = e‖λ‖2 if α > 0.
Thus the Langevin diffusion with potential V is
geometrically ergodic and mixing.

. Therefore,
L̄T =

1
T

∫ T

0
Lt dt L2

−−−−→
T→∞

∫
RM

λpV (λ) dλ = λ̂n.

This convergence takes place with the rate 1/
√

T .

. Since the mean value L̄T is impossible to compute
exactly, we replace it by Riemann sums and approximate
L by its Euler discretization.
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Implementation

• Fix a step of discretization h > 0 and set

LE
k+1 = LE

k + h∇V (LE
k ) +

√
2h Wk , LE

0 = 0,

where k = 0,1, . . . , [T/h]− 1, W1, W2, . . . are i.i.d.
standard Gaussian random vectors in RM and [x ] stands
for the integer part of x ∈ R.

• Approximate L̄T by

L̄E
T ,h =

1
[T/h]

[T/h]−1∑
k=0

LE
k .

• When h→ 0, L̄E
T ,h tends to L̄T .
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Variants of Langevin Monte-Carlo

• Use non-constant step Euler scheme with a step
depending on ∇2V .

• Use Ozaki discretization: more accurate but time
consuming.

• Use tempered Langevin diffusions (having
non-constant diffusion coefficient).

• Apply a Metropolis-Hastings correction.

It seems that the simplest LMC is the best !
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Numerical experiments
Example 1: Compressive sensing

• Input: n, M and S, all positive integers.
• Covariates: we generate an n ×M matrix X with iid

Rademacher entries.
• Errors: we generate a standard Gaussian vector ξ.
• Noise magnitude: σ =

√
S/9.

• Response: Y = Xλ∗ + ξ where
λ∗ = [1l(j ≤ S); j ≤ M].

• Tuning parameters:

β = 4σ2, τ = 4σ/‖X‖2, h = 4σ2/‖X‖22.
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Numerical experiments
Example 1: Compressive sensing

Typical outcome for n = 200, M = 500 and S = 20.
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Numerical experiments
Example 1: Compressive sensing

M = 200 M = 500
EWA Lasso EWA Lasso

n = 100 S = 5 0.064 1.442 0.087 1.616
(0.043) (0.461) (0.054) (0.491)
T = 1 T = 1

n = 100 S = 10 1.153 5.712 1.891 6.508
(1.091) (1.157) (1.522) (1.196)
T = 2 T = 5

n = 100 S = 15 6.839 11.149 8.917 11.82
(1.896) (1.303) (2.186) (1.256)
T = 5 T = 10
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Image denoising
A simple example

• Input: n, k positive integers and σ > 0.
• We generate n vectors Ui of R2 uniformly distributed

in [0,1]2.
• Covariates φj(u) = 1l[0,j1/k ]×[0,j2/k ](u).
• Errors: we generate a centered Gaussian vector ξ

with covariance matrix σ2I.
• Response: Yi = (φ1(Ui), . . . , φk2(Ui))T λ∗ + ξi where

λ∗ = [1l(j ∈ {10,100,200})]′.
• Tuning parameters: the same rule as previously.
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Image denoising

The original image and its sampled noisy version.
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Image denoising

Estimated images from observations with noise
magnitudes 0.1, 0.5 and 1.
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Image denoising

σ n = 100 n = 200
EWA Lasso Ideal LG EWA Lasso Ideal LG

2 0.210 0.759 0.330 0.187 0.661 0.203
(0.072) (0.562) (0.145) (0.048) (0.503) (0.086)
T = 1 T = 1

4 0.420 2.323 0.938 0.278 2.230 0.571
(0.222) (1.257) (0.631) (0.132) (1.137) (0.324)
T = 1 T = 1
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Open questions for future work

• Is it possible to perform model selection with the
EWA ?

• What is the rate of ergodicity when α = 0?
• How to rigorously justify the choice of T and h?
• ...
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