Dalalyan, A.S. ## Sparse Recovery by Aggregation and Langevin Monte-Carlo Joint work with A. Tsybakov #### Introduction Motivation Basic concepts Penalized LSE and EWA ## Risk bounds Oracle inequality Sparsity prior and OI Remarks #### Langevin MC Motivation The set-up MD Diffusions Implementation Simulations Arnak DALALYAN CERTIS, Ecole des Ponts ParisTech 1 ## Part I: Introduction - Motivation and basic concepts - Penalized LSE and aggregation - Bayesian interpretation ## Part II: Risk bounds - General oracle inequality - Sparsity oracle inequality - Discussion ## Part III: Langevin Monte-Carlo - Diffusions and stationarity - Implementation - Numerical experiments ## Introduction Motivation Basic concepts Penalized LSE and EWA ## Risk bounds Oracle inequality Sparsity prior and OI Remarks ## Langevin MC ## Dalalyan, A.S. ## Introduction Motivation Basic concepts Penalized LSE and EWA ## Risk bounds Oracle inequality Sparsity prior and OI Remarks ## Langevin MC Motivation The set-up MD Diffusions Implementation Simulations ## Part I: Introduction ## **High-dimensional data** Technological innovations allow us to collect massive amount of data with low cost: - microarray data or magnetic resonance images in biomedical studies, - high resolution satellite imagery used in natural resource discovery and agriculture, - financial data (option prices, bond yields, etc) used in financial engineering and risk management. Statistical methods are vital for analyzing these data: - · finding sparse representations, - · performing variable selection, - · prediction and model estimation. ## Introduction #### Motivation Basic concepts Penalized LSE and EWA ## Risk bounds Oracle inequality Sparsity prior and OI Remarks ## Langevin MC ## **Curse of dimensionality and sparsity** High-dimensionality has significantly challenged traditional statistical theory. - In linear regression, the accuracy of the LSE is of order M/n, where M is the number of covariates. - Applied statisticians are often interested in the case where *M* is much larger than *n*. Sparsity assumption provides compelling theoretical framework for dealing with high dimension. - Even if the number of parameters describing the model in general setup is large, only few of them contribute to the process of data generation. - No a priori information on the set of relevant parameters is available. It is only known that the cardinality of the set of relevant parameters is small. ## Introduction #### Motivation Basic concepts Penalized LSE and EWA ## Risk bounds Oracle inequality Sparsity prior and OI Remarks ### Langevin MC - ▶ Data: $\mathcal{D}_n = \{(Z_1, Y_1), \dots, (Z_n, Y_n)\} \subset \mathcal{Z} \times \mathbf{R}$. - ▶ Model: $\{Z_i\}$ are deterministic and for some function $f \in \mathcal{F}_0$, $$\xi_i = Y_i - f(Z_i), \quad i = 1, \ldots, n$$ are iid with zero mean and finite variance σ^2 . ▷ Loss function: for a set \mathcal{F} and for every $g \in \mathcal{F}$, $$\ell(f,g) = \frac{1}{n} \sum_{i=1}^{n} [g(Z_i) - f(Z_i)]^2 := \|g - f\|_n^2,$$ is the loss we suffer when we use a procedure g. Unbiased estimate: for every fixed g, $$\mathsf{R}[\mathcal{D}_n, g] = \frac{1}{n} \sum_{i=1}^n [Y_i - g(Z_i)]^2 - \sigma^2$$ is an unbiased estimator of the loss $\ell(f, g)$. ## Introduction Motivation Basic concepts Penalized LSE and EWA ## Risk bounds Oracle inequality Sparsity prior and OI Remarks ## Langevin MC $$\hat{\lambda}^{\mathsf{PLSE}} = \arg\min_{\lambda \in \Lambda} \left(\underbrace{ \underbrace{\mathsf{R}[\mathcal{D}_n, f_\lambda]}_{\mathsf{data fidelity term}} + \underbrace{ \underbrace{\mathsf{Pen}(\lambda)}_{\mathsf{a priori penalization}}} \right).$$ ## ▷ Common penalties: - Pen(λ) = $\kappa \|\lambda\|_0$ BIC penalty, - Pen(λ) = $\kappa \|\lambda\|_2^2$ ridge penalty, - Pen(λ) = $\kappa \|\lambda\|_1$ Lasso penalty. - SCAD, Elastic Net, etc. ## Introduction Motivation Basic concepts Penalized LSE and EWA ## Risk bounds Oracle inequality Sparsity prior and OI Remarks ## Langevin MC Motivation The set-up MD Diffusions Implementation Simulations 7 - Main idea: extend the search space and change the penalty. - ▶ Search space: $\mathcal{P} = \{p : \text{ prob. s.t. } \int_{\Lambda} \|f_{\lambda}\|_{n}^{2} p(d\lambda) < \infty\}.$ - ightharpoonupRewriting PLSE: $\hat{f}^{\text{PLSE}} = \int_{\Lambda} f_{\lambda} \, \hat{\pi}^{\text{PLSE}}(d\lambda)$ with $$\hat{\pi}^{\mathsf{PLSE}} = \arg\min_{p \in \mathcal{P}} \Big\{ \int_{\Lambda} \mathsf{R}[\mathcal{D}_n, f_{\lambda}] \, p(d\lambda) + \int_{\Lambda} \mathsf{Pen}(\lambda) \, p(d\lambda) \Big\}.$$ ightharpoonupKL-penalization: Let $\pi \in \mathcal{P}$ be a prior on Λ. Define the EWA as $\hat{f}_n^{\text{EWA}} = \int_{\Lambda} f_{\lambda} \hat{\pi}_n(d\lambda)$ where $$\hat{\pi}_n = \arg\min_{p \in \mathcal{P}} \Big\{ \int_{\Lambda} \mathsf{R}[\mathcal{D}_n, f_{\lambda}] \, p(d\lambda) + \kappa \mathcal{K}(p, \pi) \Big\}.$$ $\qquad \qquad \mathsf{Explicit\ form:} \ \widehat{\pi}_n(d\lambda) \propto \mathsf{exp}\big\{ - \kappa^{-1}\mathsf{R}[\mathcal{D}_n, f_\lambda] \big\} \pi(d\lambda) \, .$ ## Introduction Motivation Basic concepts #### Penalized LSE and EWA ## Risk bounds Oracle inequality Sparsity prior and OI Remarks ## Langevin MC - ▶ Terminology: $\hat{\pi}_n$ posterior, κ temperature. - Bayesian posterior mean: If we consider the parametric model $$Y_i = f_{\lambda}(Z_i) + \tilde{\xi}_i, \quad i = 1, \ldots, n,$$ with $\tilde{\xi}_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, n\kappa/2)$ and prior π on the parameter set Λ , then $\hat{\pi}_n$ is the posterior probability and \hat{t}_n^{EWA} is the posterior mean: $$\hat{f}_n^{EWA}(Z_i) = \mathbf{E}_{\pi}[f_{\lambda}(Z_i)|\mathcal{D}_n], \quad i = 1, \dots, n.$$ Notation: In what follows, we take $$\kappa = \beta/\mathbf{n}$$. ### Introduction Motivation Basic concepts Penalized LSE and EWA ## Risk bounds Oracle inequality Sparsity prior and OI Remarks ## Langevin MC ## Dalalyan, A.S. ## Introduction Motivation Basic concepts Penalized LSE and EWA ## Risk bounds Oracle inequality Sparsity prior and OI Remarks ## Langevin MC Motivation The set-up MD Diffusions Implementation Simulations ## Part II: Risk bounds ## General oracle inequality: assumptions ## Dalalyan, A.S. # CERTIS Das Pare of Casalina General Photographer of the Reference ## Assumption N For any $\gamma>0$ small enough, \exists probability space and 2 r. v. ξ and ζ defined on it such that - i) ξ has the same distribution as the errors ξ_i , - ii) $\xi + \zeta \stackrel{\mathscr{D}}{=} (1 + \gamma)\xi$ and $\mathbf{E}[\zeta|\xi] = 0$, - iii) \exists bounded Borel function $v : \mathbf{R} \to \mathbf{R}_+$ such that, $$\mathbf{E}[e^{t\zeta}|\xi=a]\approx e^{t^2\gamma v(a)},\quad \gamma\to 0$$ for every a and $\forall t\in [-t_0,t_0].$ ## Assumption L The set Λ satisfies $$(\lambda,\lambda')\in \Lambda^2 \implies \max_i |f_\lambda(Z_i)-f_{\lambda'}(Z_i)|\leq L$$ for some $L\in [0,\infty]$. ## Introduction Motivation Basic concepts Penalized LSE and EWA ## Risk bounds Oracle inequality Sparsity prior and OI Bemarks ## Langevin MC ## Theorem (PAC-Bayesian bound) Let Assumptions N and L be satisfied. Then for any prior π and for any $\beta \geq \max(4\|v\|_{\infty}, 2L/t_0)$ we have $$\mathbf{E}_{f}[\ell(\hat{f}_{n}^{EWA}, f)] \leq \inf_{p \in \mathcal{P}_{\Lambda}} \Big(\int_{\Lambda} \ell(f_{\lambda}, f) \, p(d\lambda) + \frac{\beta \mathcal{K}(p, \pi)}{n} \Big), \quad (1)$$ where $\mathcal{K}(\textbf{p},\pi)$ stands for the Kullback-Leibler divergence $$\mathcal{K}(p,\pi) = egin{cases} \int_{\Lambda} \log\left(rac{dp}{d\pi}(\lambda) ight) p(d\lambda), & \textit{if } p \ll \pi, \ +\infty, & \textit{otherwise} \end{cases}.$$ ## Introduction Motivation Basic concepts Penalized LSE and EWA ## Risk bounds Oracle inequality Sparsity prior and OI Remarks ## Langevin MC • If the cardinality of Λ is finite, say $\Lambda = \{1, ..., N\}$, and π is uniform, then inequality (1) implies that $$\mathbf{E}_{f}[\ell(\hat{f}_{n}^{\text{EWA}}, f)] \leq \min_{j=1,...,N} \ell(f_{j}, f) + \frac{\beta \log N}{n}.$$ This type of inequalities are usually called oracle inequalities. - If the noise is Gaussian, Rademacher, Uniform or a countable convolution of these distributions, then one can take L = +∞ and (1) holds for every β ≥ 4E[ξ²₁]. - For regression with Gaussian noise and finite set Λ, bounds similar to (1) have been established in an earlier work by Leung and Barron (2006). ## Introduction Motivation Basic concepts Penalized LSE and EWA ## Risk bounds Oracle inequality Sparsity prior and OI Bemarks ### Langevin MC - Aim: by a proper choice of the prior, to adapt the EWA to the setting of sparse estimation. - ▶ Linear family: Assume that $\|\phi_i\|_n = 1$ and $$\mathcal{F}_{\Lambda} = \Big\{ \sum_{j=1}^{M} \lambda_j \phi_j : \ \boldsymbol{\lambda} \in \mathbf{R}^M \Big\}.$$ ▶ Huber function: Define $$\omega(t) = egin{cases} t^2, & \text{if } |t| \leq 1 \\ 2|t| - 1, & \text{otherwise} \end{cases}.$$ ightharpoonup Sparsity prior: Let τ, α and R be > 0, we define the prior $$\pi(d\lambda) \propto \Big\{ \prod_{j=1}^M \frac{e^{-\omega(\alpha\lambda_j)}}{(\tau^2 + \lambda_j^2)^2} \Big\} d\lambda.$$ #### Introduction Motivation Basic concepts Penalized LSE and EWA ## Risk bounds Oracle inequality Sparsity prior and OI Remarks ## Langevin MC ## Does π favor the sparsity ? Dalalyan, A.S. The scatter plots of a sample of size 10000 drawn from scaled t(3)-distribution (left panel), Laplace distribution (central panel) and Gaussian distribution (right panel). In all three cases the location parameter is equal to zero and the scale parameter is set to 10^{-2} . #### Introduction Motivation Basic concepts Penalized LSE and EWA Risk bounds Oracle inequality Sparsity prior and OI Remarks ## Langevin MC ## **Sparsity Oracle inequality** ### Dalalyan, A.S. ## **Theorem** If Assumption N holds with $t_0=+\infty$, then for every $\beta \geq 4\|v\|_{\infty}$ the EWA based on the sparsity prior satisfies $$\mathbf{E}_{f}[\ell(\hat{f}_{n}^{EWA}, f)] \leq \ell(f_{\lambda^*}, f) + \frac{4\beta}{n} \left\{ \alpha \|\lambda^*\|_{1} + \sum_{j=1}^{M} \log\left(1 + \left|\frac{\lambda_{j}^*}{\tau}\right|\right) \right\}$$ $$+\mathsf{R}(M,\tau,\alpha), \qquad \forall \lambda^* \in \mathbf{R}^M,$$ where $R(M, \tau, \alpha) = 12\tau^2 M + \frac{2\beta}{n}$. ## Introduction Motivation Basic concepts Penalized LSE and EWA Risk bounds Oracle inequality Sparsity prior and OI Remarks ## Langevin MC Motivation ▶ Corollary: If there is a sparse $\lambda^* \in \mathbf{R}^M$ such that f_{λ^*} is close to f, then by choosing $\alpha \sim 1$ and $\tau^2 \sim (Mn)^{-1}$, we get $$\mathbf{E}_{f}[\ell(\hat{f}_{n}^{\mathsf{EWA}}, f)] \leq \ell(f_{\lambda^*}, f) + \frac{\mathsf{C} \cdot \|\lambda^*\|_0 \log(Mn)}{n}.$$ - Optimality: the last inequality is an oracle inequality with leading constant equal to one and a remainder term which is "optimal". - ▶ **Important**: this result is obtained under no assumption on the dictionary $\{\phi_j\}$! ## Introduction Motivation Basic concepts Penalized LSE and EWA ## Risk bounds Oracle inequality Sparsity prior and OI ## Langevin MC ## Dalalyan, A.S. #### Introduction Motivation Basic concepts Penalized LSE and EWA ## Risk bounds Oracle inequality Sparsity prior and OI Remarks #### Langevin MC Motivation The set-up MD Diffusions Implementation Simulations ## Part III: Langevin Monte-Carlo ## **Motivation** - Although the EWA can be written in an explicit form, its computation is not trivial because of the M-fold integral. - Naive Monte-Carlo methods fail in moderately large dimensions (M = 50). - A specific type of Markov Chain Monte-Carlo technique, called Langevin Monte-Carlo, turns out to be very efficient. - ▶ A path of a 1D diffusion process and its averaged version: #### Introduction Motivation Basic concepts Penalized LSE and EWA #### Risk bounds Oracle inequality Sparsity prior and OI Bemarks ## Langevin MC ## The set-up - We have $Y_i = \mathbf{X}_i^T \lambda^* + \xi_i$, i = 1, ..., n, where ξ_i are i.i.d. and $\lambda^* \in \mathbf{R}^M$ is the parameter of interest. - We wish to compute the EWA, which can be written as $$\hat{oldsymbol{\lambda}}_n = \hat{oldsymbol{\lambda}}_n^{\mathsf{EWA}} = C \int oldsymbol{\lambda} e^{-eta^{-1} \| Y - X oldsymbol{\lambda} \|_2^2} \pi(doldsymbol{\lambda}),$$ where *C* is the constant of normalization. We can rewrite $\hat{\lambda}_n = \int_{\mathbb{R}^M} \lambda p_V(\lambda) d\lambda$, where $p_V(\lambda) \propto e^{V(\lambda)}$ is a density function and $$V(\lambda) = -\frac{\|\mathbf{Y} - \mathbb{X}\lambda\|_2^2}{\beta} - \sum_{j=1}^M \left\{ 2\log(\tau^2 + \lambda_j^2) + \omega(\alpha\lambda_j) \right\},\,$$ with $$\mathbb{X} = (\boldsymbol{X}_1, \dots, \boldsymbol{X}_n)^T$$ and $\boldsymbol{Y} = (Y_1, \dots, Y_n)^T$. ## Introduction Motivation Basic concepts Penalized LSE and EWA ## Risk bounds Oracle inequality Sparsity prior and OI Remarks ## Langevin MC Motivation ## The set-up #### MD Diffusions Implementation Simulations Let $L_0 \in \mathbb{R}^M$ and W be an M-dimensional BM. For any $V \in C^2(\mathbb{R}^M; \mathbb{R})$ we call the solution to the SDE $dL_t = \nabla V(L_t) dt + \sqrt{2} dW_t$. the Langevin diffusion with potential V. ▶ **Drift condition**: There is a $D \in C^2(\mathbf{R}^M; [1, \infty))$ and a, b, r > 0 such that, for every $\lambda \in \mathbf{R}^M$, $\nabla V(\lambda)^T \nabla D(\lambda) + \Delta D(\lambda) \le -aD(\lambda) + b\mathbb{I}(\|\lambda\|_2 \le r)$. ▶ If $\sup_{\lambda} V(\lambda) < \infty$ and the drift condition is fulfilled, then L is D-geometrically ergodic: $\exists R, \rho > 0$ s.t. $$\sup_{\|h/D\|_{\infty} \le 1} \left| \mathbf{E}[h(\mathbf{L}_t)] - \int_{\mathbf{R}^M} h(\lambda) \, p_V(d\lambda) \right| \le R \, D(\mathbf{L}_0) e^{-\rho t}.$$ with $\left| p_V(\lambda) \propto e^{-V(\lambda)} \right|$. ## Introduction Motivation Basic concepts Penalized LSE and EWA ## Risk bounds Oracle inequality Sparsity prior and OI Remarks ## Langevin MC Motivation The set-up ## MD Diffusions Implementation Simulations In our case $$V(\lambda) = -\frac{\|\mathbf{Y} - \mathbb{X}\lambda\|_2^2}{\beta} - \sum_{j=1}^M \left\{ 2\log(\tau^2 + \lambda_j^2) + \omega(\alpha\lambda_j) \right\},\,$$ satisfies the drift condition with $D(\lambda) = e^{\|\lambda\|_2} \underline{\text{if } \alpha > 0}$. Thus the Langevin diffusion with potential V is geometrically ergodic and mixing. Therefore, $\bar{\boldsymbol{L}}_T = \frac{1}{T} \int_0^T \boldsymbol{L}_t \, dt \xrightarrow{L^2} \int_{\mathbf{R}^M} \lambda p_V(\lambda) \, d\lambda = \hat{\lambda}_n.$ This convergence takes place with the rate $1/\sqrt{T}$. Since the mean value \bar{L}_T is impossible to compute exactly, we replace it by Riemann sums and approximate L by its Euler discretization. ### Introduction Motivation Basic concepts Penalized LSE and EWA ## Risk bounds Oracle inequality Sparsity prior and OI Remarks ## Langevin MC Motivation The set-up ## MD Diffusions Implementation Simulations $$\label{eq:local_local_local_local} L_{k+1}^{\textit{E}} = L_{k}^{\textit{E}} + h \nabla \textit{V}(L_{k}^{\textit{E}}) + \sqrt{2h} \, \textit{W}_{k}, \qquad L_{0}^{\textit{E}} = 0,$$ where k = 0, 1, ..., [T/h] - 1, $W_1, W_2, ...$ are i.i.d. standard Gaussian random vectors in \mathbf{R}^M and [x] stands for the integer part of $x \in \mathbf{R}$. • Approximate \bar{L}_T by $$\bar{L}_{T,h}^{E} = \frac{1}{[T/h]} \sum_{k=0}^{[T/h]-1} L_{k}^{E}.$$ • When $h \to 0$, $\bar{L}_{T,h}^E$ tends to \bar{L}_T . #### Introduction Motivation Basic concepts Penalized LSE and EWA ## Risk bounds Oracle inequality Sparsity prior and OI Remarks #### Langevin MC Motivation The set-up MD Diffusions ## Implementation depending on $\nabla^2 V$. Use non-constant step Euler scheme with a step Dalalyan, A.S. ### Introduction Motivation Basic concepts Penalized LSE and EWA #### Risk bounds Oracle inequality Sparsity prior and OI Remarks ## Langevin MC Motivation The set-up MD Diffusions ## Implementation # CERTIS Das Para de Casanta Serias de Casanta Dalalyan, A.S. - Use non-constant step Euler scheme with a step depending on $\nabla^2 V$. - Use Ozaki discretization: more accurate but time consuming. ## Introduction Motivation Basic concepts Penalized LSE and EWA #### Risk bounds Oracle inequality Sparsity prior and OI Bemarks #### Langevin MC Motivation The set-up MD Diffusions Implementation #### plementation # CERTIS Das Parts et Chaussian Grant Street Street of the Street of the Control Dalalvan, A.S. - Use non-constant step Euler scheme with a step depending on ∇² V. - Use Ozaki discretization: more accurate but time consuming. - Use tempered Langevin diffusions (having non-constant diffusion coefficient). ## Introduction Motivation Basic concepts Penalized LSE and EWA ## Risk bounds Oracle inequality Sparsity prior and OI Bemarks ## Langevin MC Motivation The set-up MD Diffusions ### Implementation ## Dalalyan, A.S. ### Introduction Motivation Basic concepts Penalized LSE and EWA #### Risk bounds Oracle inequality Sparsity prior and OI Remarks ## Langevin MC Motivation The set-up MD Diffusions ## Implementation - Use non-constant step Euler scheme with a step depending on ∇² V. - Use Ozaki discretization: more accurate but time consuming. - Use tempered Langevin diffusions (having non-constant diffusion coefficient). - Apply a Metropolis-Hastings correction. Dalalvan, A.S. - Use non-constant step Euler scheme with a step depending on $\nabla^2 V$. - Use Ozaki discretization: more accurate but time consuming. - Use tempered Langevin diffusions (having non-constant diffusion coefficient). - Apply a Metropolis-Hastings correction. It seems that the simplest LMC is the best! #### Introduction Motivation Basic concents Penalized LSE and EWA #### Risk bounds Oracle inequality Sparsity prior and OI Remarks ## Langevin MC Motivation The set-up MD Diffusions Implementation ## **Numerical experiments** ## **Example 1: Compressive sensing** - Input: n, M and S, all positive integers. - Covariates: we generate an $n \times M$ matrix \mathbb{X} with iid Rademacher entries. - Errors: we generate a standard Gaussian vector ξ. - Noise magnitude: $\sigma = \sqrt{S/9}$. - Response: $Y = X\lambda^* + \xi$ where $\lambda^* = [1(j \le S); j \le M].$ - · Tuning parameters: $$\beta = 4\sigma^2$$, $\tau = 4\sigma/\|X\|_2$, $h = 4\sigma^2/\|X\|_2^2$. #### Introduction Motivation Basic concepts Penalized LSE and EWA ## Risk bounds Oracle inequality Sparsity prior and OI Remarks ### Langevin MC Motivation The set-up MD Diffusions Implementation ## **Numerical experiments** ## **Example 1: Compressive sensing** Typical outcome for n = 200, M = 500 and S = 20. #### Dalalyan, A.S. #### Introduction Motivation Basic concepts Penalized LSE and EWA ## Risk bounds Oracle inequality Sparsity prior and OI Remarks ## Langevin MC Motivation The set-up MD Diffusions Implementation ## **Numerical experiments** ## **Example 1: Compressive sensing** | | M = | 200 | M = 500 | | | |----------------|--------------|---------|---------------|---------|--| | | EWA | Lasso | EWA | Lasso | | | n = 100 S = 5 | 0.064 | 1.442 | 0.087 | 1.616 | | | | (0.043) | (0.461) | (0.054) | (0.491) | | | | <i>T</i> = 1 | | <i>T</i> = 1 | | | | n = 100 S = 10 | 1.153 | 5.712 | 1.891 | 6.508 | | | | (1.091) | (1.157) | (1.522) | (1.196) | | | | <i>T</i> = 2 | | <i>T</i> = 5 | | | | n = 100 S = 15 | 6.839 | 11.149 | 8.917 | 11.82 | | | | (1.896) | (1.303) | (2.186) | (1.256) | | | | <i>T</i> = 5 | | <i>T</i> = 10 | | | ## Dalalyan, A.S. #### Introduction Motivation Basic concepts Penalized LSE and EWA ## Risk bounds Oracle inequality Sparsity prior and OI Remarks ## Langevin MC Motivation The set-up MD Diffusions Implementation ## A simple example Dalalvan, A.S. - Input: n, k positive integers and $\sigma > 0$. - We generate n vectors U_i of \mathbb{R}^2 uniformly distributed in $[0,1]^2$. - Covariates $\phi_j(u) = 1_{[0,j_1/k] \times [0,j_2/k]}(u)$. - Errors: we generate a centered Gaussian vector ξ with covariance matrix $\sigma^2 I$. - Response: $Y_i = (\phi_1(U_i), \dots, \phi_{k^2}(U_i))^T \lambda^* + \xi_i$ where $\lambda^* = [1(j \in \{10, 100, 200\})]'$. - Tuning parameters: the same rule as previously. ## Introduction Motivation Basic concepts Penalized LSE and EWA ## Risk bounds Oracle inequality Sparsity prior and OI Remarks ### Langevin MC Motivation The set-up MD Diffusions Implementation ## Dalalyan, A.S. #### Introduction Motivation Basic concepts Penalized LSE and EWA ## Risk bounds Oracle inequality Sparsity prior and OI Remarks ## Langevin MC Motivation The set-up MD Diffusions Implementation Simulations The original image and its sampled noisy version. Estimated images from observations with noise magnitudes 0.1, 0.5 and 1. Dalalyan, A.S. Basic concepts Penalized LSE and EWA ## Risk bounds Oracle inequality Sparsity prior and OI Remarks ## Langevin MC Motivation The set-up MD Diffusions Implementation Simulations 30 ## Dalalyan, A.S. | σ | <i>n</i> = 100 | | | n = 200 | | | Introduction Motivation | |----------|----------------|---------|----------|--------------|---------|----------|----------------------------------| | | EWA | Lasso | Ideal LG | EWA | Lasso | Ideal LG | Basic concepts | | 2 | 0.210 | 0.759 | 0.330 | 0.187 | 0.661 | 0.203 | Penalized LSE and
Risk bounds | | | (0.072) | (0.562) | (0.145) | (0.048) | (0.503) | (0.086) | Oracle inequality | | | <i>T</i> = 1 | | | <i>T</i> = 1 | | | Sparsity prior and
Remarks | | 4 | 0.420 | 2.323 | 0.938 | 0.278 | 2.230 | 0.571 | Langevin MC | | | (0.222) | (1.257) | (0.631) | (0.132) | (1.137) | (0.324) | Motivation
The set-up | | | <i>T</i> = 1 | | | <i>T</i> = 1 | | | MD Diffusions Implementation | Introduction Motivation Basic concepts ## Penalized LSE and EWA Oracle inequality Sparsity prior and OI Remarks ## Langevin MC Motivation ## Open questions for future work CERTIS Dos Parts or Chausasse Greek of Shapeparament of the Shapeparam Dalalyan, A.S. - Is it possible to perform model selection with the EWA? - What is the rate of ergodicity when $\alpha = 0$? - How to rigorously justify the choice of T and h? - .. ## Introduction Motivation Basic concepts Penalized LSE and EWA #### Risk bounds Oracle inequality Sparsity prior and OI Remarks ## Langevin MC Motivation The set-up MD Diffusions Implementation