Dalalyan, A.S.

Sparse Recovery by Aggregation and Langevin Monte-Carlo

Joint work with A. Tsybakov

Introduction

Motivation Basic concepts Penalized LSE and EWA

Risk bounds

Oracle inequality Sparsity prior and OI Remarks

Langevin MC

Motivation The set-up MD Diffusions Implementation Simulations

Arnak DALALYAN CERTIS, Ecole des Ponts ParisTech

1

Part I: Introduction

- Motivation and basic concepts
- Penalized LSE and aggregation
- Bayesian interpretation

Part II: Risk bounds

- General oracle inequality
- Sparsity oracle inequality
- Discussion

Part III: Langevin Monte-Carlo

- Diffusions and stationarity
- Implementation
- Numerical experiments

Introduction

Motivation
Basic concepts
Penalized LSE and EWA

Risk bounds

Oracle inequality Sparsity prior and OI Remarks

Langevin MC

Dalalyan, A.S.

Introduction

Motivation
Basic concepts
Penalized LSE and EWA

Risk bounds

Oracle inequality

Sparsity prior and OI

Remarks

Langevin MC

Motivation The set-up MD Diffusions Implementation Simulations

Part I: Introduction

High-dimensional data

Technological innovations allow us to collect massive amount of data with low cost:

- microarray data or magnetic resonance images in biomedical studies,
- high resolution satellite imagery used in natural resource discovery and agriculture,
- financial data (option prices, bond yields, etc) used in financial engineering and risk management.

Statistical methods are vital for analyzing these data:

- · finding sparse representations,
- · performing variable selection,
- · prediction and model estimation.

Introduction

Motivation

Basic concepts
Penalized LSE and EWA

Risk bounds

Oracle inequality Sparsity prior and OI Remarks

Langevin MC

Curse of dimensionality and sparsity

High-dimensionality has significantly challenged traditional statistical theory.

- In linear regression, the accuracy of the LSE is of order M/n, where M is the number of covariates.
- Applied statisticians are often interested in the case where *M* is much larger than *n*.

Sparsity assumption provides compelling theoretical framework for dealing with high dimension.

- Even if the number of parameters describing the model in general setup is large, only few of them contribute to the process of data generation.
- No a priori information on the set of relevant parameters is available. It is only known that the cardinality of the set of relevant parameters is small.

Introduction

Motivation

Basic concepts
Penalized LSE and EWA

Risk bounds

Oracle inequality Sparsity prior and OI Remarks

Langevin MC

- ▶ Data: $\mathcal{D}_n = \{(Z_1, Y_1), \dots, (Z_n, Y_n)\} \subset \mathcal{Z} \times \mathbf{R}$.
- ▶ Model: $\{Z_i\}$ are deterministic and for some function $f \in \mathcal{F}_0$,

$$\xi_i = Y_i - f(Z_i), \quad i = 1, \ldots, n$$

are iid with zero mean and finite variance σ^2 .

▷ Loss function: for a set \mathcal{F} and for every $g \in \mathcal{F}$,

$$\ell(f,g) = \frac{1}{n} \sum_{i=1}^{n} [g(Z_i) - f(Z_i)]^2 := \|g - f\|_n^2,$$

is the loss we suffer when we use a procedure g.

Unbiased estimate: for every fixed g,

$$\mathsf{R}[\mathcal{D}_n, g] = \frac{1}{n} \sum_{i=1}^n [Y_i - g(Z_i)]^2 - \sigma^2$$

is an unbiased estimator of the loss $\ell(f, g)$.

Introduction

Motivation

Basic concepts

Penalized LSE and EWA

Risk bounds

Oracle inequality Sparsity prior and OI Remarks

Langevin MC

$$\hat{\lambda}^{\mathsf{PLSE}} = \arg\min_{\lambda \in \Lambda} \left(\underbrace{ \underbrace{\mathsf{R}[\mathcal{D}_n, f_\lambda]}_{\mathsf{data fidelity term}} + \underbrace{ \underbrace{\mathsf{Pen}(\lambda)}_{\mathsf{a priori penalization}}} \right).$$

▷ Common penalties:

- Pen(λ) = $\kappa \|\lambda\|_0$ BIC penalty,
- Pen(λ) = $\kappa \|\lambda\|_2^2$ ridge penalty,
- Pen(λ) = $\kappa \|\lambda\|_1$ Lasso penalty.
- SCAD, Elastic Net, etc.

Introduction

Motivation Basic concepts

Penalized LSE and EWA

Risk bounds

Oracle inequality Sparsity prior and OI Remarks

Langevin MC

Motivation
The set-up
MD Diffusions
Implementation
Simulations

7

- Main idea: extend the search space and change the penalty.
- ▶ Search space: $\mathcal{P} = \{p : \text{ prob. s.t. } \int_{\Lambda} \|f_{\lambda}\|_{n}^{2} p(d\lambda) < \infty\}.$
- ightharpoonupRewriting PLSE: $\hat{f}^{\text{PLSE}} = \int_{\Lambda} f_{\lambda} \, \hat{\pi}^{\text{PLSE}}(d\lambda)$ with

$$\hat{\pi}^{\mathsf{PLSE}} = \arg\min_{p \in \mathcal{P}} \Big\{ \int_{\Lambda} \mathsf{R}[\mathcal{D}_n, f_{\lambda}] \, p(d\lambda) + \int_{\Lambda} \mathsf{Pen}(\lambda) \, p(d\lambda) \Big\}.$$

ightharpoonupKL-penalization: Let $\pi \in \mathcal{P}$ be a prior on Λ. Define the EWA as $\hat{f}_n^{\text{EWA}} = \int_{\Lambda} f_{\lambda} \hat{\pi}_n(d\lambda)$ where

$$\hat{\pi}_n = \arg\min_{p \in \mathcal{P}} \Big\{ \int_{\Lambda} \mathsf{R}[\mathcal{D}_n, f_{\lambda}] \, p(d\lambda) + \kappa \mathcal{K}(p, \pi) \Big\}.$$

 $\qquad \qquad \mathsf{Explicit\ form:} \ \widehat{\pi}_n(d\lambda) \propto \mathsf{exp}\big\{ - \kappa^{-1}\mathsf{R}[\mathcal{D}_n, f_\lambda] \big\} \pi(d\lambda) \, .$

Introduction

Motivation Basic concepts

Penalized LSE and EWA

Risk bounds

Oracle inequality
Sparsity prior and OI
Remarks

Langevin MC

- ▶ Terminology: $\hat{\pi}_n$ posterior, κ temperature.
- Bayesian posterior mean: If we consider the parametric model

$$Y_i = f_{\lambda}(Z_i) + \tilde{\xi}_i, \quad i = 1, \ldots, n,$$

with $\tilde{\xi}_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, n\kappa/2)$ and prior π on the parameter set Λ , then $\hat{\pi}_n$ is the posterior probability and \hat{t}_n^{EWA} is the posterior mean:

$$\hat{f}_n^{EWA}(Z_i) = \mathbf{E}_{\pi}[f_{\lambda}(Z_i)|\mathcal{D}_n], \quad i = 1, \dots, n.$$

Notation: In what follows, we take

$$\kappa = \beta/\mathbf{n}$$
.

Introduction

Motivation Basic concepts

Penalized LSE and EWA

Risk bounds

Oracle inequality Sparsity prior and OI Remarks

Langevin MC

Dalalyan, A.S.

Introduction

Motivation
Basic concepts
Penalized LSE and EWA

Risk bounds

Oracle inequality

Sparsity prior and OI

Remarks

Langevin MC

Motivation The set-up MD Diffusions Implementation Simulations

Part II: Risk bounds

General oracle inequality: assumptions

Dalalyan, A.S.

CERTIS Das Pare of Casalina General Photographer of the Reference

Assumption N

For any $\gamma>0$ small enough, \exists probability space and 2 r. v. ξ and ζ defined on it such that

- i) ξ has the same distribution as the errors ξ_i ,
- ii) $\xi + \zeta \stackrel{\mathscr{D}}{=} (1 + \gamma)\xi$ and $\mathbf{E}[\zeta|\xi] = 0$,
- iii) \exists bounded Borel function $v : \mathbf{R} \to \mathbf{R}_+$ such that,

$$\mathbf{E}[e^{t\zeta}|\xi=a]\approx e^{t^2\gamma v(a)},\quad \gamma\to 0$$
 for every a and $\forall t\in [-t_0,t_0].$

Assumption L

The set Λ satisfies

$$(\lambda,\lambda')\in \Lambda^2 \implies \max_i |f_\lambda(Z_i)-f_{\lambda'}(Z_i)|\leq L$$
 for some $L\in [0,\infty]$.

Introduction

Motivation
Basic concepts
Penalized LSE and EWA

Risk bounds

Oracle inequality

Sparsity prior and OI

Bemarks

Langevin MC

Theorem (PAC-Bayesian bound)

Let Assumptions N and L be satisfied. Then for any prior π and for any $\beta \geq \max(4\|v\|_{\infty}, 2L/t_0)$ we have

$$\mathbf{E}_{f}[\ell(\hat{f}_{n}^{EWA}, f)] \leq \inf_{p \in \mathcal{P}_{\Lambda}} \Big(\int_{\Lambda} \ell(f_{\lambda}, f) \, p(d\lambda) + \frac{\beta \mathcal{K}(p, \pi)}{n} \Big), \quad (1)$$

where $\mathcal{K}(\textbf{p},\pi)$ stands for the Kullback-Leibler divergence

$$\mathcal{K}(p,\pi) = egin{cases} \int_{\Lambda} \log\left(rac{dp}{d\pi}(\lambda)
ight) p(d\lambda), & \textit{if } p \ll \pi, \ +\infty, & \textit{otherwise} \end{cases}.$$

Introduction

Motivation Basic concepts Penalized LSE and EWA

Risk bounds Oracle inequality

Sparsity prior and OI Remarks

Langevin MC

• If the cardinality of Λ is finite, say $\Lambda = \{1, ..., N\}$, and π is uniform, then inequality (1) implies that

$$\mathbf{E}_{f}[\ell(\hat{f}_{n}^{\text{EWA}}, f)] \leq \min_{j=1,...,N} \ell(f_{j}, f) + \frac{\beta \log N}{n}.$$

This type of inequalities are usually called oracle inequalities.

- If the noise is Gaussian, Rademacher, Uniform or a countable convolution of these distributions, then one can take L = +∞ and (1) holds for every β ≥ 4E[ξ²₁].
- For regression with Gaussian noise and finite set Λ, bounds similar to (1) have been established in an earlier work by Leung and Barron (2006).

Introduction

Motivation Basic concepts Penalized LSE and EWA

Risk bounds

Oracle inequality

Sparsity prior and OI

Bemarks

Langevin MC

- Aim: by a proper choice of the prior, to adapt the EWA to the setting of sparse estimation.
- ▶ Linear family: Assume that $\|\phi_i\|_n = 1$ and

$$\mathcal{F}_{\Lambda} = \Big\{ \sum_{j=1}^{M} \lambda_j \phi_j : \ \boldsymbol{\lambda} \in \mathbf{R}^M \Big\}.$$

▶ Huber function: Define

$$\omega(t) = egin{cases} t^2, & \text{if } |t| \leq 1 \\ 2|t| - 1, & \text{otherwise} \end{cases}.$$

ightharpoonup Sparsity prior: Let τ, α and R be > 0, we define the prior

$$\pi(d\lambda) \propto \Big\{ \prod_{j=1}^M \frac{e^{-\omega(\alpha\lambda_j)}}{(\tau^2 + \lambda_j^2)^2} \Big\} d\lambda.$$

Introduction

Motivation
Basic concepts
Penalized LSE and EWA

Risk bounds Oracle inequality

Sparsity prior and OI Remarks

Langevin MC

Does π favor the sparsity ?

Dalalyan, A.S.

The scatter plots of a sample of size 10000 drawn from scaled t(3)-distribution (left panel), Laplace distribution (central panel) and Gaussian distribution (right panel). In all three cases the location parameter is equal to zero and the scale parameter is set to 10^{-2} .

Introduction

Motivation
Basic concepts
Penalized LSE and EWA

Risk bounds
Oracle inequality

Sparsity prior and OI Remarks

Langevin MC

Sparsity Oracle inequality

Dalalyan, A.S.

Theorem

If Assumption N holds with $t_0=+\infty$, then for every $\beta \geq 4\|v\|_{\infty}$ the EWA based on the sparsity prior satisfies

$$\mathbf{E}_{f}[\ell(\hat{f}_{n}^{EWA}, f)] \leq \ell(f_{\lambda^*}, f) + \frac{4\beta}{n} \left\{ \alpha \|\lambda^*\|_{1} + \sum_{j=1}^{M} \log\left(1 + \left|\frac{\lambda_{j}^*}{\tau}\right|\right) \right\}$$

$$+\mathsf{R}(M,\tau,\alpha), \qquad \forall \lambda^* \in \mathbf{R}^M,$$

where $R(M, \tau, \alpha) = 12\tau^2 M + \frac{2\beta}{n}$.

Introduction

Motivation
Basic concepts
Penalized LSE and EWA

Risk bounds
Oracle inequality
Sparsity prior and OI

Remarks

Langevin MC Motivation

▶ Corollary: If there is a sparse $\lambda^* \in \mathbf{R}^M$ such that f_{λ^*} is close to f, then by choosing $\alpha \sim 1$ and $\tau^2 \sim (Mn)^{-1}$, we get

$$\mathbf{E}_{f}[\ell(\hat{f}_{n}^{\mathsf{EWA}}, f)] \leq \ell(f_{\lambda^*}, f) + \frac{\mathsf{C} \cdot \|\lambda^*\|_0 \log(Mn)}{n}.$$

- Optimality: the last inequality is an oracle inequality with leading constant equal to one and a remainder term which is "optimal".
- ▶ **Important**: this result is obtained under no assumption on the dictionary $\{\phi_j\}$!

Introduction

Motivation Basic concepts Penalized LSE and EWA

Risk bounds

Oracle inequality
Sparsity prior and OI

Langevin MC

Dalalyan, A.S.

Introduction

Motivation
Basic concepts
Penalized LSE and EWA

Risk bounds

Oracle inequality

Sparsity prior and OI

Remarks

Langevin MC

Motivation The set-up MD Diffusions Implementation Simulations

Part III: Langevin Monte-Carlo

Motivation

- Although the EWA can be written in an explicit form, its computation is not trivial because of the M-fold integral.
- Naive Monte-Carlo methods fail in moderately large dimensions (M = 50).
- A specific type of Markov Chain Monte-Carlo technique, called Langevin Monte-Carlo, turns out to be very efficient.
- ▶ A path of a 1D diffusion process and its averaged version:

Introduction

Motivation

Basic concepts

Penalized LSE and EWA

Risk bounds

Oracle inequality

Sparsity prior and OI

Bemarks

Langevin MC

The set-up

- We have $Y_i = \mathbf{X}_i^T \lambda^* + \xi_i$, i = 1, ..., n, where ξ_i are i.i.d. and $\lambda^* \in \mathbf{R}^M$ is the parameter of interest.
- We wish to compute the EWA, which can be written as

$$\hat{oldsymbol{\lambda}}_n = \hat{oldsymbol{\lambda}}_n^{\mathsf{EWA}} = C \int oldsymbol{\lambda} e^{-eta^{-1} \| Y - X oldsymbol{\lambda} \|_2^2} \pi(doldsymbol{\lambda}),$$

where *C* is the constant of normalization.

We can rewrite $\hat{\lambda}_n = \int_{\mathbb{R}^M} \lambda p_V(\lambda) d\lambda$, where $p_V(\lambda) \propto e^{V(\lambda)}$ is a density function and

$$V(\lambda) = -\frac{\|\mathbf{Y} - \mathbb{X}\lambda\|_2^2}{\beta} - \sum_{j=1}^M \left\{ 2\log(\tau^2 + \lambda_j^2) + \omega(\alpha\lambda_j) \right\},\,$$

with
$$\mathbb{X} = (\boldsymbol{X}_1, \dots, \boldsymbol{X}_n)^T$$
 and $\boldsymbol{Y} = (Y_1, \dots, Y_n)^T$.

Introduction

Motivation

Basic concepts

Penalized LSE and EWA

Risk bounds

Oracle inequality
Sparsity prior and OI
Remarks

Langevin MC Motivation

The set-up

MD Diffusions Implementation Simulations

Let $L_0 \in \mathbb{R}^M$ and W be an M-dimensional BM. For any $V \in C^2(\mathbb{R}^M; \mathbb{R})$ we call the solution to the SDE $dL_t = \nabla V(L_t) dt + \sqrt{2} dW_t$.

the Langevin diffusion with potential V.

▶ **Drift condition**: There is a $D \in C^2(\mathbf{R}^M; [1, \infty))$ and a, b, r > 0 such that, for every $\lambda \in \mathbf{R}^M$, $\nabla V(\lambda)^T \nabla D(\lambda) + \Delta D(\lambda) \le -aD(\lambda) + b\mathbb{I}(\|\lambda\|_2 \le r)$.

▶ If $\sup_{\lambda} V(\lambda) < \infty$ and the drift condition is fulfilled, then L is D-geometrically ergodic: $\exists R, \rho > 0$ s.t.

$$\sup_{\|h/D\|_{\infty} \le 1} \left| \mathbf{E}[h(\mathbf{L}_t)] - \int_{\mathbf{R}^M} h(\lambda) \, p_V(d\lambda) \right| \le R \, D(\mathbf{L}_0) e^{-\rho t}.$$
 with $\left| p_V(\lambda) \propto e^{-V(\lambda)} \right|$.

Introduction

Motivation Basic concepts Penalized LSE and EWA

Risk bounds

Oracle inequality Sparsity prior and OI Remarks

Langevin MC Motivation

The set-up

MD Diffusions

Implementation Simulations In our case

$$V(\lambda) = -\frac{\|\mathbf{Y} - \mathbb{X}\lambda\|_2^2}{\beta} - \sum_{j=1}^M \left\{ 2\log(\tau^2 + \lambda_j^2) + \omega(\alpha\lambda_j) \right\},\,$$

satisfies the drift condition with $D(\lambda) = e^{\|\lambda\|_2} \underline{\text{if } \alpha > 0}$. Thus the Langevin diffusion with potential V is geometrically ergodic and mixing.

Therefore, $\bar{\boldsymbol{L}}_T = \frac{1}{T} \int_0^T \boldsymbol{L}_t \, dt \xrightarrow{L^2} \int_{\mathbf{R}^M} \lambda p_V(\lambda) \, d\lambda = \hat{\lambda}_n.$

This convergence takes place with the rate $1/\sqrt{T}$.

Since the mean value \bar{L}_T is impossible to compute exactly, we replace it by Riemann sums and approximate L by its Euler discretization.

Introduction

Motivation
Basic concepts
Penalized LSE and EWA

Risk bounds

Oracle inequality

Sparsity prior and OI

Remarks

Langevin MC

Motivation The set-up

MD Diffusions

Implementation Simulations

$$\label{eq:local_local_local_local} L_{k+1}^{\textit{E}} = L_{k}^{\textit{E}} + h \nabla \textit{V}(L_{k}^{\textit{E}}) + \sqrt{2h} \, \textit{W}_{k}, \qquad L_{0}^{\textit{E}} = 0,$$

where k = 0, 1, ..., [T/h] - 1, $W_1, W_2, ...$ are i.i.d. standard Gaussian random vectors in \mathbf{R}^M and [x] stands for the integer part of $x \in \mathbf{R}$.

• Approximate \bar{L}_T by

$$\bar{L}_{T,h}^{E} = \frac{1}{[T/h]} \sum_{k=0}^{[T/h]-1} L_{k}^{E}.$$

• When $h \to 0$, $\bar{L}_{T,h}^E$ tends to \bar{L}_T .

Introduction

Motivation

Basic concepts

Penalized LSE and EWA

Risk bounds

Oracle inequality Sparsity prior and OI Remarks

Langevin MC

Motivation
The set-up
MD Diffusions

Implementation

depending on $\nabla^2 V$.

Use non-constant step Euler scheme with a step

Dalalyan, A.S.

Introduction

Motivation
Basic concepts
Penalized LSE and EWA

Risk bounds

Oracle inequality

Sparsity prior and OI

Remarks

Langevin MC

Motivation The set-up

MD Diffusions

Implementation

CERTIS Das Para de Casanta Serias de Casanta

Dalalyan, A.S.

- Use non-constant step Euler scheme with a step depending on $\nabla^2 V$.
- Use Ozaki discretization: more accurate but time consuming.

Introduction

Motivation
Basic concepts
Penalized LSE and EWA

Risk bounds

Oracle inequality

Sparsity prior and OI

Bemarks

Langevin MC

Motivation The set-up MD Diffusions

Implementation

plementation

CERTIS Das Parts et Chaussian Grant Street Street of the Street of the Control of the Control

Dalalvan, A.S.

- Use non-constant step Euler scheme with a step depending on ∇² V.
- Use Ozaki discretization: more accurate but time consuming.
- Use tempered Langevin diffusions (having non-constant diffusion coefficient).

Introduction

Motivation

Basic concepts

Penalized LSE and EWA

Risk bounds

Oracle inequality

Sparsity prior and OI

Bemarks

Langevin MC

Motivation
The set-up
MD Diffusions

Implementation

Dalalyan, A.S.

Introduction

Motivation
Basic concepts
Penalized LSE and EWA

Risk bounds

Oracle inequality

Sparsity prior and OI

Remarks

Langevin MC

Motivation The set-up

MD Diffusions

Implementation

- Use non-constant step Euler scheme with a step depending on ∇² V.
- Use Ozaki discretization: more accurate but time consuming.
- Use tempered Langevin diffusions (having non-constant diffusion coefficient).
- Apply a Metropolis-Hastings correction.

Dalalvan, A.S.

- Use non-constant step Euler scheme with a step depending on $\nabla^2 V$.
- Use Ozaki discretization: more accurate but time consuming.
- Use tempered Langevin diffusions (having non-constant diffusion coefficient).
- Apply a Metropolis-Hastings correction.

It seems that the simplest LMC is the best!

Introduction

Motivation Basic concents Penalized LSE and EWA

Risk bounds

Oracle inequality Sparsity prior and OI Remarks

Langevin MC

Motivation The set-up MD Diffusions

Implementation

Numerical experiments

Example 1: Compressive sensing

- Input: n, M and S, all positive integers.
- Covariates: we generate an $n \times M$ matrix \mathbb{X} with iid Rademacher entries.
- Errors: we generate a standard Gaussian vector ξ.
- Noise magnitude: $\sigma = \sqrt{S/9}$.
- Response: $Y = X\lambda^* + \xi$ where $\lambda^* = [1(j \le S); j \le M].$
- · Tuning parameters:

$$\beta = 4\sigma^2$$
, $\tau = 4\sigma/\|X\|_2$, $h = 4\sigma^2/\|X\|_2^2$.

Introduction

Motivation
Basic concepts
Penalized LSE and EWA

Risk bounds

Oracle inequality
Sparsity prior and OI
Remarks

Langevin MC

Motivation The set-up MD Diffusions Implementation

Numerical experiments

Example 1: Compressive sensing

Typical outcome for n = 200, M = 500 and S = 20.

Dalalyan, A.S.

Introduction

Motivation
Basic concepts
Penalized LSE and EWA

Risk bounds

Oracle inequality Sparsity prior and OI Remarks

Langevin MC

Motivation
The set-up
MD Diffusions
Implementation

Numerical experiments

Example 1: Compressive sensing

	M =	200	M = 500		
	EWA	Lasso	EWA	Lasso	
n = 100 S = 5	0.064	1.442	0.087	1.616	
	(0.043)	(0.461)	(0.054)	(0.491)	
	<i>T</i> = 1		<i>T</i> = 1		
n = 100 S = 10	1.153	5.712	1.891	6.508	
	(1.091)	(1.157)	(1.522)	(1.196)	
	<i>T</i> = 2		<i>T</i> = 5		
n = 100 S = 15	6.839	11.149	8.917	11.82	
	(1.896)	(1.303)	(2.186)	(1.256)	
	<i>T</i> = 5		<i>T</i> = 10		

Dalalyan, A.S.

Introduction

Motivation
Basic concepts
Penalized LSE and EWA

Risk bounds

Oracle inequality Sparsity prior and OI Remarks

Langevin MC

Motivation
The set-up
MD Diffusions

Implementation

A simple example

Dalalvan, A.S.

- Input: n, k positive integers and $\sigma > 0$.
- We generate n vectors U_i of \mathbb{R}^2 uniformly distributed in $[0,1]^2$.
- Covariates $\phi_j(u) = 1_{[0,j_1/k] \times [0,j_2/k]}(u)$.
- Errors: we generate a centered Gaussian vector ξ with covariance matrix $\sigma^2 I$.
- Response: $Y_i = (\phi_1(U_i), \dots, \phi_{k^2}(U_i))^T \lambda^* + \xi_i$ where $\lambda^* = [1(j \in \{10, 100, 200\})]'$.
- Tuning parameters: the same rule as previously.

Introduction

Motivation Basic concepts Penalized LSE and EWA

Risk bounds

Oracle inequality Sparsity prior and OI Remarks

Langevin MC

Motivation The set-up MD Diffusions Implementation

Dalalyan, A.S.

Introduction

Motivation
Basic concepts
Penalized LSE and EWA

Risk bounds

Oracle inequality Sparsity prior and OI Remarks

Langevin MC Motivation

The set-up
MD Diffusions
Implementation

Simulations

The original image and its sampled noisy version.

Estimated images from observations with noise magnitudes 0.1, 0.5 and 1.

Dalalyan, A.S.

Basic concepts Penalized LSE and EWA

Risk bounds

Oracle inequality Sparsity prior and OI Remarks

Langevin MC

Motivation The set-up MD Diffusions Implementation Simulations

30

Dalalyan, A.S.

σ	<i>n</i> = 100			n = 200			Introduction Motivation
	EWA	Lasso	Ideal LG	EWA	Lasso	Ideal LG	Basic concepts
2	0.210	0.759	0.330	0.187	0.661	0.203	Penalized LSE and Risk bounds
	(0.072)	(0.562)	(0.145)	(0.048)	(0.503)	(0.086)	Oracle inequality
	<i>T</i> = 1			<i>T</i> = 1			Sparsity prior and Remarks
4	0.420	2.323	0.938	0.278	2.230	0.571	Langevin MC
	(0.222)	(1.257)	(0.631)	(0.132)	(1.137)	(0.324)	Motivation The set-up
	<i>T</i> = 1			<i>T</i> = 1			MD Diffusions Implementation

Introduction Motivation Basic concepts

Penalized LSE and EWA

Oracle inequality Sparsity prior and OI Remarks

Langevin MC Motivation

Open questions for future work

CERTIS

Dos Parts or Chausasse

Greek of Shapeparament of the Shapeparam

Dalalyan, A.S.

- Is it possible to perform model selection with the EWA?
- What is the rate of ergodicity when $\alpha = 0$?
- How to rigorously justify the choice of T and h?
- ..

Introduction

Motivation
Basic concepts
Penalized LSE and EWA

Risk bounds

Oracle inequality

Sparsity prior and OI

Remarks

Langevin MC

Motivation The set-up MD Diffusions Implementation