Example of LDP approach to smoothing problem

Robert Liptser, Tel Aviv University (joint work with F. Klebaner)

Abstract

We consider an example of absorption at zero diffusion process, relative to Brownian motion B_t and small positive parameter ε , having with non-Lipschitz diffusion coefficient " x^{γ} "

$$dX_t^{\varepsilon} = \mu X_t^{\varepsilon} dt + (X_t^{\varepsilon})^{\gamma} \varepsilon dB_t,$$

with $X_0^{\varepsilon} = x(>0)$ and $\gamma \in \left[\frac{1}{2}, 1\right)$, is known as "Constant Elasticity of Variance Model", introduced by Cox (1996); $\gamma = \frac{1}{2}$ correspond to branching diffusion.

Denote $\tau_0^{\varepsilon} = \inf\{t : X_t^{\varepsilon} = 0\}$. The main problem is how to find a smoothing estimate of $(X_{t \wedge \tau_0^{\varepsilon}}^{\varepsilon})_{t \in [0,T]}$ To this end, we decide the Large Deviation Principle (LDP) is the most convenient tool for such analysis and found that the estimate

$$\widehat{X}_{t} = \begin{cases} e^{\mu t} x \left[1 - \frac{1 - e^{-2\mu(1-\gamma)t}}{1 - e^{-2\mu(1-\gamma)T}} \right]^{1/(1-\gamma)}, & \text{if } \mu \neq 0 \\ \\ x \left[1 - \frac{t}{T} \right]^{1/(1-\gamma)}, & \text{if } \mu = 0 \end{cases}$$

is optimal in LDP scale in the following sense: for essentially small (ε, δ) and any deterministic function $\widetilde{X}_t \neq \widehat{X}_t$ with $\widetilde{X}_0 = x$ and absorbing on [0, T],

$$\mathsf{P}_{x}\Big(\sup_{t\in[0,T]}|X_{t}^{\varepsilon}-\widetilde{X}_{t}|>\delta\Big)\gtrsim \mathsf{P}_{x}\Big(\sup_{t\in[0,T]}|X_{t}^{\varepsilon}-\widehat{X}_{t}|>\delta\Big) \mathsf{P}_{x}\Big(\sup_{t\in[0,T]}|X_{t}^{\varepsilon}-\widehat{X}_{t}|\leq\delta\Big)\asymp\exp\Big(-\frac{1}{\varepsilon^{2}}\mathsf{P}_{x}\big(\tau_{0}^{\varepsilon}\leq T\big)\Big).$$