Estimation of function from noisy data

V. Solev *

SAPS VII -March 2009 - Le Mans, France

^{*}Steklov Institute, St Petersbourg, RUSSIA. e-mail: solev@pdmi.ras.ru.

1. Statistical problem

Generally the problem looks as following. On a large time interval [-T, T] we observe a process Y(t),

$$dY(t) = s(t)dt + dX(t),$$
(1)

where an unknown function s belongs to a given set \mathscr{L}_* ,

$$\mathscr{L}_* \subset L^2_{loc},$$

X(t) is a zero-mean gaussian process with stationary increments and the spectral density f. The spectral density f of the noise process is unknown and belongs to a given class of nonnegative functions \mathscr{K} .

To estimate an unknown function s one makes observations (for some collection \mathscr{D}_T of smooth functions φ supported on interval [-T, T])

$$\mathbf{y}[\varphi] = \mathbf{s}[\varphi] + \mathbf{x}[\varphi],$$

0-2

and constructs an estimator \hat{s}_T , based on these observations. Here we set

$$\mathbf{y}[\varphi] = \int_{\mathbb{R}^1} \varphi(t) \, dY(t),$$

and define by the same way variables $\mathbf{s}[\varphi]$ and $\mathbf{x}[\varphi]$ for $\varphi \in \mathscr{D}_T$.

We denote by \mathscr{L} the Banach space of locally square integrable functions with the norm $\|s\|_{\mathscr{L}}^2$:

$$||s||_{\mathscr{L}}^{2} = \sup_{x} \int_{x}^{x+1} |s(t)|^{2} dt,$$

and assume that $\mathscr{L}_* \subset \mathscr{L}$.

An estimator $\hat{s}_T(\cdot)$ is \mathfrak{F}_T -measurable random element of the space \mathscr{L} such that $\hat{s}_T \in \mathscr{L}_*$. Here the σ -algebra \mathfrak{F}_T is defined by

$$\mathfrak{F}_T = \sigma \left\{ \mathbf{y}[\varphi], \varphi \in \mathscr{D}_T \right\}$$

The set of all such estimators we denote by $\mathscr{S}(T)$.

Consider as the risk function of an estimator \hat{s}_T for s

$$R\left(\widehat{s}_{T},\mathscr{L}_{*}\right) = \sup_{s\in\mathscr{L}_{*}} \mathbf{E}_{f} \|\widehat{s}_{T} - s\|_{\mathscr{L}}^{2},$$

and minimax risk

$$R(T, \mathscr{L}_*) = \inf_{\widehat{s}_T \in \mathscr{S}(T)} R(\widehat{s}_T, \mathscr{L}_*).$$

For a given estimator $\hat{s} \in \mathscr{S}_T$, we can take the ratio

$$\rho(\widehat{s}_T, T, \mathscr{L}_*, f) = \frac{R(\widehat{s}_T, \mathscr{L}_*)}{R(T, \mathscr{L}_*)},$$

in order to compare an estimator \hat{s}_T and the minimax estimator. Our goal is to construct an suboptimal estimator \hat{s}_T such that, for sufficiently large T

$$\rho(\widehat{s}_T, T, \mathscr{L}_*, f) \leq C(\mathscr{K}, \mathscr{L}_*).$$

2. Parametric set \mathscr{L}_*

For a countable set $\Lambda \subset \mathbb{R}^1$ (which will be called spectral set) denote

$$\kappa = \kappa \left(\Lambda \right) = \inf_{u, v \in \Lambda, u \neq v} |u - v| > 0.$$

Consider Stepanov class $\mathscr{L}(\Lambda)$ locally square integrable functions

$$s(t) = \sum_{u \in \Lambda} a(u)e^{itu}, \sum_{u \in \Lambda} |a(u)|^2 < \infty$$

Paley R. and Wiener N. proved, that under the condition $\kappa(\Lambda) > 0$

$$C_1 \sum_{u \in \Lambda} |a(u)|^2 \le ||s||_{\mathscr{L}}^2 = \sup_x \int_x^{x+1} |s(t)|^2 dt \le C_2 \sum_{u \in \Lambda} |a(u)|^2$$

where C_1, C_2 depend only on κ .

It may be proved that the Banach norm $|| \cdot ||_{\mathscr{L}}$ is topologically equivalent on $\mathscr{L}(\Lambda)$ to the Hilbert norm $|| \cdot ||_{L^2(-T,T)}$,

$$||s||_{L^{2}(-T,T)}^{2} = \frac{1}{2T} \int_{-T}^{T} |s(t)|^{2} dt$$

for sufficiently large $T : T > T_0(\kappa)$.

As the parametric set for unknown function s we consider the subset \mathscr{L}_* of the space \mathscr{L} defined by

$$s(t) = \sum_{u \in \Lambda} a(u)e^{itu}, \ \sum_{u \in \Lambda} |a(u)|^2 (1+|u|)^{2\beta} < C.$$

Let $\beta = r + \alpha$, where r > 0 is an integer, and $\alpha \in (0, 1)$. For analytical goal it is convenient to use seminorm

$$\|s\|_{\beta} = \int_{-\infty}^{\infty} \frac{\|s^{(r)}(t+y) - s^{(r)}(t)\|_{L^{2}_{[-T,T]}}^{2}}{|y|^{1+2\alpha}} dy$$

3. Class \mathscr{K} of spectral densities

We define the class $\mathscr{K} = \mathscr{K}(K)$ of nonnegative functions by

$$\lambda(f) = \sup_{I} \frac{1}{|I|} \int_{I} f(u) \, du \times \frac{1}{|I|} \int_{I} \frac{1}{f(u)} \, du \le K < \infty, \ f \in \mathscr{K}.$$

Here supremum is taken over all intervals I.

We try to explain the choice of the class \mathscr{K} . Suppose we observe on interval $t \in [-T, T]$ unknown function

$$s(t) = \sum_{u \in \Lambda} a(u)\varphi_u(t),$$

in stationary noise:

$$dY(t) = s(t)dt + dX(t)$$

with spectral density f. In our case

$$\varphi_u(t) = e^{itu}$$

The reasonable estimator $\hat{a}_T(u)$ for unknown coefficient a(u) is defined by

$$\widehat{a}_{T}(u) = \frac{1}{2T} \int_{-T}^{T} \overline{\psi_{u}^{T}(t)} \, dY(t) = a(u) + \frac{1}{2T} \int_{-T}^{T} \overline{\psi_{u}^{T}(t)} \, dX(t).$$

Here $\{\psi_u^T(t), u \in \Lambda\}$ – is the system of conjugate function,

$$\frac{1}{2T} \int_{-T}^{T} \overline{\psi_u^T(t)} \varphi_v(t) \, dt = \delta_{u,v}.$$

So, we have observations

$$\widehat{a}_T(u) = a(u) + X_u, \ u \in \Lambda,$$

where $X_u, u \in \Lambda$ is zero mean gaussian process, and we have to estimate vector $(a(u), u \in \Lambda)$. The key point for our choice of the class \mathscr{K} of spectral densities is the following result.

Proposition 1. Suppose $f \in \mathcal{K}, \kappa > 0$, then

$$\mathbf{E}\left(X_u - \sum_{v \neq u} b(v) X_v\right)^2 \ge C(\kappa, K) \mathbf{E} X_u^2.$$

Now we take a function $\varphi(t), \sup \varphi \subset [-T, T],$

$$\int_{-T}^{T} \overline{\varphi(t)} \varphi_u(t) \, dt = 0, \ u \in \Lambda \tag{*}$$

and consider the observation

$$\xi = \int_{-T}^{T} \overline{\psi_u^T(t)} \, dY(t) = \int_{-T}^{T} \overline{\psi_u^T(t)} \, dX(t) = X[\varphi].$$

We add the observation ξ to the system $\{\hat{a}_T(u), u \in \Lambda\}$. In the case as ξ and $\{\hat{a}_T(u), u \in \Lambda\}$ are independent we have not any new information about

0-9

unknown vector $(a(u), u \in \Lambda)$.

Denote

$$H_{\Lambda} = \overline{\operatorname{sp}} \{ X_u, u \in \Lambda \}, \ H_0 = \overline{\operatorname{sp}} \{ X[\varphi], \sup \varphi \subset [-T, T], \varphi \text{ satisfies } (*) \}$$

In order to control minimax risk in general case, when we use for estimating only vector $(\hat{a}_T(u), u \in \Lambda)$, we need to know, that the unit ball of H_{Λ} separated from the unit ball of H_0 .

Proposition 1. Suppose $f \in \mathcal{K}$, $\kappa > 0$, then there exists constant $C(K,\kappa) > 0$ such that, for $X \in H_{\Lambda}$ and $\xi \in H_0$,

 $\mathbf{E} (X - \xi)^2 \ge C(K, \kappa) \mathbf{E} X^2.$

4. Suboptimal estimator

At the beginning we consider an example as we observe

$$y = \theta + X, \ X \in N(0, \sigma^2), \ |\theta| \le \tau.$$

In this case the risk R_L of linear estimator

$$\widehat{\theta} = y \frac{\tau^2}{\tau^2 + \sigma^2}$$

may be calculated, and

$$R_L = \frac{\tau^2 \sigma^2}{\tau^2 + \sigma^2}.$$

It is well known (Ibragimov, Hasminskii), that there exist absolute constant μ such that, for minimax risk R,

$$R_L \leq \mu R.$$

Now we take the estimator

$$\hat{\theta} = \begin{cases} y, & |y| \le \tau \\ \tau, & \text{else.} \end{cases}$$

Risk $R(\hat{\theta})$ of this estimator satisfies to

$$R(\widehat{\theta}) \le 8 \frac{\tau^2 \sigma^2}{\tau^2 + \sigma^2}.$$

Now consider our problem. Suppose we have observation

$$\widehat{a}_T(u) = a(u) + \frac{1}{2T} \int_{-T}^T \overline{\psi_u^T(t)} \, dX(t), \ u \in \Lambda,$$

and the parametric set is defined by

$$\sum_{u \in \Lambda} |a(u)|^2 (1+|u|)^{2\beta} \le C.$$

Let R be the smallest positive value such that

$$\sum_{u \in \Lambda, |u| \le R} |\widehat{a}_T(u)|^2 \left(1 + |u|\right)^{2\beta} \ge C.$$

We take as estimator \hat{s}_T for s the function

$$\widehat{s}_T = \sum_{u \in \Lambda, \, |u| \le R} \, \widehat{a}_T(u) e^{iut}. \qquad \qquad **$$

Theorem. Suppose that $\kappa > 0$, and

$$\lambda(f) = \sup_{I} \frac{1}{|I|} \int_{I} f(u) \, du \times \frac{1}{|I|} \int_{I} \frac{1}{f(u)} \, du \le K < \infty,$$

then there exists constant $C(\kappa, K)$ such that for sufficiently large T

$$R\left(\widehat{s}_{T},\mathscr{L}_{*}\right) \leq C(\kappa,K)R\left(T,\mathscr{L}_{*}\right).$$

0-12