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Abstract

A general linear model of a time-invariant system with ad-
ditive stochastic disturbances can be written as follows:

y(t) =
∞∑
k=1

hkx(t− k) + ξ(t), t = 1, 2, . . . (1)

in a discrete-time setting, and

y(t) =
∫ ∞

0

h(u)x(t− u)du+ ξ(t), t ≥ 0, (2)

in a continuous-time setting. Here, x and y are the input and
output, respectively, at time t and ξ is supposed to be a sta-
tionary zero-mean process. Models (1) and (2) are also called
SISO, meaning single-input single-output.

In model (1), the complex-valued function

H(eiω) =
∞∑
k=1

hke
−ikω, −π ≤ ω ≤ π, (3)

is the so-called the transfer function. A continuous-time coun-
terpart is

H(λ) =
∫ ∞
−∞

h(u)e−iλu, λ ∈ R. (4)

The transfer function plays a very important role for under-
standing the properties of systems (1) and (2).

Many different methods have been developed for estima-
tion of the transfer function, based either on frequency-domain
methods or on time-domain methods. The latter are based on
finite parametric models. In practice, it is not reasonable to
assume that the “true” model is finitely parameterizable. In
this context, the purpose of system modeling is to obtain a
model involving a finite number of unknown parameters that
provides a “reasonable” approximation to the observed data,
rather than to estimate parameters of the “true” system.

In Ljung and Yuan [8] and Ljung and Wahlberg [9], asymp-
totic properties of the least squares estimator for an approxi-
mation of the finite impulse response have been studied. In is
shown that the dimension of the model should increase with the



number of data in order to ensure convergence. The book by
Hannan and Deistler [4] is a good reference on model selection
methods. Goldenshluger [2] applied nonparametric minimax
approach to the problem of estimation of the transfer function
in model (1).

We discuss the existing methods and extend the existing re-
sults to continuous-time models (2). Our interest is also focused
at the possibility of application of irregular sampling which has
proved to be efficient in estimation of correlation functions and
spectral densities, see Masry and co-authors [6, 7, 10, 11, 12,
13, 14]. Other useful references are [1, 3, 5, 15].
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