
The Ornstein-Uhlenbeck process
Asymptotically e�cient estimators

Asymptotic Bias
Reducing the bias
The discrete case
Some Applications

Exact asymptotic bias for estimators of the
Ornstein-Uhlenbeck process

D. Bosq

LSTA, Université Pierre et Marie Curie - Paris 6

SAPS 8, Le Mans 2011

D.Bosq, Le Mans, 2011 Estimation for OU process



The Ornstein-Uhlenbeck process
Asymptotically e�cient estimators

Asymptotic Bias
Reducing the bias
The discrete case
Some Applications

Outline

1 The Ornstein-Uhlenbeck process

2 Asymptotically e�cient estimators

3 Asymptotic Bias

4 Reducing the bias

5 The discrete case

6 Some Applications

D.Bosq, Le Mans, 2011 Estimation for OU process



The Ornstein-Uhlenbeck process
Asymptotically e�cient estimators

Asymptotic Bias
Reducing the bias
The discrete case
Some Applications

De�nition

Consider a real stationary markov zero mean gaussian process

X =(Xt , t ∈ R) with a continuous nondegenerated autocorrelation

(ρ(h), h ≥ 0), then, there exists θ > 0 such that

ρ(h) = exp(−θh ), h ≥ 0,

this is the so-called Ornstein-Uhlenbeck process (OU).
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One may also de�ne OU as the unique stationary solution of the

stochastic di�erential equation

dXt =−θXt dt + σdWt

where W is a bilateral standard Wiener process.

Interpretation: X is the speed of a particle submitted to brownian

motion.

Finally, another simple form of OU is

Xt =
e−θt

√
2θ

W1(e2θt), t ≥ 0,

where W1 is a standard Wiener process.
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The information inequality

In the following we suppose that σ = 1 and we intend to estimate

θ and g(θ) from the observation of X(T ) = (Xt , 0≤ t ≤ T ).
The information inequality ( or Fréchet-Darmois-Cramer-Rao

inequality) is

Eθ (g(θT )−g(θ))2 ≥

(
b
′
T (θ) +g

′
(θ)
)2

IT (θ)
+b2T (θ),

where IT (θ) is the Fisher information and bT (θ) the bias of the

estimator g(θT ). Thus, in order to compute the above lower

bound, it is necessary to study the bias and the bias derivative of

g(θT ). This study allows to evaluate precisely the di�erence

between the mean square error and the bound.
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A family of asymptotically e�cient estimators

Consider the family zof estimators of the form

θT = θT (α,β ,4T ) =
T −αX 2

0 −βX 2
T

2BT

+4T ,

where BT =
∫ T
0 X 2

t dt, α,β ∈ R and 4T is a statistic satisfying

(C) ∆T
a.s.−−→ 0,T

p
2Eθ |4T |p→ 0,p ≥ 1,TEθ (4T )→ δθ , T → ∞

where δθ depends on (4T ) and θ
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The empirical estimator (EE) is given by

θ̄T =
T

2BT

The conditional likelihood of X(T ) is

L = exp

(
ATθ −BT

θ2

2

)
where AT =

T+X 2
0−X 2

T

2 , hence, the conditional maximum likelihood

estimator (CMLE):

θ̂T =
AT

BT
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Now, the likelihood is

L̃ =

√
θ

π
exp(−θX 2

0 ) .L,

and the maximum likelihood estimator (MLE):

θ̃T =
(AT −X 2

0 ) +
√

(AT −X 2
0 )2 +2BT

2BT

,

Finally, the reverse conditional maximum likelihood

estimator(RCMLE) has the form

θ̌T =
A
′
T

BT

,

where A
′
T =

T+X 2
T−X 2

0

2 .
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These estimators belong to z :

θ̄T = θT (0,0,0)

θ̂T = θT (−1,1,0)

θ̌T = θT (1,−1,0)

θ̃T = (1,1,4T ),

where 4T = T
4BT

[(
Γ2T + 8BT

T 2

) 1
2 −ΓT

]
, with ΓT = 1− X 2

0+X 2
T

T
.

Note that z is a convex set.

D.Bosq, Le Mans, 2011 Estimation for OU process



The Ornstein-Uhlenbeck process
Asymptotically e�cient estimators

Asymptotic Bias
Reducing the bias
The discrete case
Some Applications

Asymptotic e�ciency

Proposition

For each θT ∈zone has

T
p
2 Eθ |θT −θ |p→ (2θ)

p
2 Eθ |N|p, p ≥ 1,

and

T
1
2 (θT −θ) =⇒ (2θ)

1
2N,

where N ∼N (0,1).

Proof.

It is an easy consequence of Kutoyants (2004,2009).
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Bias of θ̄T

First note that

θ̄T =
1

2

(
θ̂T + θ̌T

)
Then, since X is gaussian stationary, the three estimators have the

same bias. Moreover this bias is positive:

Eθ (θ̄T ) >
1

Eθ (2T−1BT )
=

1

2(2θ−1)
= θ

In order to study this bias one may use the representation of X as

the transform of a Wiener process for obtaining

bT (θ ,X ) = θbθT (1,Y )

where Yt =
√

θ Xt/θ .
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It follows that

b
′
T (θ) = O (

lnT

T
)

and

T bT (θ)→ 2
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The general case

For the general θT one obtains

∂

∂θ
Eθ (θT −θ)→ 0,

and

T .Eθ (θT (α,β ,∆T )−θ)→ 2− α + β

2
+ δθ .

For the MLE one has again

T .Eθ (θ̃T −θ)→ 2.

D.Bosq, Le Mans, 2011 Estimation for OU process



The Ornstein-Uhlenbeck process
Asymptotically e�cient estimators

Asymptotic Bias
Reducing the bias
The discrete case
Some Applications

The general case

For the general θT one obtains

∂

∂θ
Eθ (θT −θ)→ 0,

and

T .Eθ (θT (α,β ,∆T )−θ)→ 2− α + β

2
+ δθ .

For the MLE one has again

T .Eθ (θ̃T −θ)→ 2.

D.Bosq, Le Mans, 2011 Estimation for OU process



The Ornstein-Uhlenbeck process
Asymptotically e�cient estimators

Asymptotic Bias
Reducing the bias
The discrete case
Some Applications

Asymptotic e�ciency of g(θ ∗T )

Let g : R∗+ 7→ R, in order to estimate g(θ), one sets

θ
∗
T = max (θT , e−T ) ,θT ∈F , T > 0.

Clearly θ ∗T and θT have the same asymptotic behaviour and, under

mild conditions, g(θ ∗T ) is asymptotically e�cient.

For example, if g is derivable, one has

T
1/2 (g(θ

∗
T )−g(θ))⇒ (2θ)

1/2
∣∣∣g ′(θ)

∣∣∣N,

and if, in addition
∣∣∣g ′(θ)

∣∣∣≤ cθ θm, m ≥ 0, then

Eθ

(
T

p/2 |g(θ
∗
T )−g(θ)|p

)
→ (2θ)

p/2
∣∣∣g ′(θ)

∣∣∣p Eθ [|N|p] p ≥ 1.
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Asymptotic bias for g(θ )

Proposition

If g has three continuous derivatives with

|g ′′′(θ)| ≤ c θ
m, θ > 0 (c > 0,m ≥ 0)

and θT = θT (α,β ,∆T ) then

T .Eθ (g(θ
∗
T )−g(θ))→

(
2− α + β

2
+ δθ

)
g ′(θ) + θg”(θ).

Again, the four �classical� estimators have the same asymptotic

bias: 2g
′
(θ) + θ g

′′
(θ).
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Bias derivative

Proposition

If g has one continuous derivative such that∣∣g ′(u)
∣∣≤ c |u|m u∈ R,

for some c > 0 and m ≥ 0, and if E
(
g(θ .θ̄θT (Y )

)
is di�erentiable

under expectation, then

∂

∂θ
Eθ

(
g(θ̄T )−g(θ)

)
−−−→
T→∞

0,

and the same property holds for each θT in z.
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Examples

1 If g(θ) is a polynomial the result applies. In particular

T .Eθ (θ̄2
T −θ2)→ 6θ .

2 If g(θ) = exp(-θh) = ρ(h), (h > 0), one obtains

TEθ (exp(−θ
∗
Th)− exp(−θh))→ (θh−2+

α + β

2
−δθ )hexp(−θh).

3 If g(θ) =
√

θ

π
exp(−θx2), then

TEθ (

√
θ̄ ∗T
π

exp(−θ̄
∗
T x

2)−
√

θ

π
exp(−θx2))−→ l(x ,θ)

where l(x ,θ) = exp(−θx2)√
π

[
x4θ

3
2 −3x2θ

1
2 − 3

4θ−
1
2

]
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Examples

4 If g(θ) = Pθ (X0 ≤ a), the constant in the asymptotic bias is

λ (x ,θ) =
aexp(−a2θ)√

π

[
(1− a2

2
)
1√
θ

+
1

2
√

π

]
5 If g(θ) = c

θ
+d (c and d constants), assumption in the

previous Proposition is not satis�ed and we have

2g ′(θ) + θg ′′(θ) = 0.

Actually, a slight modi�cation of the proof gives

T .Eθ (g(θ̄T )−g(θ))→ 0,

which is natural since g(θ̄T ) is an unbiased estimator of g(θ)!
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Reducing the bias for θ

If δθ = δ does not depends on θ , one may reduce the bias of θT by

putting

θ
(1)
T = θT −T−1(2− α + β

2
+ δ ),

then, clearly, θ
(1)
T remains asymptotically e�cient and

T .Eθ (θ
(1)
T −θ)→ 0.

Note that θ
(1)
T ∈F , actually θ

(1)
T = θT

(
α,β ,∆T −

2− α+β

2 +δ

T

)
. In

particular, for θ̂T , θ̌T , θ̃T andθ̄T , θ
(1)
T is obtained by substracting

2
T
. Moreover one has

T

∣∣∣∣Eθ (θ̄T −
2

T
)−θ

∣∣∣∣= O(
1√
T

)
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Reducing the bias for g(θ )

The situation is somewhat di�erent for g(θ); putting

˜̄
θT = max

(
θ̄T −

2

T
,exp(−T )

)
one obtains

TEθ

(
g( ˜̄

θT )−g(θ)
)
→ θg ′′(θ).

If g ′.g ′′ is positive, the absolute value of the asymptotic bias is

reduced, but it is not the case in a general situation (cf

g(θ)=exp(-θ) at θ = 3).
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The discrete case

Suppose that one only observes Xδ , ..., Xnδ (δ > 0) and uses the

estimator

θ̄n =

(
2

n

n

∑
i=1

X 2
iδ

)−1
then

nδ Eθ (θ̄n−θ)−−−→
n→∞

2δθ
1+ exp(−2δθ)

1− exp(−2δθ)

Now, if δ = δn −→ 0 and nδn −→ ∞ one has again

nδn Eθ (θ̄n−θ)−−−→
n→∞

2.
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Some Applications

Collecting the above results one obtains

0< Eθ (θ̄T −θ)2−mT (θ) < cθT
− 3

2

where mT (θ) is the Frechet- Darmois- Cramer- Rao bound.

Another application involves Statistical prediction. Consider the

predictor of XT+h (h > 0) de�ned by

X̂T+h = exp(−θ̄(T−a lnT )h) XT

then, using the fact that the O.U. process is geometrically strongly

mixing and chosing a suitably, we get

TEθ (X̂T+h)−−−→
T→∞

0.
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As a consequence, one obtains asymptotic e�ciency of the

predictor : consider the genuine inequality

Eθ (p−g)2 ≥ Eθ (EX
θ (g)−g)2,

where p is the statistical predictor of g . Here, p = X̂T+h,

g = XT+h and the bound Eθ (EX
θ

(g)−g)2 = 1−e−2θh

2θ
.

Then, we have

T

[
Eθ (X̂T+h−XT+h)2− 1

2θ
(1− e−2θh)

]
−−−→
T→∞

h2e−2θh.

It follows that

TEθ (X̂T+h− e−θhXT )2 −−−→
T→∞

h2e−2θh.
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