
Dalalyan, A.S.

Generalities

Gaussian
se-
quence
mo-
del

Main
re-
sults

1

Poisson intensity registration
by goodness-of-fit testing

with Olivier Collier

Arnak DALALYAN
Imagine-LIGM, Université Paris Est



Dalalyan, A.S.

Generalities

Gaussian
se-
quence
mo-
del

Main
re-
sults

2

Model and problem formulation

� We observe one realization X and one realization X # of two
Poisson point processes on the time interval [0,n], n ∈ N.

� The intensities S and S# are one-periodic.

� We are interested in testing the null hypothesis : S and S#

coincide up to a time shift. That is

H0 : ∃τ ∈ [0,1] s.t. S#(x) = S(x − τ), ∀x ∈ [0,1].

� Slightly more general : the null hypothesis is

∃a,b ∈ R, τ ∈ [0,1] s.t. S#(x) = aS(x − τ) + b, ∀x ∈ [0,1].

� Particularity : the null hypothesis is composite and
nonparametric.
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Motivation : key-point matching in computer vision

Key-point matching is a central problem in computer vision, used for
object detection, tracking, stereo-vision, etc.

� An image is a realization of a (2D) Poisson process.

� If in a ring, two images coincide up to a rotation, then the
corresponding Poisson processes have intensities that are equal
up to a shift.

� Applying rigorous statistical approach may considerably reduce
the number of mismatches.



Dalalyan, A.S.

Generalities

Gaussian
se-
quence
mo-
del

Main
re-
sults

3

Motivation : key-point matching in computer vision

Key-point matching is a central problem in computer vision, used for
object detection, tracking, stereo-vision, etc.

� An image is a realization of a (2D) Poisson process.

� If in a ring, two images coincide up to a rotation, then the
corresponding Poisson processes have intensities that are equal
up to a shift.

� Applying rigorous statistical approach may considerably reduce
the number of mismatches.



Dalalyan, A.S.

Generalities

Gaussian
se-
quence
mo-
del

Main
re-
sults

3

Motivation : key-point matching in computer vision

Key-point matching is a central problem in computer vision, used for
object detection, tracking, stereo-vision, etc.

� An image is a realization of a (2D) Poisson process.

� If in a ring, two images coincide up to a rotation, then the
corresponding Poisson processes have intensities that are equal
up to a shift.

� Applying rigorous statistical approach may considerably reduce
the number of mismatches.



Dalalyan, A.S.

Generalities

Gaussian
se-
quence
mo-
del

Main
re-
sults

3

Motivation : key-point matching in computer vision

Key-point matching is a central problem in computer vision, used for
object detection, tracking, stereo-vision, etc.

� An image is a realization of a (2D) Poisson process.
� If in a ring, two images coincide up to a rotation, then the

corresponding Poisson processes have intensities that are equal
up to a shift.

� Applying rigorous statistical approach may considerably reduce
the number of mismatches.



Dalalyan, A.S.

Generalities

Gaussian
se-
quence
mo-
del

Main
re-
sults

3

Motivation : key-point matching in computer vision

Key-point matching is a central problem in computer vision, used for
object detection, tracking, stereo-vision, etc.

� An image is a realization of a (2D) Poisson process.
� If in a ring, two images coincide up to a rotation, then the

corresponding Poisson processes have intensities that are equal
up to a shift.

� Applying rigorous statistical approach may considerably reduce
the number of mismatches.



Dalalyan, A.S.

Generalities

Gaussian
se-
quence
mo-
del

Main
re-
sults

4

Reduction to the regression model

� One realization X of a Poisson point processes on the time
interval [0,n] :

x1, . . . , xN ∈ [0,n]

for some random integer N.

� For any interval A ⊂ (0,1), set

Xn(A) =
1
n

n∑
i=1

N∑
j=1

1A(Xj − i)

� It is clear that nXn(A) ∼ P
(
n
∫

A S(x) dx
)

and therefore

Xn(A)
D
≈
∫

A
S(x) dx +

1√
n
N
(

0,
∫

A
S(x) dx

)
.

or, equivalently,

Xn(dx)
D
≈ S(x) dx +

√
S(x)√

n
dB(x).
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Variance stabilization via the root transform

� The latter Gaussian white noise model is heteroscedastic.

� To get a model with a constant noise magnitude, we apply the
variance stabilizing root transform :√

Xn(A)
D
≈
∫

A

√
S(x) dx +

1√
n
N
(

0,Leb(A)
)
.

� we observe Y•,# = {Y •,#(x) = (Y (x),Y #(x)) : x ∈ [0,1]} s. t.

dY •,#(x) =

[
f (x)

f #(x)

]
+ σdW (x), ∀x ∈ [0,1]

where W is a 2D Brownian motion, f and f # are two unknown
1-periodic signals. (We can abandon the assumption of positiveness.)

� We wish to test

H0 : ∃ (b∗, τ∗) s.t. f (x) = f #(x + τ∗) + b∗ , ∀x ∈ [0,1].
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An illustration

Two periodic curves coinciding up to a time-shift
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An illustration

Two periodic curves coinciding up to a time-shift and corrupted
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An illustration

Having observed the noisy curves
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is it possible to detect that the original noiseless curves were
equal up to a time shift ?
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Projection onto the Fourier basis
Gaussian sequence model

� We transform the data into :
Yj = cj + σεj , Y #

j = c#j + σε#j , j = 0,1,2, . . . ,
where cj =

∫ 1
0 f (x) e2i jπx dx and c#j =

∫ 1
0 f #(x) e2i jπx dx are the

complex Fourier coefficients.

� The random variables εj , ε#j are i.i.d. NC(0,1), which means that
their real and imaginary parts are independent N (0,1) random
variables.

� We are interested in testing the hypothesis H0, which translates
in the Fourier domain to

H0 : ∃ τ̄∗ ∈ [0,2π[ s.t. cj = e−i j τ̄∗c#j ∀j = 1,2, . . . .

� The unknown parameters are assumed to belong to the
functional class :

Fs,L =
{

u = (u1,u2, . . .) :
+∞∑
j=1

j2s|uj |2 ≤ L2
}
,

where the positive real numbers s and L stand for the
smoothness and the radius of the class Fs,L.
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Penalized likelihood ratio (PLR) test

� log-likelihood of u•,# = (u,u#) given Y•,# = (Y,Y#) is

`(Y•,#,u•,#) =
1

2σ2 ‖Y− u‖2
2 +

1
2σ2 ‖Y

# − u#‖2
2. (1)

� penalized log-likelihood :

p`(Y•,#,u•,#) =
‖Y− u‖2

2 + ‖Y# − u#‖2
2

2σ2 +
∑
j≥1

ωj
(
|uj |2 + |u#

j |
2).

� The penalized likelihood ratio test statistic :

∆(Y•,#) = min
u•,#:H0 is true

p`(Y•,#,u•,#)−min
u•,#

p`(Y•,#,u•,#).

� It is clear that ∆(Y•,#) is always non-negative. Furthermore, it is
small when H0 is satisfied and is large if H0 is violated.

� The minimization of the quadratic functional p` leads to :

min
u•,#

p`(Y•,#,u•,#) =
1

2σ2

∑
j≥1

ωj

1 + ωj

(
|Yj |2 + |Y #

j |
2).
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Shrinkage weights and test definition

� We replace ωj/(1 + ωj ) by νj and call the sequence
ν = (ν1, ν2, . . .) shrinkage weights.

� We assume νj ∈ [0,1], for instance,

νj =


1{j≤Nσ}, (projection filter){

1 +
( j
κNσ

)µ}−1
1{j≤Nσ}, κ > 0, µ > 1, (Tikhonov filter){

1−
( j

Nσ

)µ}
+
, µ > 0. (Pinsker filter)

� The (penalized) log-likelihood ratio test is then defined by the
critical region

∆σ(Y•,#) ≥ tν,α,

which is equivalent to

min
τ∈[0,2π]

∑
j≥1

νj |Yj − ei jτY #
j |

2 ≥ σ2tν,α.
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Assumptions and main results
Convergence under H0

Main conditions on the shrinkage weights :

(A) ν1 = 1, and νj = 0, ∀j > Nσ,

(B) for some positive constant c, it holds that
∑
j≥1

ν2
j ≥ cNσ.

Theorem
Let c ∈ F1,L and |c1| > 0. Assume that the weights νj are chosen to
satisfy conditions (A), (B), Nσ → +∞ and σ2N5/2

σ log(Nσ) = o(1).
Then, under the null hypothesis, the test statistic ∆σ(Y•,#) is
asymptotically distributed as a Gaussian random variable :

∆σ(Y•,#)− 4‖ν‖1

4‖ν‖2

D−−−→
σ→0

N (0,1).
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Some consequences and remarks

� In the case of projection weights, it holds that

∆σ(Y•,#)
D
≈ 2χ2

2Nσ , σ → 0,

and for this result, the assumption Nσ →∞ is not needed.

� We will reject H0 if and only if

∆σ(Y•,#) ≥ 4‖ν‖1 + 4z1−α‖ν‖2,

where z1−α is the (1− α)-quantile of N (0,1).

� Since c ∈ F1,L, the “optimal” choice of weights ν is such that
Nσ ∼ σ−2/3. For this choice, the assumptions of Theorem are
clearly satisfied (σ2N5/2

σ log(Nσ) = o(1)).

� The p-value of the aforementioned test is a measure of
alignment for the pair of curves :

α∗ = Φ
(∆σ(y•,#)− 4‖ν‖1

4‖ν‖2

)
,

where Φ is the c.d.f. of N (0,1).
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Behavior under the alternative
Consistency of the PLR test

We consider the following alternative

H1 : inf
τ

∑
j≥1

|cj − ei jτc#
j |

2 ≥ ρ

with some fixed ρ > 0.
We will need the following condition :

(C) ∃ c > 0, such that min{j ≥ 0, νj < c} → +∞, as σ → 0.

Theorem
Let the assumptions of the previous Theorem, as well as condition
(C), be satisfied. Then the test statistic Tσ = ∆σ(Y•,#)−4‖ν‖1

4‖ν‖2
diverges

under H1, i.e.,
Tσ

P−→ +∞, as σ → 0.

In other words, the result above claims that the power of the PLR-test
is asymptotically equal to one as the noise level σ decreases to 0.
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Numerical example

In order to illustrate the convergence of the PLR-test when σ → 0, we
chose the function HeaviSine and computed its complex Fourier
coefficients {cj ; j = 0, . . . ,106}. For each σ ∈ {2−k/2, k = 1, . . . ,15},
we repeated 1000 times :

� set Nσ = 50σ−1/2,

� generate {Yj ; j = 0, . . . ,Nσ} by adding to {cj} an i.i.d. (complex
valued) sequence ξj ∼ NC(0, σ2),

� randomly choose a parameter τ∗ ∼ U([0,2π]), indep. of {ξj},

� generate the shifted noisy sequence {Y #
j ; j = 0, . . . ,Nσ} by

adding to {ei jτ∗cj} an i.i.d. sequence ξ#
j ∼ NC(0, σ2),

independent of {ξj} and of τ∗,

� we compute the three values of the test statistic ∆σ

corresponding to the classical shrinkage weights and compare
these values with the threshold for α = 5%.
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Numerical example
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FIGURE: The proportion of acceptances as a function of log2 σ
−2 for

three different shrinkage weights : projection (Left), Tikhonov-Phillips
(Middle) and Pinsker (Right).

� One can observe that for σ = 2−15/2 ≈ 5× 10−3, the proportion
of true negatives is almost equal to the nominal level 0.95.

� Another observation is that the three curves are quite
comparable, with a slight advantage for the Pinsker’s weights.
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Summary and future work

� We have introduced a PLR test for testing whether two
curves, observed with a Gaussian noise contamination,
coincide up to a spatial shift.

� Under some conditions on the penalization, we established
the asymptotic Gaussianity of the PLR under the null and
proved its divergence under the alternative.

� We are now close to completing the proof of the minimax
rates of separation, in the spirit of Ingster and Kutoyants
[MMS, 2007].

� We also want to develop a direct inference for the Poisson
process model presented in the beginning.

� The ultimate goal is to apply this methodology to the
problem of key-point matching in computer vision.
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THANK YOU !
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