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Model and problem formulation

We observe one realization X and one realization X# of two
Poisson point processes on the time interval [0, n], n € N.

The intensities S and S* are one-periodic.

We are interested in testing the null hypothesis : S and S#
coincide up to a time shift. That is

Ho: 3r€0,1] st S*(x)=8(x-7), V¥xel0,1]
Slightly more general : the null hypothesis is
Ja,beR, 7€[0,1] st S#(x)=aS(x—-r7)+b, Vxe][0,1].

the null hypothesis is composite and
nonparametric.
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Motivation : key-point matching in computer vision

Key-point matching is a central problem in computer vision, used for
object detection, tracking, stereo-vision, etc.

An image is a realization of a (2D) Poisson process.

If in a ring, two images coincide up to a rotation, then the
corresponding Poisson processes have intensities that are equal
up to a shift.

Applying rigorous statistical approach may considerably reduce
the number of mismatches.
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Reduction to the regression model

One realization X of a Poisson point processes on the time
interval [0, n] :
Xi,...,Xn € [0, N

for some random integer N.
For any interval A C (0,1), set

Xn(A) = ZZ 14(X

/1/1

Itis clear that nX,(A) ~ P(n [, S( ) and therefore

/S dx+— /S dx

S(x)
vn

or, equivalently,
Xo(dx) ~ S(x) dx +

dB(x).
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Variance stabilization via the root transform

The latter Gaussian white noise model is heteroscedastic.

To get a model with a constant noise magnitude, we apply the
variance stabilizing root transform :

1
VXn(A) R / VS(x) dx + — N(o,Leb(A)).
A vn

From now on, we deal with the Gaussian white noise model in which :

we observe Y*# = {Y*#(x) = (Y(x), Y#(x)) : x € [0,1]} s. .
f(x)
f#(x)
where W is a 2D Brownian motion, f and # are two unknown
1-periodic signals. (We can abandon the assumption of positiveness.)

ave#00 = [+ oawn, e

We wish to test
Ho : 3 (b*, %) s.t. | f(x) = f#(x + 1) + b* |, Vx € [0,1].
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An illustration

Two periodic curves coinciding up to a time-shift and corrupted
by noise
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An illustration

Having observed the noisy curves

is it possible to detect that the original noiseless curves were
equal up to a time shift ?
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Projection onto the Fourier basis
Gaussian sequence model

We transform the data into :

Y—C/Jrcre/7 Y#:C#Jroe j=0,1,2,.
where ¢; = [ f(x) €%/ dx and cf = f f#(x) €4/ dx are the
complex Fourier coefﬂments

The random variables ¢;, ef are i.i.d. V¢(0, 1), which means that
their real and imaginary parts are independent A/(0, 1) random
variables.
We are interested in testing the hypothesis Hp, which translates
in the Fourier domain to

Ho: 37 €f0,2r] st ¢g=e""¢ vj=12...
The unknown parameters are assumed to belong to the
functional class :

“+oo
For={u= (... ): Y Plyf < 12},

j=1
where the positive real numbers s and L stand for the
smoothness and the radius of the class Fs .
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Penalized likelihood ratio (PLR) test

v log-likelihood of u*# = (u, u*) given Y*# = (Y, Y#) is

L] { ] 1
() = Y = ulf+ Y et E (1)

1
202
v penalized log-likelihood :

ok e, Y — ul5 + [[Y* — u#|3
pl(Y®# ut#) = 2 5,7 24> willyP + 7).
j>1

v The penalized likelihood ratio test statistic :
A(Y*#)= min  plY*# u*#) migpﬁ(Y”#, u#).
ue

u*#:H is true

/ ltis clear that A(Y*#) is always non-negative. Furthermore, it is
small when H, is satisfied and is large if H; is violated.

v/ The minimization of the quadratic functional p¢ leads to :

min pL(Y*#, u*#)

#
22 1 i+ 1Y P)-
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Shrinkage weights and test definition

v We replace w;/(1 + wj) by v; and call the sequence
v = (v1,vs,...) shrinkage weights.

v We assume v; € [0, 1], for instance,

Ly<n, (projection filter)
=9 {1+ )" Y Myen,y, K>0,u>1, (Tikhonov filter)
{1- (%)} p> 0. (Pinsker filter)

v The (penalized) log-likelihood ratio test is then defined by the
critical region ALY H) > by,

which is equivalent to

min vV — €7TYH2 > o2t .
T€[0,27] = J '




Assumptions and main results
Convergence under Hj

Main conditions on the shrinkage weights :

(A) vi=1, and vj=0, V> N,,

(B) for some positive constant ¢, it holds that Z 1//-2 >cN,.
j>1

Theorem

Let ¢ € Fy and |ci| > 0. Assume that the weights v; are chosen to

satisfy conditions (A), (B), N, — +oo and 02N2/?log(N,,) = o(1).
Then, under the null hypothesis, the test statistic A, (Y*7) is
asymptotically distributed as a Gaussian random variable :

Ay (YH)—4llvlh 2
4”1/”2 o—0

N(0,1).
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Some consequences and remarks

v In the case of projection weights, it holds that
AU(Y.y#) ’2" 2X§N<,a g — Oa
and for this result, the assumption N, — oo is not needed.

v We will reject Hy if and only if

AU(Y.’#) > 4||V||1 + 421704”1/”27

where z;_,, is the (1 — a)-quantile of A/(0,1).

v Since ¢ € F; 1, the “optimal” choice of weights v is such that
N, ~ o—2/3, For this choice, the assumptions of Theorem are
clearly satisfied (e2N>/?log(N,,) = o(1)).

v The p-value of the aforementioned test is a measure of
alignment for the pair of curves :

o _ (DoY) — 4|yl
S G T
where ¢ is the c.d.f. of N(0,1).




Behavior under the alternative
Consistency of the PLR test

We consider the following alternative

Hi:  infy |G —e/ref P = p
i>1
with some fixed p > 0. =
We will need the following condition :

(C) 3¢ >0, suchthat min{j > 0,1, <€} — +o00, as o — 0.

Theorem

Let the assumptions of the previous Theorem, as well as condition
(C), be satisfied. Then the test statistic T, = % diverges
under Hy, i.e.,

P
T, — +o0, as o— 0.

In other words, the result above claims that the power of the PLR-test
is asymptotically equal to one as the noise level o decreases to 0.



Numerical example

In order to illustrate the convergence of the PLR-test when o — 0, we
chose the function HeaviSine and computed its complex Fourier
coefficients {c;;j = 0,...,10%}. Foreach o € {27%/2 k =1,...,15},
we repeated 1000 times :

v/ set N, =500"1/2,

v generate {Y;;j=0,...,N,} by adding to {¢;} an i.i.d. (complex
valued) sequence & ~ N¢(0,0?),

v randomly choose a parameter 7 ~ U/([0, 2]), indep. of {;},

v generate the shifted noisy sequence {Yj#;j =0,...,N,} by
adding to {€"/7" ¢;} an i.i.d. sequence 51# ~ Nc(0,02),
independent of {¢;} and of 7*,

v we compute the three values of the test statistic A,

corresponding to the classical shrinkage weights and compare
these values with the threshold for o« = 5%.



Numerical example

07,
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FIGURE: The proportion of acceptances as a function of log, o —2 for
three different shrinkage weights : projection (Left), Tikhonov-Phillips
(Middle) and Pinsker (Right).

One can observe that for o = 2-15/2 ~ 5 x 103, the proportion
of true negatives is almost equal to the nominal level 0.95.

Another observation is that the three curves are quite
comparable, with a slight advantage for the Pinsker’s weights.
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We have introduced a PLR test for testing whether two
curves, observed with a Gaussian noise contamination,
coincide up to a spatial shift.

Under some conditions on the penalization, we established
the asymptotic Gaussianity of the PLR under the null and
proved its divergence under the alternative.

We are now close to completing the proof of the minimax
rates of separation, in the spirit of Ingster and Kutoyants
[MMS, 2007].

We also want to develop a direct inference for the Poisson
process model presented in the beginning.

The ultimate goal is to apply this methodology to the
problem of key-point matching in computer vision.
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