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Gaussian-like processes

Our basic model is giving by the integral

Xt = X0 +

∫ t

0

σsdGs , t ≥ 0,

where σ is a volatility process and (Gs)s≥0 is a Gaussian process with centered
and stationary increments.

Under Hölder continuity conditions on σ and G the above integral is
well-defined in the Riemann-Stieltjes sense.

The stochastic process X is assumed to be observed at time points ti = i∆n,
i = 0, . . . , [t/∆n] with ∆n → 0.
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Under Hölder continuity conditions on σ and G the above integral is
well-defined in the Riemann-Stieltjes sense.

The stochastic process X is assumed to be observed at time points ti = i∆n,
i = 0, . . . , [t/∆n] with ∆n → 0.

Mark Podolskij, University of Heidelberg

Estimation of scaling parameter for continuous processes



The Framework Ratio Statistics Robust estimation Critical region

The scaling parameter

Let (Rt)t≥ denote the variogram of the Gaussian driver G , i.e.

Rt = E(Gs+t − Gs)2.

We assume that R has a polynomial behaviour in the neighborhood of 0:

Rt = const · tα + O(tα+α′
) as t → 0

for some α ∈ (0, 2) and α′ > 0.

Our aim is to estimate the scaling parameter

α ∈ (0, 2)

from high frequency data Xi∆n .
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Estimation

Our estimation procedure relies on the power variation statistic

V (X , p)nt = ∆nτ
−p
∆n

[t/∆n]∑
i=1

|∆n
i X |p, ∆n

i X = Xi∆n − X(i−1)∆n
,

with τ 2
∆n

= R∆n .

In contrast to the semimartingale framework the statistic V (X , p)nt is not
feasible as the normalizing constant τ∆n is unknown.

Recall the identity
τ 2

∆n
= const ·∆α

n + O(∆α+α′

n ),

where α ∈ (0, 2) is the parameter of our interest.
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Law of large numbers

Theorem: Under certain regularity conditions on the variogram R we obtain
the convergence

V (X , p)nt
ucp−→ mp

∫ t

0

|σs |pds

with mp = E(|N(0, 1)|p).

For the corresponding CLT we require some stronger conditions.
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Central limit theorem

Theorem: Let the volatility process σ be smooth enough and further assume that

Rt = const · tα + O(tα+α′
) as t → 0

for some α ∈ (0, 3/2) \ {1} and α′ > 0. Then we deduce the stable convergence

∆−1/2
n

(
V (X , p)nt −mp

∫ t

0

|σs |pds
)
Dst−→ ρ

∫ t

0

|σs |pdW ′s ,

where W ′ is a new Brownian motion (independent of everything) and

ρ2 = lim
n→∞

∆−1
n Var(V (BH , p)n1)

with BH being a fBm with Hurst parameter H = α/2.
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Some remarks

The central limit theorem is proved via a combination of a blocking technique,
Malliavin calculus and the properties of stable convergence (and many many
approximations).

Joint convergence for a family of powers (p1, . . . , pk) and frequencies
(d1∆n, . . . , dl∆n) is straightforward.

The restriction
α ∈ (0, 3/2) \ {1}

is explained by the fact that for α ∈ (3/2, 2) we obtain a non-central limit
theorem with a slower rate of convergence.
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Ratio statistics
Even though all asymptotic results are infeasible we can use the relationship

τ 2
∆n

= const ·∆α
n + O(∆α+α′

n ),

to estimate α ∈ (0, 2). This implies that τ 2
2∆n

/τ 2
∆n
→ 2α.

Our estimation method is based on the change of frequency:

Rn
t =

∑[t/∆n]
i=2 |Xi∆n − X(i−2)∆n

|2∑[t/∆n]
i=1 |Xi∆n − X(i−1)∆n

|2
P−→ 2α.

A central limit theorem for the normalized statistic

∆−1/2
n

( logRn
t

log 2
− α

)
holds for α ∈ (0, 3/2) \ {1} and α′ > 1/2. The latter condition is required to

ensure that ∆
−1/2
n (τ 2

2∆n
/τ 2

∆n
− 2α)→ 0.
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Remark

In practice it is more informative to consider a power plot to infer the
parameter α. Consider the power variation ratio

R(q)nt =

∑[t/∆n]
i=2 |Xi∆n − X(i−2)∆n

|q∑[t/∆n]
i=1 |Xi∆n − X(i−1)∆n

|q
P−→ 2qα/2.

Example: For q ∈ (a, a) the scaling parameter α can be estimated via

α̂ =
1

a− a

∫ a

a

2 logR(q)nt
q log 2

dq
P−→ α.
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Higher order differences

Now we provide an estimation method for the values

α ∈ (3/2, 2)

It turns out that considering higher order differences solves the problem. Let

∆
(q)n
i X denote the qth order difference of X , e.g.

∆
(2)n
i X = Xi∆n − 2X(i−1)∆n

+ X(i−2)∆n
.

Define the power variation via

V (q)(X , p)nt = ∆n(τ
(q)
∆n

)−p
[t/∆n]∑
i=1

|∆(q)n
i X |p

with (τ
(q)
∆n

)2 = E(∆
(q)n
i G )2.
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Asymptotic theory

Theorem: For all α ∈ (0, 2) and q ≥ 1 it holds that

V (q)(X , p)nt
ucp−→ mp

∫ t

0

|σs |pds.

Under further assumptions on R and σ we obtain

∆−1/2
n

(
V (q)(X , p)nt −mp

∫ t

0

|σs |pds
)
Dst−→ ρ(q)

∫ t

0

|σs |pdW ′s

for all q ≥ 2. Here W ′ is a new Brownian motion (independent of everything) and

(ρ(q))2 = lim
n→∞

∆−1
n Var(V (q)(BH , p)n1)

with BH being a fBm with Hurst parameter H = α/2.
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A model with smooth drift

Let us now consider the model

Z = X + Y ,

where Xt = X0 +
∫ t

0
σsdGs is our basic process and Y is a drift process with

Y ∈ C r (R≥0) a.s.

Our main object of interest is the scaling parameter

α ∈ (0, 2)

of X .

It turns out that the higher order differences have a second useful property:
they make the power variation robust to certain smooth drift processes.
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Robust asymptotic results

Theorem: Let Z = X + Y and Y ∈ C r (R≥0) a.s.

(i) If r > α/2 then it holds that

V (q)(Z , p)nt − V (q)(X , p)nt
ucp−→ 0

for all α ∈ (0, 2), p ≥ 0 and q ≥ 1.

(ii) If r − α/2 > 1/2 then it holds that

∆−1/2
n

(
V (q)(Z , p)nt − V (q)(X , p)nt

)
ucp−→ 0

for all α ∈ (0, 2), p ≥ 0 and q ≥ min([r ], 1) + 1.
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Estimation with gaps

Let us go back to the original model

Xt = X0 +

∫ t

0

σsdGs , t ≥ 0.

Assume now that the variogram R of G satisfies the relation

Rt = const · tα + O(tα+α′
), as t → 0,

with α ∈ (0, 2) and α′ ∈ (0, 1/2).

As τ 2
2∆n

/τ 2
∆n
− 2α = O(∆α

n ) the CLT for the ratio statistic Rn
t does not hold

anymore, because the quantity

∆−1/2
n (τ 2

2∆n
/τ 2

∆n
− 2α)

explodes as ∆n → 0.

Mark Podolskij, University of Heidelberg

Estimation of scaling parameter for continuous processes



The Framework Ratio Statistics Robust estimation Critical region

Estimation with gaps

Let us go back to the original model

Xt = X0 +

∫ t

0

σsdGs , t ≥ 0.

Assume now that the variogram R of G satisfies the relation

Rt = const · tα + O(tα+α′
), as t → 0,

with α ∈ (0, 2) and α′ ∈ (0, 1/2).

As τ 2
2∆n

/τ 2
∆n
− 2α = O(∆α

n ) the CLT for the ratio statistic Rn
t does not hold

anymore, because the quantity

∆−1/2
n (τ 2

2∆n
/τ 2

∆n
− 2α)

explodes as ∆n → 0.

Mark Podolskij, University of Heidelberg

Estimation of scaling parameter for continuous processes



The Framework Ratio Statistics Robust estimation Critical region

Estimation with gaps

Let us go back to the original model

Xt = X0 +

∫ t

0

σsdGs , t ≥ 0.

Assume now that the variogram R of G satisfies the relation

Rt = const · tα + O(tα+α′
), as t → 0,

with α ∈ (0, 2) and α′ ∈ (0, 1/2).

As τ 2
2∆n

/τ 2
∆n
− 2α = O(∆α

n ) the CLT for the ratio statistic Rn
t does not hold

anymore, because the quantity

∆−1/2
n (τ 2

2∆n
/τ 2

∆n
− 2α)

explodes as ∆n → 0.

Mark Podolskij, University of Heidelberg

Estimation of scaling parameter for continuous processes



The Framework Ratio Statistics Robust estimation Critical region

Estimation with gaps

The idea is now to introduce gaps in the definition of the ratio statistic to
achieve a slower convergence rate. This prevents the afore-mentioned bias from
the explosion.

Let Mn →∞ with Mn∆n → 0. Define a new ratio statistic via

R
n

t =

∑[t/Mn∆n]
i=2 |XiMn∆n − XiMn∆n−2|2∑[t/MN∆n]
i=1 |XiMn∆n − XiMn∆n−1|2

.

Choose Mn such that

(Mn∆n)−1/2(τ 2
2∆n

/τ 2
∆n
− 2α)→ 0.
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Robust asymptotic results

Theorem: Assume that

Rt = const · tα + O(tα+α′
) as t → 0

for some α ∈ (0, 3/2) \ {1} and α′ ∈ (0, 1/2).

(i) We deduce that R
n

t
P−→ 2α and

(Mn∆n)−1/2
(
R

n

t − 2α
)
Dst−→

∫ t

0

fsdW
′
s

for a known process (fs)s≥0.

(ii) In the critical case Mn ∼ ∆2α′−1
n we obtain the convergence rate

∆−α
′

n .

This is indeed the optimal convergence rate.
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Thank you!
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