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Introduction

Let Θ be an open set of Rd . For n ≥ 1, let

En = (Ωn,Fn, {Pn
ϑ, ϑ ∈ Θ})

be a sequence of statistical experiment (generated by the sample
X (n) = (X1,X2, . . . ,Xn)).

For ϑ ∈ Θ, we represent

ϑ̃ = ϑ+ φn(ϑ)u, u ∈ An(ϑ)

where
An(ϑ) =

{
u ∈ Rd ;ϑ+ φn(ϑ)u ∈ Θ

}
. (1)

Here (φn(ϑ), n ≥ 1) is a sequence of d × d nondegenerate matrix
with decreasing norm, ∥φn(ϑ)∥ → 0 as n → 0.
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Introduction

For n ≥ 1, let

En(ϑ) =
(
Ωn,Fn,

{
Pn
u,ϑ, u ∈ An(ϑ)

})
be the corresponding localized statistical experiment where Pn

u,ϑ =
Pn
ϑ+φn(ϑ)u

.

If we can give a reasonable sense of the limit of the sequence of local-
ized statistical experiment (En(ϑ0), n ≥ 1) to a "simple" canonical
experiment (for which the optimal decision can be defined), then
– Is this limiting optimal decision is an optimal decision in the local-
ized statistical experiments ?
– Can we build a "global" optimal decision in the initial corresponding
statistical experiment ?
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The sequence of statistical experiment satisfies the LAMN property
if

log
dPn,ϑ+φn(ϑ)u

dPn,ϑ
= uTSn(ϑ)−

1
2
uT Jn(ϑ)u + oPn,ϑ

(1), n → ∞

(2)
and

L ((Sn(ϑ), Jn(ϑ)) |Pn,ϑ) =⇒ L ((S(ϑ), J(ϑ))) weakly, (3)

where S(ϑ) is conditionally multivariate Gaussian.

The sequence Zn(ϑ) = Jn(ϑ)
−1Sn(ϑ) is called the central sequence.

We denote Z (ϑ) = J(ϑ)−1S(ϑ).
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For an arbitrary choice of a constant 0 < c < ∞,

lim inf
n→∞

sup
∥φn(ϑ)−1(ϑ̃−ϑ)∥≤c

E
ϑ̃

(
ℓ
(
φn(ϑ)

−1(Tn − ϑ̃)
))

≥ E0(ℓ(Z ))

for a large class of loss function ℓ.

Moreover, a sequence (Tn)n satisfying the coupling property

φn(ϑ)
−1(Tn − ϑ) = Zn(ϑ) + oPn,ϑ

(1), n → ∞, (4)

attain the local asymptotic minimax bound at ϑ.
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The project EFFI (www.effi-stats.fr) aims at popularize the
generic Le Cam one-step method to give asymptotically efficient and
fast estimation procedures.

The one-step modification (ϑn)n

ϑn = ϑ∗
n + φn(ϑ

∗
n)Jn(ϑ

∗
n)

−1Sn(ϑ
∗
n)

satisfies the coupling property (4) and achieves asymptotical effi-
ciency in a LAMN experiment.
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In order to make it work (see (Höpfner, 2014)), one generally requires
4 conditions:

1 – Rate-efficient consistency: Let (ϑ∗
n)n be a initial sequence of

guess estimators for which(
φn(ϑ)

−1(ϑ∗
n − ϑ)

)
n

is tight in Rd for every ϑ ∈ Θ.

2 – Uniform continuity of Jn:

sup
|φn(ϑ)−1(ξ−ϑ)|≤c

|Jn(ξ)− Jn(ϑ)| = oPn,ϑ(1). (5)
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3 – "Regularity" of the score

sup
|φn(ϑ)−1(ξ−ϑ)|≤c

∣∣Sn(ξ)− {
Sn(ϑ)− Jn(ϑ)

(
φn(ϑ)

−1 (ξ − ϑ)
)}∣∣ = oPn,ϑ(1).

(6)
4 – Local scale

sup
|φn(ϑ)−1(ξ−ϑ)|≤c

∣∣φ−1
n (ϑ)φn(ξ)− Ip

∣∣ −→ 0. (7)
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We sometimes use for different applications the following improved
one-step procedure. Let

ϑn = ϑ∗
n + φn(ϑ

∗
n)J(ϑ

∗
n)

−1Sn(ϑ
∗
n).

We impose a Lipshitz continuity on the observed information ma-
trix and slower consistency of the initial guess estimator, namely(
η−1
n (ϑ∗

n − ϑ)
)
n

is tight in Rd for every ϑ ∈ Θ with

∥ηTn φn(ϑ)
−1ηn∥ → 0.
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These procedures have been applied (non-exhaustive list) to:
▶ i.i.d. setting with the OneStep R package (B., Dutang, Noutsa Mienedou,

21), OS-SGD (Bensoussan, B., Esstafa, preprint), stable vectors (B. and
Masuda, 18);

▶ Generalized Linear Models: general (Lumley, 19), categorical explanatory
variables (B. et al., preprint);

▶ Markov processes (Kutoyants, Motrunich, 16), Diffusion processes
(Kamatani, Uchida, 15) ;

▶ Counting processes: Inhomogeneous Poisson Process (Dabye, Gounoung,
Kutoyants, 18), Hawkes processes (B., Farinetto, 23);

▶ Long memory processes : fBm (B., Soltane, Votsi, 20), FARIMA (Ben
Hariz, B., Esstafa, Soltane, 23), ;

▶ Noisy observations: Kalman filter (Kutoyants, 23);
▶ and surely others : α-CIR with jumps (Bayraktar, Clément, preprint), ...
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Time series

Yury Kutoyants, On Adaptive Kalman Filtration
Youssef Esstafa, Weak FARIMA models
Samir Ben Hariz, Fast inference for stationary time series

Stochastic differential equations

Laurent Denis, LAMN property for SDE driven by a stable Lévy process
Hiroki Masuda, Asymptotics for Student-Lévy regression
Elise Bayraktar, High-frequency estimation of pure jump alpha-CIR process
Ahmed Kebaier, Local asymptotic properties for the growth rate of a jump-type CIR
process (on Zoom)

Fractional processes / Rough volatility models

Grégoire Szymanski, Statistical inference for rough volatility: minimax theory
Mikko Pakkanen, A GMM approach to estimate the roughness of stochastic volatility
(on Zoom)
Tetsuya Takabatake, Asymptotically Efficient Estimation for Fractional Brownian
Motion with Additive Noise
Mathieu Rosenbaum, Understanding how market impact shapes rough fractional
volatility (on Zoom)
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