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Introduction



Long memory processes

• Let (Xt)t∈Z be a second order stationary process.

• Denote by γX (·) its autocovariance function and by ρX (·) its

autocorrelation function, i.e. ∀t, h ∈ Z,

γX (h) = Cov(Xt ,Xt+h) and ρX (h) =
γX (h)

γX (0)
.

Definition 1.
The process (Xt)t∈Z is called a long memory process, in the covariance

sense, if
∞∑

h=−∞

|γX (h)| =∞.
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An illustrative example

Nile River Minima
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Figure 1: Annual minima of the water

level in the Nile river for the years 622 to

1281.
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Figure 2: Empirical autocorrelations of

the Nile Water Minima series. The curve

in blue is that of x → 0.91/x0.51.
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Examples of long memory processes

Example 1: fractional Gaussian noise, [Mandelbrot and Wallis (1969)].

Definition 2: fBm, [Mandelbrot and Van Ness (1968)].

The fractional Brownian motion with Hurst exponent 0 < H < 1,

denoted (BH(t))t∈R, is the unique continuous centered Gaussian process

whose covariance is given by

E [BH(t)BH(s)] =
σ2
H

2

(
|t|2H + |s|2H − |t − s|2H

)
,

where σ2
H = Var{BH(1)}.

The fractional Gaussian noise (εHt )t∈Z is the increment process of the

fractional Brownian motion (BH(t))t∈R, i.e. ∀t ∈ Z,

εHt = BH(t + 1)− BH(t).
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• Using the structure of the autocovariance function of (BH(t))t∈R,

we deduce that for all k ∈ Z,

γεH(k) := Cov(εH1 , ε
H
1+k) =

σ2
H

2

(
|k + 1|2H + |k − 1|2H − 2|k|2H

)
.

• A Taylor expansion of ` : x → (1− x)2H − 2 + (1 + x)2H at 0 implies

that for sufficiently large k ,

γεH(k) =
σ2
H

2
k2H`(1/k) = σ2

HH(2H− 1)k2H−2 + o(k2H−2).

Conclusion.

• When 0 < H < 1/2, the process (εHt )t∈Z is anti-persistent.

• If H = 1/2, (εHt )t∈Z is an independent process.

• In the case where 1/2 < H < 1, (εHt )t∈Z is a long memory process.
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Modeling stationary time series

Definition 3.

A process (Xt)t∈Z is an ARMA(p, q) if (Xt)t∈Z is stationary and satisfies

Xt = a1Xt−1 + · · ·+ apXt−p + εt − b1εt−1 − · · · − bqεt−q, (1)

where a1, . . . , ap, b1, . . . , bq ∈ R and (εt)t∈Z is a white noise.

Equation (1) can be rewritten in the compact form

a(L)Xt = b(L)εt ,
1

where

a(z) = 1−
p∑

i=1

aiz
i and b(z) = 1−

q∑
i=1

biz
i .

Problem!

The autocovariance function of the process defined in (1) satisfies

γX (h) ∼ Cρh (C 6= 0 and 0 < ρ < 1), when h→∞.

1In this equation, L stands for the back-shift operator, i.e. for any non-negative

integer k, LkXt = Xt−k .
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Examples of long memory processes

Example 2: FARIMA2models, [Granger and Joyeux (1980), Hosking

(1981)].

Definition 4: FARIMA processes.

A process (Xt)t∈Z is said to be a FARIMA(p, d , q) with d ∈]− 0.5, 0.5[ if

(Xt)t∈Z is stationary and satisfies the difference equations,

a(L)(1− L)dXt = b(L)εt , (2)

where L is the back-shift operator, (εt)t∈Z is a white noise and a(·), b(·)
are polynomials of degrees p, q respectively.

The fractional difference operator (1− L)d is given by

(1− L)d =
+∞∑
j=0

αj(d)Lj , where αj(d) =
d(d − 1) · · · (d − j + 1)

j!
(−1)j .

2Fractional AutoRegressive Integrated Moving Average.
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Least squares estimation of weak

FARIMA models



Weak FARIMA processes

Let (Xt)t∈Z be a second-order stationary process.

Definition 5: Weak FARIMA processes.

The process (Xt)t∈Z is a weak FARIMA(p, d0, q) process if it satisfies (2) with

d0 ∈]0, 1/2[3 and if the innovations process (εt)t∈Z is a weak white noise4 of

variance σ2
ε > 0.

Remarks.

In a weak FARIMA:

• No constraints on the distribution of (εt)t∈Z
5.

• The process (εt)t∈Z may contain very general nonlinear

dependencies.

3The process is long memory in this case.
4Weak white noise is a centered, uncorrelated process with finite variance.
5We adopt here a semi-parametric approach for estimating weak FARIMA models.
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Least squares estimator (LSE)

Theoretical frame:

Let Θ̃ be the parameter space

Θ̃ :={θ̃ = (θ1, θ2, . . . , θp+q)
′
∈ Rp+q; aθ̃(z) = 1 + θ1z + · · ·+ θpz

p

and bθ̃(z) = 1 + θp+1z + · · ·+ θp+qz
q have all their zeros outside

the unit disk}.

• Denote by Θ the Cartesian product Θ̃× [d1, d2], where

[d1, d2] ⊂ ]0, 1/2[ with d1 ≤ d0 ≤ d2.

• The parameter of interest θ0 := (a1, a2, . . . , ap, b1, b2, . . . , bq, d0)
′

is supposed to belong to the parameter space Θ.

• For all θ = (θ̃
′
, d)

′ ∈ Θ, we define (εt(θ))t∈Z as the stationary

process which is the solution of

εt(θ) =
∑
j≥0

αj(d)Xt−j +

p∑
i=1

θi
∑
j≥0

αj(d)Xt−i−j −
q∑

j=1

θp+jεt−j(θ).
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Least squares estimator (LSE)

Given a realization X1,X2, . . . ,Xn of length n, εt(θ) can be

approximated, for 0 < t ≤ n, by ε̃t(θ) defined recursively by

ε̃t(θ) =
t−1∑
j=0

αj(d)Xt−j +

p∑
i=1

θi

t−i−1∑
j=0

αj(d)Xt−i−j −
q∑

j=1

θp+j ε̃t−j(θ),

with ε̃t(θ) = Xt = 0 if t ≤ 0.

Lemma 1.

These initial values are asymptotically negligible uniformly in θ. More

precisely, if (εt)t∈Z is strictly stationary and ergodic,

lim
t→∞

sup
θ∈Θ
|εt(θ)− ε̃t(θ)| = 0 a.s.

The random variable θ̂n is called least squares estimator if it satisfies,

almost surely,

θ̂n = argmin
θ∈Θ

Qn(θ), where Qn(θ) =
1

n

n∑
t=1

ε̃2
t (θ).
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Asymptotic properties of the LSE

→ Our first two main results concern the strong consistency and the

asymptotic normality of the LSE of the parameter θ0.

→ The strong consistency of the LSE is obtained under the following

assumption:

(A1): The process (εt)t∈Z is strictly stationary and ergodic.

Theorem 1 (strong consistency).

Assume that (εt)t∈Z satisfies (2). Let (θ̂n)n≥1 be a sequence of least

squares estimators. Under (A1), we have

θ̂n
a.s.−−−→

n→∞
θ0.
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Strong mixing coefficients

The strong mixing coefficients {αε(h)}h≥0 of the process (εt)t∈Z are

defined by

αε (h) = sup
A∈F t

−∞,B∈F
∞
t+h

|P (A ∩ B)− P(A)P(B)| ,

where F t
−∞ = σ(εu, u ≤ t) and F∞t+h = σ(εu, u ≥ t + h).

Consider

(A2): There exists an integer τ such that for some ν ∈ (0, 1], we have

E|εt |τ+ν <∞ and
∑∞

h=0(h + 1)k−2 {αε(h)}ν/(k+ν)
<∞ for

k = 1, . . . , τ .6

6See [Doukhan and León (1989)].
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Asymptotic properties of the LSE

The asymptotic normality of the LSE is stated in the following theorem:

Theorem 2 (asymptotic normality).

Assume that (εt)t∈Z satisfies (2) and θ0 ∈
◦
Θ. Let (θ̂n)n≥1 be a sequence of

least squares estimators. Under (A1) and (A2) with τ = 4, the sequence(√
n(θ̂n − θ0)

)
n≥1

has a limiting centered normal distribution with covariance matrix

Ω := J−1IJ−1, where

I = lim
n→∞

Var

{√
n
∂

∂θ
Qn(θ0)

}
and J = lim

n→∞

{
∂2

∂θ∂θ′
Qn(θ0)

}
a.s.
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Using the stationarity of (Ht)t∈Z, defined by Ht = 2εt{∂εt(θ0)/∂θ}, and

(A2) with τ = 4, we show that

J = 2E
[
∂

∂θ
εt(θ0)

∂

∂θ′
εt(θ0)

]
and I =

∞∑
h=−∞

Cov (Ht ,Ht−h) .

Remarks.

• The matrix J has the same expression in the strong7 and weak

FARIMA cases.

• In the standard strong FARIMA case, we have

I = 2σ2
εJ.

Thus, the asymptotic covariance matrix of the LSE is then reduced

as ΩS := 2σ2
εJ
−1.

7In this case, the noise (εt)t∈Z is assumed to be an iid sequence of random variables.
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Le Cam’s one-step estimation of

weak FARIMA models



One-step estimator

For n ≥ 1 and θ ∈ Θ, recall that our objective function is given by

Qn(θ) =
1

n

n∑
t=1

ε̃2
t (θ), (3)

where (ε̃t(θ))t∈Z is the observable noise process.

The Le Cam one-step estimator is defined, almost-surely, by

θn = θ∗n −
{

∂2

∂θ∂θ′
Qn (θ∗n)

}−1
∂

∂θ
Qn (θ∗n) , (4)

where θ∗n is the least squares estimator of parameter θ0 calculated over

the first m = [nδ], with 0 < δ ≤ 1, observations X1, . . . ,Xm, i.e.

θ∗n = argmin
θ∈Θ

Qm(θ), where Qm(θ) =
1

[nδ]

[nδ ]∑
t=1

ε̃2
t (θ). (5)
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One-step estimator

Remarks.

• The consideration of the initial LSE on a subsample of size m = [nδ]

greatly reduces the computation time for the estimation of the

parameters in the model.

• For δ > 1/2, a sole Fisher scoring correcting step is sufficient to

reach similar asymptotic properties as the LSE on the whole sample.

• If δ ≤ 1/2, the one-step estimator remains consistent but similar

asymptotic normality as the LSE requires multiple Fisher scoring

steps.
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Asymptotic properties of the OS estimator

Under the same assumptions as those considered for the least squares

estimator, we show:

Theorem 3 (strong consistency).

Assume that (εt)t∈Z satisfies (2). Let (θn)n≥1 be the sequence of Le

Cam’s one-step estimators defined by (4). Under Assumption (A1), we

have

θn
a.s.−−−→

n→∞
θ0.

Theorem 4 (asymptotic normality).

Assume that (εt)t∈Z satisfies (2) and θ0 ∈
◦
Θ. Under (A1) and (A2) with

τ = 4, the sequence {
√
n(θn − θ0)}n≥1 with δ > 1/2 has a limiting

centered normal distribution with covariance matrix Ω := J−1IJ−1.
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Sketch of the proof of asymptotic normality

Proposition (stochastic Lipschitz property).

Assume that (Xt)t∈Z satisfies (2). For any i , j ∈ {1, . . . , p + q + 1} and

all θ(1), θ(2) ∈ Θ, one has∣∣∣∣ ∂2

∂θi∂θj
Qn

(
θ(1)
)
− ∂2

∂θi∂θj
Qn

(
θ(2)
)∣∣∣∣ ≤ ∆n

∥∥∥θ(1) − θ(2)
∥∥∥ ,

where ∆n is bounded in probability.

In view of (4) and by Taylor expansion of the function ∂Qn(·)/∂θ around

θ0, we have

√
n
(
θn − θ0

)
=
√
n (θ∗n − θ0)−

√
n

{
∂2

∂θ∂θ′
Qn (θ∗n)

}−1

×
{
∂

∂θ
Qn (θ0) +

[
∂2

∂θi∂θj
Qn

(
θ̃n,i,j

)]
(θ∗n − θ0)

}
,

where the θ̃n,i,j ’s are between θ∗n and θ0.

18



Hence, it follows that
√
n
(
θn − θ0

)
=

{
∂2

∂θ∂θ′
Qn (θ∗n)

}−1

nδ/2

{
∂2

∂θ∂θ′
Qn (θ∗n)−

[
∂2

∂θi∂θj
Qn

(
θ̃n,i,j

)]}
× nδ/2 (θ∗n − θ0) n1/2−δ −

{
∂2

∂θ∂θ′
Qn (θ∗n)

}−1√
n
∂

∂θ
Qn (θ0) .

(6)

• The second term on the rhs of (6) converges in law to

N (0, J−1IJ−1).

• The first term converges in probability to 0. In fact:

→ The quantity nδ/2(θ∗n − θ0) = OP(1) due to the nδ/2−consistency

of the initial estimator.

→ The matrix nδ/2{ ∂2

∂θ∂θ′Qn(θ∗n)− [ ∂2

∂θi∂θj
Qn(θ̃n,i,j)]} = OP(1) due

to the proposition before.
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Some simulations

→ We numerically study the behavior of the LSE and the Le Cam

one-step estimator of the memory parameter for FARIMA models of the

form

(1− L)d (Xt + aXt−1) = εt + bεt−1, (7)

where (a, b, d) = (0.2, 0.5, 0.3).

→ We consider the following two cases:

• The process (εt)t is a centered iid Gaussian process with variance 1.

• The innovation process in (7) is defined, for all t ∈ Z, by

εt = η2
t ηt−1, (8)

where (ηt)t is an iid N (0, 1) process.

→ We simulated M = 2, 000 independent trajectories of size n = 5, 000

of (7) endowed first by the strong noise and then by the weak noise (8).

We consider that δ = 0.9.
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Figure 3: Comparison of the computation times with respect to the sample

size of the LSE and the one-step estimators of the parameters of Model (7)

induced by Noise (8). For each size n, 1,000 replications are generated.
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Thank you for your attention
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