



## Fast calibration of weak FARIMA models

#### Youssef ESSTAFA

25 August 2023

Le Mans Université,

Laboratoire Manceau de Mathématiques,

Institut du Risque et de l'Assurance.

Joint work with Samir BEN HARIZ, Alexandre BROUSTE and Marius SOLTANE

- 1. Introduction
- 2. Least squares estimation of weak FARIMA models
- 3. Le Cam's one-step estimation of weak FARIMA models

## Introduction

• Let  $(X_t)_{t\in\mathbb{Z}}$  be a second order stationary process.

• Denote by  $\gamma_X(\cdot)$  its autocovariance function and by  $\rho_X(\cdot)$  its autocorrelation function, *i.e.*  $\forall t, h \in \mathbb{Z}$ ,

$$\gamma_X(h) = \operatorname{Cov}(X_t, X_{t+h}) \quad \text{and} \quad \rho_X(h) = \frac{\gamma_X(h)}{\gamma_X(0)}.$$

## Definition 1.

The process  $(X_t)_{t\in\mathbb{Z}}$  is called a long memory process, in the covariance sense, if

$$\sum_{k=-\infty}^{\infty} |\gamma_X(h)| = \infty.$$

## An illustrative example

## Nile River Minima





**Figure 2:** Empirical autocorrelations of the Nile Water Minima series. The curve in blue is that of  $x \rightarrow 0.91/x^{0.51}$ .

Example 1: fractional Gaussian noise, [Mandelbrot and Wallis (1969)].

## Definition 2: fBm, [Mandelbrot and Van Ness (1968)].

The fractional Brownian motion with Hurst exponent 0 < H < 1, denoted  $(B_{\rm H}(t))_{t \in \mathbb{R}}$ , is the unique continuous centered Gaussian process whose covariance is given by

$$\mathbb{E}\left[B_{\mathrm{H}}(t)B_{\mathrm{H}}(s)
ight] = rac{\sigma_{\mathrm{H}}^2}{2}\left(\left|t
ight|^{2\mathrm{H}} + \left|s
ight|^{2\mathrm{H}} - \left|t-s
ight|^{2\mathrm{H}}
ight),$$
  
where  $\sigma_{\mathrm{H}}^2 = \mathrm{Var}\{B_{\mathrm{H}}(1)\}.$ 

The fractional Gaussian noise  $(\epsilon_t^{\mathrm{H}})_{t\in\mathbb{Z}}$  is the increment process of the fractional Brownian motion  $(B_{\mathrm{H}}(t))_{t\in\mathbb{R}}$ , *i.e.*  $\forall t\in\mathbb{Z}$ ,

$$\epsilon_t^{\mathrm{H}} = B_{\mathrm{H}}(t+1) - B_{\mathrm{H}}(t).$$

• Using the structure of the autocovariance function of  $(B_{\mathrm{H}}(t))_{t\in\mathbb{R}}$ , we deduce that for all  $k\in\mathbb{Z}$ ,

$$\gamma_{\epsilon^{\mathrm{H}}}(k) := \operatorname{Cov}(\epsilon_{1}^{\mathrm{H}}, \epsilon_{1+k}^{\mathrm{H}}) = \frac{\sigma_{\mathrm{H}}^{2}}{2} \left( |k+1|^{2\mathrm{H}} + |k-1|^{2\mathrm{H}} - 2|k|^{2\mathrm{H}} \right).$$

• A Taylor expansion of  $\ell: x \to (1-x)^{2H} - 2 + (1+x)^{2H}$  at 0 implies that for sufficiently large k,

$$\gamma_{\epsilon^{\mathrm{H}}}(k) = rac{\sigma_{\mathrm{H}}^2}{2}k^{2\mathrm{H}}\ell(1/k) = \sigma_{\mathrm{H}}^2\mathrm{H}(2\mathrm{H}-1)k^{2\mathrm{H}-2} + \mathrm{o}(k^{2\mathrm{H}-2}).$$

#### Conclusion.

- When 0 < H < 1/2, the process  $(\epsilon_t^H)_{t \in \mathbb{Z}}$  is anti-persistent.
- If  $\mathrm{H}=1/2$ ,  $(\epsilon^{\mathrm{H}}_t)_{t\in\mathbb{Z}}$  is an independent process.
- In the case where  $1/2 < {
  m H} < 1$ ,  $(\epsilon^{
  m H}_t)_{t \in \mathbb{Z}}$  is a long memory process.

## Modeling stationary time series

### Definition 3.

A process  $(X_t)_{t\in\mathbb{Z}}$  is an ARMA(p,q) if  $(X_t)_{t\in\mathbb{Z}}$  is stationary and satisfies

$$X_t = a_1 X_{t-1} + \dots + a_p X_{t-p} + \epsilon_t - b_1 \epsilon_{t-1} - \dots - b_q \epsilon_{t-q}, \tag{1}$$

where  $a_1, \ldots, a_p, b_1, \ldots, b_q \in \mathbb{R}$  and  $(\epsilon_t)_{t \in \mathbb{Z}}$  is a white noise.

Equation (1) can be rewritten in the compact form

 $a(L)X_t = b(L)\epsilon_t$ 

where

$$a(z) = 1 - \sum_{i=1}^{p} a_i z^i$$
 and  $b(z) = 1 - \sum_{i=1}^{q} b_i z^i$ 

#### Problem!

The autocovariance function of the process defined in (1) satisfies  $\gamma_X(h) \sim C\rho^h$  ( $C \neq 0$  and  $0 < \rho < 1$ ), when  $h \to \infty$ .

<sup>&</sup>lt;sup>1</sup>In this equation, L stands for the back-shift operator, *i.e.* for any non-negative integer k,  $L^k X_t = X_{t-k}$ .

## **Example 2:** <u>FARIMA<sup>2</sup>models</u>, [Granger and Joyeux (1980), Hosking (1981)].

## Definition 4: FARIMA processes.

A process  $(X_t)_{t\in\mathbb{Z}}$  is said to be a FARIMA(p, d, q) with  $d \in ]-0.5, 0.5[$  if  $(X_t)_{t\in\mathbb{Z}}$  is stationary and satisfies the difference equations,

$$a(L)(1-L)^d X_t = b(L)\epsilon_t, \qquad (2)$$

where *L* is the back-shift operator,  $(\epsilon_t)_{t\in\mathbb{Z}}$  is a white noise and  $a(\cdot)$ ,  $b(\cdot)$  are polynomials of degrees p, q respectively.

The fractional difference operator  $(1 - L)^d$  is given by

$$(1-L)^d=\sum_{j=0}^{+\infty}lpha_j(d)L^j, ext{ where } lpha_j(d)=rac{d(d-1)\cdots(d-j+1)}{j!}(-1)^j.$$

<sup>&</sup>lt;sup>2</sup>Fractional AutoRegressive Integrated Moving Average.

# Least squares estimation of weak FARIMA models

Let  $(X_t)_{t\in\mathbb{Z}}$  be a second-order stationary process.

## Definition 5: Weak FARIMA processes.

The process  $(X_t)_{t\in\mathbb{Z}}$  is a weak FARIMA $(p, d_0, q)$  process if it satisfies (2) with  $d_0 \in ]0, 1/2[^3$  and if the innovations process  $(\epsilon_t)_{t\in\mathbb{Z}}$  is a weak white noise<sup>4</sup> of variance  $\sigma_{\epsilon}^2 > 0$ .

## Remarks.

In a weak FARIMA:

- No constraints on the distribution of  $(\epsilon_t)_{t\in\mathbb{Z}}$ <sup>5</sup>.
- The process (ϵ<sub>t</sub>)<sub>t∈Z</sub> may contain very general nonlinear dependencies.

<sup>&</sup>lt;sup>3</sup>The process is long memory in this case.

<sup>&</sup>lt;sup>4</sup>Weak white noise is a centered, uncorrelated process with finite variance.

<sup>&</sup>lt;sup>5</sup>We adopt here a semi-parametric approach for estimating weak FARIMA models.

## Theoretical frame:

Let  $\tilde{\Theta}$  be the parameter space

$$\begin{split} \tilde{\varTheta} := & \{ \tilde{\theta} = (\theta_1, \theta_2, \dots, \theta_{p+q})^{'} \in \mathbb{R}^{p+q}; \ a_{\tilde{\theta}}(z) = 1 + \theta_1 z + \dots + \theta_p z^p \\ & \text{and} \ b_{\tilde{\theta}}(z) = 1 + \theta_{p+1} z + \dots + \theta_{p+q} z^q \text{ have all their zeros outside} \\ & \text{the unit disk} \}. \end{split}$$

- Denote by  $\Theta$  the Cartesian product  $\tilde{\Theta} \times [d_1, d_2]$ , where  $[d_1, d_2] \subset ]0, 1/2[$  with  $d_1 \leq d_0 \leq d_2$ .
- The parameter of interest θ<sub>0</sub> := (a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>p</sub>, b<sub>1</sub>, b<sub>2</sub>, ..., b<sub>q</sub>, d<sub>0</sub>)' is supposed to belong to the parameter space Θ.
- For all  $\theta = (\tilde{\theta}', d)' \in \Theta$ , we define  $(\epsilon_t(\theta))_{t \in \mathbb{Z}}$  as the stationary process which is the solution of

$$\epsilon_t( heta) = \sum_{j\geq 0} lpha_j(d) X_{t-j} + \sum_{i=1}^p heta_i \sum_{j\geq 0} lpha_j(d) X_{t-i-j} - \sum_{j=1}^q heta_{p+j} \epsilon_{t-j}( heta).$$

## Least squares estimator (LSE)

Given a realization  $X_1, X_2, \ldots, X_n$  of length  $n, \epsilon_t(\theta)$  can be approximated, for  $0 < t \le n$ , by  $\tilde{\epsilon}_t(\theta)$  defined recursively by

$$\tilde{\epsilon}_t(\theta) = \sum_{j=0}^{t-1} \alpha_j(d) X_{t-j} + \sum_{i=1}^p \theta_i \sum_{j=0}^{t-i-1} \alpha_j(d) X_{t-i-j} - \sum_{j=1}^q \theta_{p+j} \tilde{\epsilon}_{t-j}(\theta),$$

with 
$$\tilde{\epsilon}_t(\theta) = X_t = 0$$
 if  $t \leq 0$ .

#### Lemma 1.

These initial values are asymptotically negligible uniformly in  $\theta$ . More precisely, if  $(\epsilon_t)_{t\in\mathbb{Z}}$  is strictly stationary and ergodic,

$$\lim_{t\to\infty}\sup_{\theta\in\Theta}|\epsilon_t(\theta)-\tilde{\epsilon}_t(\theta)|=0 \text{ a.s.}$$

The random variable  $\hat{\theta}_n$  is called least squares estimator if it satisfies, almost surely,

$$\hat{\theta}_n = \operatorname*{argmin}_{\theta \in \Theta} Q_n(\theta), \text{ where } Q_n(\theta) = \frac{1}{n} \sum_{t=1}^n \tilde{\epsilon}_t^2(\theta).$$
 10

 $\rightarrow$  Our first two main results concern the strong consistency and the asymptotic normality of the LSE of the parameter  $\theta_0.$ 

 $\rightarrow$  The strong consistency of the LSE is obtained under the following assumption:

(A1): The process  $(\epsilon_t)_{t \in \mathbb{Z}}$  is strictly stationary and ergodic.

#### Theorem 1 (strong consistency).

Assume that  $(\epsilon_t)_{t\in\mathbb{Z}}$  satisfies (2). Let  $(\hat{\theta}_n)_{n\geq 1}$  be a sequence of least squares estimators. Under **(A1)**, we have

$$\hat{\theta}_n \xrightarrow[n \to \infty]{\text{a.s.}} \theta_0.$$

The strong mixing coefficients  $\{\alpha_{\epsilon}(h)\}_{h\geq 0}$  of the process  $(\epsilon_t)_{t\in\mathbb{Z}}$  are defined by

$$\alpha_{\epsilon}(h) = \sup_{A \in \mathcal{F}_{-\infty}^{t}, B \in \mathcal{F}_{t+h}^{\infty}} \left| \mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B) \right|,$$

where 
$$\mathcal{F}_{-\infty}^t = \sigma(\epsilon_u, u \leq t)$$
 and  $\mathcal{F}_{t+h}^{\infty} = \sigma(\epsilon_u, u \geq t+h)$ .

Consider

(A2): There exists an integer  $\tau$  such that for some  $\nu \in (0, 1]$ , we have  $\mathbb{E}|\epsilon_t|^{\tau+\nu} < \infty$  and  $\sum_{h=0}^{\infty} (h+1)^{k-2} \{\alpha_{\epsilon}(h)\}^{\nu/(k+\nu)} < \infty$  for  $k = 1, \dots, \tau$ .<sup>6</sup>

<sup>&</sup>lt;sup>6</sup>See [Doukhan and León (1989)].

The asymptotic normality of the LSE is stated in the following theorem:

#### Theorem 2 (asymptotic normality).

Assume that  $(\epsilon_t)_{t\in\mathbb{Z}}$  satisfies (2) and  $\theta_0 \in \overset{\circ}{\Theta}$ . Let  $(\hat{\theta}_n)_{n\geq 1}$  be a sequence of least squares estimators. Under **(A1)** and **(A2)** with  $\tau = 4$ , the sequence

$$\left(\sqrt{n}(\hat{\theta}_n-\theta_0)\right)_{n\geq 1}$$

has a limiting centered normal distribution with covariance matrix  $\Omega := J^{-1}IJ^{-1}$ , where

$$I = \lim_{n \to \infty} \operatorname{Var} \left\{ \sqrt{n} \frac{\partial}{\partial \theta} Q_n(\theta_0) \right\} \text{ and } J = \lim_{n \to \infty} \left\{ \frac{\partial^2}{\partial \theta \partial \theta'} Q_n(\theta_0) \right\} \text{ a.s.}$$

Using the stationarity of  $(H_t)_{t\in\mathbb{Z}}$ , defined by  $H_t = 2\epsilon_t \{\partial \epsilon_t(\theta_0)/\partial \theta\}$ , and **(A2)** with  $\tau = 4$ , we show that

$$J = 2\mathbb{E}\left[\frac{\partial}{\partial\theta}\epsilon_t(\theta_0)\frac{\partial}{\partial\theta'}\epsilon_t(\theta_0)\right] \text{ and } I = \sum_{h=-\infty}^{\infty} \operatorname{Cov}\left(H_t, H_{t-h}\right).$$

#### Remarks.

- The matrix J has the same expression in the strong<sup>7</sup> and weak FARIMA cases.
- In the standard strong FARIMA case, we have

$$I = 2\sigma_{\epsilon}^2 J.$$

Thus, the asymptotic covariance matrix of the LSE is then reduced as  $\Omega_S := 2\sigma_\epsilon^2 J^{-1}$ .

<sup>&</sup>lt;sup>7</sup>In this case, the noise  $(\epsilon_t)_{t\in\mathbb{Z}}$  is assumed to be an iid sequence of random variables.

## Le Cam's one-step estimation of weak FARIMA models

## **One-step** estimator

For  $n \ge 1$  and  $\theta \in \Theta$ , recall that our objective function is given by

$$Q_n(\theta) = \frac{1}{n} \sum_{t=1}^n \tilde{\epsilon}_t^2(\theta),$$
(3)

where  $(\tilde{\epsilon}_t(\theta))_{t\in\mathbb{Z}}$  is the observable noise process.

The Le Cam one-step estimator is defined, almost-surely, by

$$\overline{\theta}_{n} = \theta_{n}^{*} - \left\{ \frac{\partial^{2}}{\partial \theta \partial \theta'} Q_{n}\left(\theta_{n}^{*}\right) \right\}^{-1} \frac{\partial}{\partial \theta} Q_{n}\left(\theta_{n}^{*}\right), \qquad (4)$$

where  $\theta_n^*$  is the least squares estimator of parameter  $\theta_0$  calculated over the first  $m = [n^{\delta}]$ , with  $0 < \delta \leq 1$ , observations  $X_1, \ldots, X_m$ , *i.e.* 

$$\theta_n^* = \operatorname*{argmin}_{\theta \in \Theta} Q_m(\theta), \text{ where } Q_m(\theta) = \frac{1}{[n^{\delta}]} \sum_{t=1}^{[n^{\delta}]} \tilde{\epsilon}_t^2(\theta).$$
 (5)

## **One-step estimator**

#### Remarks.

• The consideration of the initial LSE on a subsample of size  $m = [n^{\delta}]$  greatly reduces the computation time for the estimation of the parameters in the model.

 For δ > 1/2, a sole Fisher scoring correcting step is sufficient to reach similar asymptotic properties as the LSE on the whole sample.

• If  $\delta \leq 1/2$ , the one-step estimator remains consistent but similar asymptotic normality as the LSE requires multiple Fisher scoring steps.

Under the same assumptions as those considered for the least squares estimator, we show:

## Theorem 3 (strong consistency).

Assume that  $(\epsilon_t)_{t\in\mathbb{Z}}$  satisfies (2). Let  $(\overline{\theta}_n)_{n\geq 1}$  be the sequence of Le Cam's one-step estimators defined by (4). Under Assumption **(A1)**, we have

$$\overline{\theta}_n \xrightarrow[n \to \infty]{a.s.} \theta_0.$$

#### Theorem 4 (asymptotic normality).

Assume that  $(\epsilon_t)_{t\in\mathbb{Z}}$  satisfies (2) and  $\theta_0 \in \overset{\circ}{\Theta}$ . Under **(A1)** and **(A2)** with  $\tau = 4$ , the sequence  $\{\sqrt{n}(\overline{\theta}_n - \theta_0)\}_{n\geq 1}$  with  $\delta > 1/2$  has a limiting centered normal distribution with covariance matrix  $\Omega := J^{-1}IJ^{-1}$ .

## Sketch of the proof of asymptotic normality

#### Proposition (stochastic Lipschitz property).

Assume that  $(X_t)_{t\in\mathbb{Z}}$  satisfies (2). For any  $i, j \in \{1, \ldots, p+q+1\}$  and all  $\theta^{(1)}, \theta^{(2)} \in \Theta$ , one has

$$\frac{\partial^2}{\partial \theta_i \partial \theta_j} Q_n\left(\theta^{(1)}\right) - \frac{\partial^2}{\partial \theta_i \partial \theta_j} Q_n\left(\theta^{(2)}\right) \bigg| \leq \Delta_n \left\|\theta^{(1)} - \theta^{(2)}\right\|,$$

where  $\Delta_n$  is bounded in probability.

In view of (4) and by Taylor expansion of the function  $\partial Q_n(\cdot)/\partial \theta$  around  $\theta_0$ , we have

$$\begin{split} \sqrt{n} \left( \overline{\theta}_n - \theta_0 \right) &= \sqrt{n} \left( \theta_n^* - \theta_0 \right) - \sqrt{n} \left\{ \frac{\partial^2}{\partial \theta \partial \theta'} Q_n \left( \theta_n^* \right) \right\}^{-1} \\ &\times \left\{ \frac{\partial}{\partial \theta} Q_n \left( \theta_0 \right) + \left[ \frac{\partial^2}{\partial \theta_i \partial \theta_j} Q_n \left( \widetilde{\theta}_{n,i,j} \right) \right] \left( \theta_n^* - \theta_0 \right) \right\}, \end{split}$$

where the  $\tilde{\theta}_{n,i,j}$ 's are between  $\theta_n^*$  and  $\theta_0$ .

Hence, it follows that

$$\sqrt{n} \left(\overline{\theta}_{n} - \theta_{0}\right) = \left\{ \frac{\partial^{2}}{\partial \theta \partial \theta'} Q_{n}\left(\theta_{n}^{*}\right) \right\}^{-1} n^{\delta/2} \left\{ \frac{\partial^{2}}{\partial \theta \partial \theta'} Q_{n}\left(\theta_{n}^{*}\right) - \left[ \frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} Q_{n}\left(\widetilde{\theta}_{n,i,j}\right) \right] \right\} \times n^{\delta/2} \left(\theta_{n}^{*} - \theta_{0}\right) n^{1/2-\delta} - \left\{ \frac{\partial^{2}}{\partial \theta \partial \theta'} Q_{n}\left(\theta_{n}^{*}\right) \right\}^{-1} \sqrt{n} \frac{\partial}{\partial \theta} Q_{n}\left(\theta_{0}\right).$$
(6)

- The second term on the rhs of (6) converges in law to  $\mathcal{N}(0, J^{-1}IJ^{-1}).$
- The first term converges in probability to 0. In fact:

 $\rightarrow$  The quantity  $n^{\delta/2}(\theta_n^* - \theta_0) = O_{\mathbb{P}}(1)$  due to the  $n^{\delta/2}$ -consistency of the initial estimator.

 $\rightarrow \text{ The matrix } n^{\delta/2} \{ \frac{\partial^2}{\partial \theta \partial \theta'} Q_n(\theta_n^*) - [\frac{\partial^2}{\partial \theta_i \partial \theta_j} Q_n(\tilde{\theta}_{n,i,j})] \} = \mathrm{O}_{\mathbb{P}}(1) \text{ due to the proposition before.}$ 

## Some simulations

 $\rightarrow$  We numerically study the behavior of the LSE and the Le Cam one-step estimator of the memory parameter for FARIMA models of the form

$$(1-L)^d \left(X_t + aX_{t-1}\right) = \epsilon_t + b\epsilon_{t-1},\tag{7}$$

where (a, b, d) = (0.2, 0.5, 0.3).

 $\rightarrow$  We consider the following two cases:

- The process  $(\epsilon_t)_t$  is a centered iid Gaussian process with variance 1.
- The innovation process in (7) is defined, for all  $t \in \mathbb{Z}$ , by

$$\epsilon_t = \eta_t^2 \eta_{t-1},\tag{8}$$

where  $(\eta_t)_t$  is an iid  $\mathcal{N}(0,1)$  process.

 $\rightarrow$  We simulated M = 2,000 independent trajectories of size n = 5,000 of (7) endowed first by the strong noise and then by the weak noise (8). We consider that  $\delta = 0.9$ .





rescaled error

subLSE



rescaled error





rescaled error





os





**Figure 3:** Comparison of the computation times with respect to the sample size of the LSE and the one-step estimators of the parameters of Model (7) induced by Noise (8). For each size *n*, 1,000 replications are generated.

## Thank you for your attention