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Introduction Motivations

Time series are commonly used to model time dependencies in
econometrics for example,
A natural way to generalise the classical i.i.d setting.
Popular models : ARMA, GARCH, ... : weak dependence, summable
covariance.
Long memory time series may appear in certain situations : Gaussian
processes, FARIMA...
Most of the models have a spectral density.
We study different inference methods for a parametric model of time
dependence through the spectral representation of the dependence
structure.
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Introduction The model

Let (Xt) be a stationary Gaussian process with zero mean. We denote by
rθ the covariance function of (Xt) , θ ∈ Rd is an unknown parameter.
fθ the spectral density of (Xt) (Fourier’s transform of the covariance )

fθ (λ) = 1
2π

∑
j∈Z

exp (ijλ) rθ (j)

We have that
rθ (j) =

∫ π

−π
exp (ijλ) fθ (λ) dλ.

S.Ben Hariz (Le Mans, France) One-step for time series August 2023. 5 / 32



Introduction Classical inference methods

The likelihood function of X (n) = (X1, . . . , Xn) is defined by

L
(
θ, X (n)

)
= 1

(2π)
n
2 det (Σθ,n)

1
2

exp
(

−1
2X (n)Σ−1

θ,nX (n)∗
)

where Σθ,n = (rθ (i − j))1⩽i ,j⩽n
The maximum likelihood estimator (MLE) of θ ∈ Θ :

θ̂MLE
n = arg max

θ∈Θ
log L

(
θ, X (n)

)
.

Under some regularity conditions on the spectral density, see Fox and
Taqqu (1986); Dahlhaus (1989); Lieberman et al. (2012)

√
n
(
θ̂MLE

n − θ
) L−−−→

n→∞
N
(
0, I−1 (θ)

)
where I (·) is the Fisher information matrix :

I (θ) =
(

1
4π

∫ π

−π

∂ log fθ (λ)
∂θi

∂ log fθ (λ)
∂θj

dλ

)
1⩽i ,j⩽d

.
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Introduction Classical inference methods

An alternative to the MLE, the Whittle estimator.
The Whittle likelihood function (which is an approximation of the
exact gaussian log-likelihood) is defined by

LW
(
θ, X (n)

)
= 1

4π

∫ π

−π
log fθ (λ) + In (λ)

fθ (λ) dλ

where In (·) is the periodogram :

In (λ) = 1
2πn

∣∣∣∣∣∣
n∑

j=1
Xj exp (−ijλ)

∣∣∣∣∣∣
2

.

The Whittle estimator of θ (WE) is defined by

θ̂WE
n = arg min

θ∈Θ
LW

(
θ, X (n)

)
.

Under the same conditions for the MLE, see Fox and Taqqu (1986);
Dahlhaus (1989). θ̂WE

n have the same asymptotic properties as θ̂MLE
n .
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Introduction Some limitations

The MLE and WE have no explicit form.
It is therefore necessary to perform a numerical optimization which :

requires a numerical inversion of the covariance matrix for the MLE,
greatly depends on the form of the spectral density for the WE,
is often time consuming and can be numerically unstable.

It is interesting to look for alternative estimation methods that keep
the same asymptotic properties as the classical methods.
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The Gaussian case

2 The Gaussian case
One step estimator
An asymptotic result
An example
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The Gaussian case One step estimator

Let ℓ
(
θ, X (n)

)
the score function of the Gaussian likelihood.

θ̃n some initial estimator θ.

We peform a Fisher-scoring step on the score at θ̃n, :

θ̂n = θ̃n + 1
nI−1

(
θ̃n
)

ℓ
(
θ̃n, X (n)

)
.

This method called "one-step" allows to build a new estimator of θ in
only one step. She was introduced in Le Cam (1956) for variance
reduction in i .i .d . models and used fairly recently in Kamatani and
Masayuki (2015); Kutoyants and Motrunich (2016) for estimator
speed improvements.
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The Gaussian case An asymptotic result

Asymptotic efficiency in the Gaussian setting

Theorem ( Ben Hariz et al. (2022) )
Assume some regularity conditions on the spectral density and

nδ
(
θ̃n − θ

)
= OP (1) for some δ >

1
4 .

Then, √
n
(
θ̂n − θ

) L−−−→
n→∞

N
(
0, I−1 (θ)

)
.

We obtain an optimal estimator in speed and variance. The initial
estimator can be :

The MLE or WE on a subsample of size
[
nβ
]

for some 1
2 < β ⩽ 1,

An estimator from moments methods,
A semi-parametric estimator (log periodogram, local Whittle...).
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The Gaussian case An example

We consider the following AR(1) model as example :

Xt = αXt−1 + εH
t ,(

εH
t

)
is an FGN with Hurst exponent H and variance σ2.

The covariance function of
(
εH

t

)
is

rH,σ2 (k) = σ2
2
(
|k + 1|2H − 2|k|2H + |k − 1|2H

)
.

The corresponding spectral density is

gH,σ2 (λ) = CH,σ2 2 (1 − cos λ)
∑
k∈Z

1
|λ + 2kπ|2H+1

for some constant CH,σ2 .
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The Gaussian case An example

We want to estimate θ = (α, H, σ2) from the observations X (n).

The spectral density of (Xt) is given by

fϑ (λ) = gH,σ2 (λ)
1 − 2α cos(λ) + α2

The covariance function of (Xt) is not in closed form.
We cannot use an initial estimator like moments methods or
quadratic generalized variations as in Istas and Lang (1997).
Since the spectral density is in closed form, we can use an initial semi
parametric estimator in order to estimate H.
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The Gaussian case An example

We construct an initial estimator of θ via the following steps :
We estimate H via an adapted method of log-periodogram regression,
that is the GPH estimator (see Hurvich et al. (1998) for more details).
Then we estimate α via a generalized least square estimator involving
the estimation of H.
Finally we estimate σ2 via the residual process.

The initial estimator θ̃n satisfy the condition of the Theorem with
1
4 < δ < 1

3 hence the one-step procedure apply.
In the next slide, the parameter is fixed to θ = (0.2; 0.6; 0.4) and we
peform 20 Monte-Carlo simulations in order to evaluate the
computation time for each method for different sample size.
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The Gaussian case An example
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Figure: Evolution of the computation time w.r.t. the sample size.
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The Gaussian case An example

n B IE B OS SD IE SD OS RMSE IE RMSE OS
500 0.0195 0.0088 0.1017 0.0494 0.1036 0.0502
1000 0.0116 0.0036 0.0720 0.0335 0.0729 0.0336
1500 0.0082 0.0006 0.0641 0.0274 0.0646 0.0274

Table: Bias SD and RMSE for α, where θ =(-0.6 ; 0.8 ; 1)

n B IE B OS SD IE SD OS RMSE IE RMSE OS
500 -0.0010 -0.0038 0.1167 0.0473 0.1167 0.0474
1000 -0.0011 -0.0012 0.0909 0.0332 0.0909 0.0333
1500 0.0007 0.0020 0.0783 0.0252 0.0783 0.0253

Table: Bias SD and RMSE for H, where θ =(-0.6; 0.8; 1)
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The Gaussian case An example

n B IE B OS SD IE SD OS RMSE IE RMSE OS
500 0.0348 0.0047 0.1223 0.0501 0.1272 0.0503
1000 0.0250 0.0011 0.1011 0.0322 0.1042 0.0322
1500 0.0239 -0.0029 0.0855 0.0269 0.0888 0.0271

Table: Bias SD and RMSE for α, where θ =(-0.6 ; 0.3 ; 1)

n B IE B OS SD IE SD OS RMSE IE RMSE OS
500 -0.0078 -0.0023 0.1068 0.0381 0.1071 0.0382
1000 -0.0058 -0.0009 0.0896 0.0247 0.0898 0.0247
1500 -0.0108 0.0015 0.0801 0.0195 0.0808 0.0196

Table: Bias SD and RMSE for H, where θ =(-0.6 ; 0.3 ; 1)
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The Gaussian case An example
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Figure: Statistical error of the initial estimator and the one-step method where
θ = (−0.6; 0.3; 1) and n = 1500.
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The general case

3 The general case
The Whittle method
One-step Whittle
An example
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The general case The Whittle method

We assume that (Xt) admit the following Wold representation
Xt =

∑
j⩾0

aj,θεt−j

where (εt) is a weak white noise of variance σ2. The sequence (εt) is
uncorrelated but not necessarily independent.
From the Wold representation, we have that

fθ (λ) = σ2
2π

∣∣∣∣∣∣
∞∑

j=0
exp (ijλ) aj,θ

∣∣∣∣∣∣
2

.

The discrete Whittle-likelihood is given by

LD
W

(
θ, X (n)

)
= 1

2n

n−1∑
j=1

log fθ (λj) + In (λj)
fθ (λj)

where λj = 2πj
n . In this setting the Whittle estimator is defined by

θ
WE
n = arg min

θ∈Θ
LD

W

(
θ, X (n)

)
.
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The general case The Whittle method

Let Ĩn (λ) = 1
2πn

∣∣∣∑n
j=1 εj exp (−ijλ)

∣∣∣2 , we have (see Lemma A.7 of
Shao (2010)) that

1√
2n

n−1∑
j=1

∂ log fθ (λj)
∂θk

(
In (λj)
fθ (λj)

− 2πĨn (λj)
σ2

)
P−−−→

n→∞
0,

The asymptotic normality of the score follows therefore from the
asymptotic normality of the random vector

1√
2n

n−1∑
j=1

∂ log fθ (λj)
∂θk

× 2πĨn (λj)
σ2

,
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The general case The Whittle method

We consider the following function

f4 (λ) = 1
(2π)3

∑
k=(k1,k3,k3)∈Z3

cum (ε0, εk1 , εk2 , εk3) exp (−i ⟨λ, k⟩) ,

where λ ∈ [−π; π]3 . This function is the fourth order cumulant
spectral density of the noise (εt) .

From Lemma A.8 of Shao (2010),

Cov
(
Ĩn (λj) , Ĩn (λk)

)
=1j=k

(
σ2
2π

+ o (1)
)

+ 1j ̸=k

(2π

n f4 (λj , −λk , λk) + o
(1

n

))
,

The functional f4 (which depends on an unobservable process)
therefore contributes to the asymptotic distribution of the score.
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The general case The Whittle method

Under regularity conditions on the spectral density and the noise, Shao
(2010)

√
n
(
θ

WE
n − θ

) L−−−→
n→∞

N
(
0, I−1 (θ) W (θ) I−1 (θ)

)
where W (θ) is some matrix whose coefficients are expressed in the form
to an integration between the spectral density and f4.

If the noise is Gaussian then W (θ) = I (θ) and we recover the known
result,
It is necessary to estimate I−1 (θ) W (θ) I−1 (θ) in order to build
confidence bound.
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The general case One-step Whittle

Let ℓD
W

(
θ, X (n)

)
the Whittle score and θ̃n some initial estimator θ.

We perform an adapted Fisher-scoring step on the Whittle score at θ̃n,

θ̂n = θ̃n − I−1
(
θ̃n
)

ℓD
W

(
θ̃n, X (n)

)
.

We proove a similar result to the Gaussian case in Ben Hariz et al. (2023) :

Theorem
We assume that certain regularity conditions on the spectral density and
the noise are satisfied. We also assume that

nδ
(
θ̃n − θ

)
= OP (1) for some δ >

1
4 .

Then, √
n
(
θ̂n − θ

) L−−−→
n→∞

N
(
0, I−1 (θ) W (θ) I−1 (θ)

)
.
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The general case An example

We consider a FARIMA(1, d , 1) model of the form

(1 − L)d (1 − aL) Xt = (1 − bL) εt

for different type of noise (εt) where L is the backward operator.
We denote θ = (a, b, d) . a is the autoregressive parameter, b the
moving average parameter and d the fractional parameter of the
filter. We want to estimate θ from the observations X (n).

The spectral density of the process is therefore

fθ (λ) = σ2
2π

|1 − exp (iλ)|−2d |1 − a exp (iλ)|−2 |1 − b exp (iλ)|2 ,

The initial estimator is the Whittle estimator on a sub-sample.
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The general case An example
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Figure: Evolution of the computation times (in seconds), in a FARIMA model of
parameter ϑ0 = (0, 2; 0, 5; 0, 3) .
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The general case An example
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Figure: Evolution of the RMSE for the autoregressive parameter in a FARIMA
model of parameter θ0 = (0, 2; 0, 5; 0, 3) .
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The general case An example
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Figure: Statistical error of the one-step estimator of d in a FARIMA model.
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The general case An example

4 Comments and Perspectives
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Comments and Perspectives

Comments and Perspectives

The one-step procedure makes it possible to obtain an estimator
whose asymptotic properties are the same as the Whittle estimator
with reduced computation time.
The asymptotic efficiency is even reached via this method in the
Gaussian case.
We can obtain the same variance as in Gaussian case by reducing the
number of ’s frequencies. Less speed but simpler vaiance!!
It would be interesting, apart from the Gaussian case, to estimate the
covariance matrix W (θ) in order to build confidence bound. We are
currently developing an approach in Ben Hariz et al. (2023) that
draws on the work of Taniguchi (1982); Keenan (1987).
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