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This presentation is based on a joint work with Carsten Chong, Marc
Hoffmann, Yanghui Liu, Mathieu Rosenbaum :

- Statistical inference for rough volatility : Minimax Theory, arXiv, 2022.
- Statistical inference for rough volatility : Central limit theorems,

arXiv, 2022.
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Setup

Rough volatility model
We consider an asset whose log price is modelled by a stochastic process S
with dynamic {

dSt = σtdBt ,

σ2
t = exp(ηW H

t )

where (H, η) ∈ D = [H−, H+] × [η−, η+], and where B is a Brownian
motion and W H is a Fractional Brownian Motion independent of B.

High frequency asymptotic
We aim at estimating the parameters H and η from high frequency
observations of S. More precisely, we observe S at times i

n with
i = 0, . . . , n and we suppose that n = 2N .
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Fractional Brownian motions

Definition
A fractional Brownian motion W H with Hurst index H with 0 < H < 1
is the Gaussian process satisfying

Cov(W H
t , W H

s ) = 1
2(t2H + s2H − |t − s|2H).

Proposition
W H has stationary increments.
(a−HW H

at )t is a fractional Brownian motion with Hurst index H.
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State of the art

Estimation in stationary Gaussian sequences : Fox & Taqqu ’86 and
’87 ; Istas & Lang ’97 ; Coeurjolly ’01.
Estimation of the Hurst parameter in additive noise models : Gloter
and Hoffmann ’07 when H > 1/2 only.
Estimation of the Hurst parameter in multiplicative noise models :
Rosenbaum ’08 when H > 1/2 only.
LAN property : Kawai ’13 ; Brouste, Fukasawa ’18.
Whittle estimators : Fukasawa, Takabatake, Westphal ’19
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Minimax rates

Definition
The rate vn is said to be a lower rate of convergence over D for
estimating H if there exists c > 0 such that

lim inf
n→∞

inf
Ĥn

sup
(H,η)∈D

Pn
H,η(v−1

n |Ĥn − H| ≥ c) > 0

where the infimum is taken over all admissible estimators.

Theorem
The rate vn(H) = n−1/(4H+2) is a lower rate of convergence for estimating
H over D.

Gregoire Szymanski Rough volatility 8



Table of contents

1 Statistical model

2 Lower bounds

3 Construction of an estimator

4 Approximations

5 Conclusion

Gregoire Szymanski Rough volatility 9



Construction of the estimator

Our observations are given by

Si/n =
∫ i/n

0
σs dBs .

Stochastic calculus gives

(
Si/n − S(i−1)/n

)2 =
∫ i/n

(i−1)/n
σ2

t dt X 2
i ,n

where Xi ,n are independent standard Gaussian variables.
Using the logarithm gives

log
(
n

(
Si/n − S(i−1)/n

)2)
= log

(
n

∫ i/n

(i−1)/n
σ2

t dt
)

+ log
(
X 2

i ,n

)
.
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Approximation of the spot volatility

Here, we want to use the approximation

n
∫ i/n

(i−1)/n
σ2

t dt ≈ σ2
i/n = exp(ηW H

i/n)

so that we would be down to

Yi ,n = ηW H
i/n + εi ,n

where the additive noise εi ,n is a well-behaved noise process.
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Energy levels

Definition (Energy Level)
For j ≤ N, we define the energy levels of the Fractional Brownian
trajectory by

Qj = η22−j
2j−1∑
k=0

(
W H

(k+1)2−j − W H
k2−j

)2
.

Proposition

E[(Qj − 1
2η22−2jH)2] ≤ C2−j(1+4H).
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Energy levels

Therefore

2−2H ≈ Qj+1
Qj

and we shall estimate H through this ratio.
Therefore, we need to estimate correctly the energy levels, and we
start by estimating the increments

dj,k = η2−j/2(
W H

(k+1)2−j − W H
k2−j

)
.

This is done by averaging the observations of the fractional Brownian
motion to dampen the effects of the noise, which gives

d̃j,k = 2−j/2
2N−j −1∑

l=0

(
Y(k+1)2N−j +l ,n − Yk2N−j +l

)
.
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Energy levels

d can be decomposed as

d̃j,k = 2−j/2
2N−j −1∑

l=0

(
Y(k+1)2N−j +l ,n − Yk2N−j +l

)
= 2−j/2η

2N−j −1∑
l=0

(
W H

(k+1)2−j +(l+1)/n − W H
(k+1)2−j +l/n

)
︸ ︷︷ ︸

≈dj,k

+ 2−j/2
2N−j −1∑

l=0

(
ε(k+1)2N−j +l ,n − εk2N−j +l

)
︸ ︷︷ ︸

=:ej,k

.
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Energy levels

Provided ε is well behaved, d̃j,k is a good estimator for dj,k,n.
We need to correct the effect of the second moment of the noise in

d̃2
j,k ≈ (dj,k,n)2 + 2dj,k,nej,k + e2

j,k ,

and therefore we write

Q̂j,n =
2j−1∑
k=0

d̃2
j,k − E[e2

j,k ].

Again, provided ε is well behaved, we have

E[(Q̂j,n − Qj)2] ≤ C2j/n2.
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Construction of the estimator

Since 2−2H ≈ Qj+1/Qj , our final estimator of H is

−1
2 log

(Q̂j+1,n

Q̂j,n

)
but we still need to find an appropriate level j .
We do a Biais-variance decomposition, the biais is of order 2−j/2

while the variance is of order n−12j(4H+1)/2.
Balancing both term yields 2j ≈ n1/(2H+1)
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Construction of the estimator

Adaptive estimation
We can cook up Ĵ∗

n ≈ n1/(2H+1) by choosing Ĵ∗
n so that

QJ∗
n ,n ≈ n−12J∗

n

The estimator of H is eventually given by

Ĥn = −1
2 log

Q̂Ĵ∗
n +1

Q̂Ĵ∗
n

.

Theorem

n1/(4H+2)(Ĥn − H) is bounded in probability uniformly over D.
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About the approximations

Unfortunately, when H < 1/2, The procedure detailed previously does not
work because ε is not nice...

ηW H
i/n + εi ,n = log

(
n

∫ i/n

(i−1)/n
σ2

t dt
)

+ log
(
X 2

i ,n

)
≈ log

(
σ2

(i−1)/n

)
+ log

(
X 2

i ,n

)
.
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Taylor development

Proposition
There exists random variable Z0 bounded in L2(PH,η) uniformly on D such
that

log
(
n

∫ (i+1)/n

i/n
σ2

udu
)

= · · ·

=
2S∑

b=2

2S∑
s=1

(−1)s−1

s
∑

r∈{1,...,S}s∑
j rj =b

s∏
j=1

ηrj

rj !
1
/n

∫ (i+1)/n

i/n
(W H

u − W H
i/n)rj du

+ n
∫ (i+1)/n

i/n
ηW H

u du + Z (i , n) · n−H∗(S+1)

where the random variables Z (i , n) satisfy |Z (i , n)| ≤ Z0.
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About the approximations

We can still define the energy levels associated with these
observations, but the scaling is hugely influenced by the presence of
the additional terms.
Indeed, the we cannot hope having an expression like
E[(Qj,n − η2κ(H)2−2jH)2] ≤ C2−j(1+4H) because the terms
(W H

u − W H
i/n)rj create additional scaling terms of order 22Hj .
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Energy levels

Proposition

There exist explicit functions of H denoted κa such that if
S ≥ 1/(4H−) + 1/2 and S > H+/(2H−) − 1/2, we have

EH,η

[(
Qj −

S∑
a=1

η2a2−2aHjκa(H)
)2]

≤ C2−j(1+4H)

for some constant C depending only on S.
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Energy levels

Therefore the scaling Qj+1/Qj = 2−2H is no longer exact.
Instead we have

Qj+1
Qj

≈
∑S

a=1 η2a2−2aH(j+1)κa(H)∑S
a=1 η2a2−2aHjκa(H)

≈ 2−2H + O(2−2Hj)

We can build an estimator using the same procedure as in the
simplified model, but it will exhibit a slower rate of convergence
because of the additional contribution of order 2−2Hj in the biais of
this estimator.

Theorem
(n1/(4H+2) ∧ n2H)(Ĥn − H) is bounded in probability uniformly over D.
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Biais correction

We need an additional biais correction procedure to improve the
convergence rate of this estimator.
First we need an estimator for η.

Proposition
If vn(Ĥn − H) is bounded in probability uniformly over D, we can build an
estimator η̂n of η such that vn log(n)−1(η̂n − η) is bounded in probability
uniformly over D.
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Biais correction

The scaling of the energy levels is given by
Qj ≈

∑S
a=1 η2a2−2aHjκa(H) and we want to cut this sum to a = 1.

Thus we need to replace Qj by

Qj −
S∑

a=2
η2a2−2aHjκa(H) ≈ η22−2Hjκ1(H).

So we replace Q̂j by Q̂c
j (Ĥn, η̂n)

Q̂c
j (H̃, η̃) = Q̂j −

S∑
a=2

η̃2a2−2aH̃jκa(H̃)
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Biais correction

Notice that

Q̂c
j (H, η)

Q̂c
j (H, η)

= 2−2H

as in the simplified setup.
Thus we define

Ĥ(1)
n = −1

2 log
Q̂J∗

n +1(Ĥn, η̂n)
Q̂J∗

n (Ĥn, η̂n)
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Biais correction

However, we cannot immediately retrieve the convergence rate of the
simplified setup because Q̂c

j (Ĥn, η̂n) ̸= Q̂c
j (H, η). The difference

Q̂c
j (Ĥn, η̂n) − Q̂c

j (H, η) also creates a biais that we can still control.

Theorem
(n1/(4H+2) ∧ n4H(H+1)/(2H+1))(Ĥ(1)

n − H) is bounded in probability
uniformly over D.
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Biais correction

We repeat the biais correction procedure by defining a sequence of
estimators

Ĥ(m+1)
n = −1

2 log
Q̂J∗

n +1(Ĥ(m)
n , η̂

(m)
n )

Q̂J∗
n (Ĥ(m)

n , η̂
(m)
n )

Theorem
(n1/(4H+2) ∧ n2H(2H+m+1)/(2H+1))(Ĥ(m)

n − H) is bounded in probability
uniformly over D.

We take mopt > m > 1/(4H) − 2H − 1 for any H− < H < H+ and we
get the same convergence rate n1/(4H+2) as in the simplified model.
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Summary

The lower bound for estimating the parameter H is n−1/(4H+2), and
we have developed an estimator achieving this rate.
This rate is unusual and could seem counter-intuitive at first glance
since it the optimal rate for estimating β-Holder continuous function
in most models is usually n−β/(2β+1).
But we do not seek to reconstruct the spot volatility.
The rougher the volatility is, the easier it is to see it.
Beyond this simplified framework, we can extend these idea to
(rough) stochastic Volterra differential equations.
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Thank you !
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Asymptotic behaviour

These Estimators are asymptotically Gaussian...
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Non parametric estimation

In practice, the models considered in finance do not use Fractional
Brownian motion but non-parametric approximations of the fractional
Brownian motion :

Xt = X0 +
∫ t

0
bs ds +

∫ t

0
σs dBs

σ2
t = σ2

0 +
∫ t

0
as ds +

∫ t

0
g(t − s)ηs dB̃s

where g(t) ≈ tH−1/2.
We can extend our estimators to embrace this framework.
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