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@ This presentation is based on a joint work with Carsten Chong, Marc
Hoffmann, Yanghui Liu, Mathieu Rosenbaum :

- Statistical inference for rough volatility : Minimax Theory, arXiv, 2022.

- Statistical inference for rough volatility : Central limit theorems,
arXiv, 2022.
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Rough volatility model

We consider an asset whose log price is modelled by a stochastic process S
with dynamic

{dSt = O'tdBt,
o7 = exp(n WtH)

where (H,n) € D = [H-, Hy] X [n—,n+], and where B is a Brownian
motion and W is a Fractional Brownian Motion independent of B.

High frequency asymptotic

We aim at estimating the parameters H and 7 from high frequency
observations of S. More precisely, we observe S at times - with
i=0,...,n and we suppose that n = 2N,
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Fractional Brownian motions

A fractional Brownian motion W with Hurst index H with 0 < H < 1
is the Gaussian process satisfying

1
Cov(W!, wH)y = §(t2H =5 — e — g2

Proposition

o W has stationary increments.

o (a="W!); is a fractional Brownian motion with Hurst index H.
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State of the art

o Estimation in stationary Gaussian sequences : Fox & Taqqu '86 and
'87 ; Istas & Lang '97; Coeurjolly '01.

@ Estimation of the Hurst parameter in additive noise models : Gloter
and Hoffmann '07 when H > 1/2 only.

@ Estimation of the Hurst parameter in multiplicative noise models :
Rosenbaum '08 when H > 1/2 only.

@ LAN property : Kawai '13; Brouste, Fukasawa '18.
@ Whittle estimators : Fukasawa, Takabatake, Westphal '19
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Minimax rates

Definition

The rate v, is said to be a lower rate of convergence over D for
estimating H if there exists ¢ > 0 such that

liminfinf sup P} ( villHo—H|>¢)>0
7% H, (Hm)eD

where the infimum is taken over all admissible estimators.

The rate v,(H) = n=Y/(4H+2) s a Jower rate of convergence for estimating
H over D.
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Construction of the estimator

@ Our observations are given by

i/n
Si/n:/ Os dBS
0

@ Stochastic calculus gives

i/n
5,',,—5,', n2:/ 2dt)<i2n
(Sijn = S-ay)™ = | ) e dt X

where X; , are independent standard Gaussian variables.

@ Using the logarithm gives

|og (n(S,-/n — S(i—l)/n)2> = |0g (n /(,‘1)/n

i/n

o2 dt) + log (X,%n)
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Approximation of the spot volatility

@ Here, we want to use the approximation

i/n
2 2 H
n ordt = o, = exp(nW,],)
/(,-1)/n ‘ / /

so that we would be down to
Yi,n = 77W,~7n + €in

where the additive noise ¢; , is a well-behaved noise process.
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Energy levels

Definition (Energy Level)

For j < N, we define the energy levels of the Fractional Brownian
trajectory by

2j—1

_ 2

Q= 7’2 Z (W(IZ+1)2ﬁ - Wk’éﬂ') :
k=0

Proposition

E[(QJ . %,’72272_]'H)2] < C2fj(1+4H).
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Energy levels

@ Therefore

p—2H - Qj+1

Q)
and we shall estimate H through this ratio.

@ Therefore, we need to estimate correctly the energy levels, and we
start by estimating the increments

i = m2 P (Wl 1)1 = WG-).

@ This is done by averaging the observations of the fractional Brownian
motion to dampen the effects of the noise, which gives

oN=j1

le,k =272 Z (Y(k+1)2"’—f+l,n - YkzN—f+/)-
1=0
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Energy levels

@ d can be decomposed as

oN=j 1
q., — 2—i/2 ) )
dj,k =2 / Z (Y(k+1)2N—J+/,n - Ykz"’—1+1)
1=0
oN=-i_1

=277 Z (Wikrnzsr+1y/n = Wikanyz-ri/n)

~dj k
oN—-i_1
—j/2 ) )
+274/ Z (5(k+1)2N*J+l,n - 5k2Nﬂ+l) .
1=0
=€k
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Energy levels

@ Provided ¢ is well behaved, le,k is a good estimator for d; x .

@ We need to correct the effect of the second moment of the noise in
2 2 2
dj ik = (djk,n)” + 2dj k0 k + €4

and therefore we write

21
Q=D d —Ele}].
k=0
@ Again, provided ¢ is well behaved, we have

E[(Q.n— @)’ < C2/n’.
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Construction of the estimator

@ Since 272H ~ Qj+1/Qj, our final estimator of H is

1 Z\‘?j—|—1,n
518 (55 ")
J7n

but we still need to find an appropriate level ;.

e We do a Biais-variance decomposition, the biais is of order 274/2
while the variance is of order n~12/(4H+1)/2,

e Balancing both term yields 2/ ~ n1/(2H+1)
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Construction of the estimator

Adaptive estimation

We can cook up J# &~ n¥/@H+1) by choosing J* so that

—1~J*
QJ:,n%n 2J"

The estimator of H is eventually given by

nl/(4H+2)(I:/,, — H) is bounded in probability uniformly over D.
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About the approximations

Unfortunately, when H < 1/2, The procedure detailed previously does not
work because ¢ is not nice...

i/n
77V|/17n +Ein= IOg (n/
(i-1)/n

~ log (0(2,-71)/,,> + log (X,%n).

o2 dt) + log (Xf,,)
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Taylor development

There exists random variable Zy bounded in L*(Py ;) uniformly on D such
that

i+1)/n
Iog(n/(+) aﬁdu) = oac
Z H nl'j 1 / I+1)/n(W:I I/n)rj du

2S5 2§ s—1

)=

b—2s=1 eisyjo1 7! /n
erj:b
(i+1)/n
+n nWHdu + z(i,n) - n=H"(5+1)
i/n

where the random variables Z(i, n) satisfy |Z(i,n)| < Zo.
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About the approximations

@ We can still define the energy levels associated with these
observations, but the scaling is hugely influenced by the presence of
the additional terms.

@ Indeed, the we cannot hope having an expression like
E[(Qjn — n?k(H)27%H)?] < €27/(1+4H) pecause the terms

(WhH — Vl/i’;’n)rf create additional scaling terms of order 22/,

Gregoire Szymanski Rough volatility 21



Energy levels

Proposition

There exist explicit functions of H denoted k, such that if
S>1/(4H-)+1/2 and S > Hy/(2H-) — 1/2, we have

S
(@) 32 )] < corRoe
a=1

for some constant C depending only on S.
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Energy levels

e Therefore the scaling Qj+1/Q; = 272H
@ Instead we have

is no longer exact.

Q1 2511772 20 ks, (H)
Q 30311722722 ik, (H)
~ 2720 4 0(272M)

@ We can build an estimator using the same procedure as in the
simplified model, but it will exhibit a slower rate of convergence

because of the additional contribution of order 22"/ in the biais of
this estimator.

(nl/(4H+2) A n2H)(,fln _

H) is bounded in probability uniformly over D.
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Biais correction

@ We need an additional biais correction procedure to improve the
convergence rate of this estimator.

o First we need an estimator for 7.

Proposition

If v,,(,‘:l,7 — H) is bounded in probability uniformly over D, we can build an
estimator 7j, of n such that v, log(n)~%(7, —n) is bounded in probability
uniformly over D.
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Biais correction

@ The scaling of the energy levels is given by
Qj ~ Y5, 7?22~ 23Hi ,(H) and we want to cut this sum to a = 1.

@ Thus we need to replace Q; by

S
Qj _ Z 77232_23HJ/13(H) ~ ,'722—2H_]K1(H)'
a=2

@ So we replace @; by @JF(Hn,ﬁn)
~ ~ ~ S ~. ~
QF(H. i) = @ — > 77272, (H)

a=2
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Biais correction

@ Notice that

Z\?f(,_lﬂfl) 2_2H
Q7 (H,n)

as in the simplified setup.

@ Thus we define

(1) _ é lo Q/{,’,"-&-lg\Hmﬁn)
QJ;:(Hnaﬁn)
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Biais correction

@ However, we cannot immediately retrieve the convergence rate of the
simplified setup because QF(Hn, 7)) # Q5 (H,n). The difference

~ ~

(A?J-C(H,,,ﬁn) — Qf(H,n) also creates a biais that we can still control.

(G Em=) g n4H(H+1)/(2H+1))(I:I,(,1) — H) is bounded in probability
uniformly over D.
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Biais correction

@ We repeat the biais correction procedure by defining a sequence of
estimators

(nt/(4H+2) A n2H(2H+’"+1)/(2H+1))(I:I,(,m) — H) is bounded in probability
uniformly over D.

o We take mopt > m > 1/(4H) —2H — 1 for any H_ < H < H; and we
get the same convergence rate n'/(*"+2) a5 in the simplified model.
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o The lower bound for estimating the parameter H is n~1/(*H+2) and
we have developed an estimator achieving this rate.

@ This rate is unusual and could seem counter-intuitive at first glance
since it the optimal rate for estimating 8-Holder continuous function
in most models is usually n=5/(26+1),

@ But we do not seek to reconstruct the spot volatility.
@ The rougher the volatility is, the easier it is to see it.

@ Beyond this simplified framework, we can extend these idea to
(rough) stochastic Volterra differential equations.
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Thank you'!
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Asymptotic behaviour

@ These Estimators are asymptotically Gaussian...

Estimation of H

D _mﬂnnllm ‘ mmlim.

0.15 0.20 0.25 030 0.35 0.40 0.45
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Non parametric estimation

@ In practice, the models considered in finance do not use Fractional
Brownian motion but non-parametric approximations of the fractional

Brownian motion :

t t
xt:xo+/ bsds+/ o dB
0 0
t t ~
o? :ag—i-/ as ds+/ g(t — s)ns dBs
0 0

where g(t) ~ tH=1/2.

@ We can extend our estimators to embrace this framework.
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