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Measuring roughness GMM approach Epilogue

Synopsis

Agenda

• We develop an estimation/inference method for log-normal
spot volatility models based on realised measures.

• We employ the generalised method of moments (GMM).

• Whilst the approach is fully generic, we focus on models that
lend themselves to rough volatility.

• We take seriously the intrinsic sources of bias — integration
effect and measurement error.

• We derive asymptotic theory for the GMM estimator and
assess its finite-sample properties in a simulation experiment.

• Applying the method to equity index data, we study whether
spot volatility is best described by a rough process.
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Measuring the roughness of volatility

Generalised method of moments approach

Epilogue
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Measuring roughness via scaling

Scaling of fractional Brownian motion

The q-th order variogram of fractional Brownian motion (fBm), for
q > 0, scales as follows:

v(q,∆) := E[|WH
t+∆ −WH

t |q] ∝ ∆qH , ∆ > 0

Thus,
log v(q,∆)

q
= const + H log∆.
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Measuring roughness via scaling

Estimation of H

For daily realised variance RVk on days k = 0, 1, . . . ,N, compute
the empirical variogram

m(q,∆) =
1

N

N∑
k=1

| log(RVk∆)−log(RV(k−1)∆)|q, ∆ = 1, . . . ,
⌊
N
∆

⌋
.

To estimate H, Gatheral, Jaisson and Rosenbaum (2018) suggest
we. . .

regress logm(q,∆)
q on log∆.
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Roughness of Nikkei 225 volatility
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Continuous-time model for asset prices

General semimartingale model

dSt
St

= µtdt + σtdWt + Jt , t ≥ 0

Drift part

• Drift process (µt)t≥0

Diffusive part

• Spot volatility process (σt)t≥0

• Standard Brownian motion (Wt)t≥0

Jump part [omitted in what follows]

• Jump process (e.g., Lévy process) (Jt)t≥0
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Is spot volatility rough?

Roughness measured via proxy?

Is it okay to think that RV n
k ≈ σ2

k to infer that σ is rough too?

Bias 1: Integration

σ2 −→ IVk :=

∫ k

k−1
σ2
t dt biases Ĥ upward

• Integration is a smoothing operation.

• Gatheral, Jaisson and Rosenbaum (2018) compute an
estimate of the bias.
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• Integration is a smoothing operation.

• Gatheral, Jaisson and Rosenbaum (2018) compute an
estimate of the bias.

8 / 24



Measuring roughness GMM approach Epilogue

Is spot volatility rough?

Roughness measured via proxy?

Is it okay to think that RV n
k ≈ σ2

k to infer that σ is rough too?

Bias 1: Integration

σ2 −→ IVk :=

∫ k

k−1
σ2
t dt biases Ĥ upward
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Is spot volatility rough?

Bias 2: Measurement error

IVk −→ RV n
k = IVk + enk︸︷︷︸

error

biases Ĥ downward

• Asymptotic theory suggests that enk , k = 1, 2, . . ., are
approximately uncorrelated, so they appear as noise.

• Noise looks like roughness, “illusive scaling” (Fukasawa,
Takabatake and Westphal, 2022).

• Mitigation via non-linear least squares (Bennedsen, Lunde and
Pakkanen, 2022) or quasi-likelihood estimation (Fukasawa,
Takabatake and Westphal, 2022).
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Probabilistic setup

Log-normal spot volatility model

σ2
t := ξ exp

(
Yt −

1

2
κ(0)

)
, t ∈ R

1. (Yt)t∈R is a stationary Gaussian process with mean zero and
autocovariance function κ(·).

2. Collect the parameter ξ ∈ R and all the parameters of κ(·)
into θ ∈ Θ ⊂ Rp.

3. Assume that Θ is compact with true θ0 in its interior.
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Covariance structure of integrated variance

Proposition

For any θ ∈ Θ, k ∈ Z and ℓ = 0, 1, . . .,

1. g1(θ) := Eθ[IVk ] = ξ

2. g2
ℓ (θ) := Eθ[IVk IVk+ℓ] = ξ2

∫ 1

0
(1− y)(eκ(ℓ+y) + eκ(|ℓ−y |))dy

If additionally limu→∞ κ(u) = 0 and some regularity conditions on
κ hold, then:

3. Covθ[IVk , IVk+ℓ] ∼ constξ,κκ(ℓ) as ℓ → ∞
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Stylised measurement error

Measurement setup

ÎV k = IVk + εk , k ∈ Z

The stylised measurement errors εk , k ∈ Z, should satisfy:

1. (IVk , εk)k∈Z is a stationary and ergodic process under Pθ for
any θ ∈ Θ.

2. θ 7→ c(θ) := Eθ[ε
2
1] is a finite-valued, continuous function on

Θ.

3. Eθ[εk |εk−1, εk−2, . . . ,Y ] = 0 for any k ∈ Z and any θ ∈ Θ.
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Stylised measurement error

Example (CLT approximation)

The central limit theorem (CLT) for realised variance (e.g.,
Fukasawa, 2010) says:

√
nenk =

√
n(RV n

k − IVk)
d−−−→

n→∞

(
2

∫ k

k−1
σ4
t dt

)1/2

Xk

where Xk ∼ N(0, 1), k ∈ Z, are mutually independent and
independent of Y . Motivated by this result, we specify

εk :=

(
2

n

∫ k

k−1
σ4
t dt

)1/2

Xk , for which c(θ) =
2ξ2

n
eκ(0).
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Moments

Covariance structure under measurement error

1. Eθ

[
ÎV k

]
= Eθ[IVk ] = g1(θ)

2. Eθ

[
ÎV k ÎV k+ℓ

]
=

{
Eθ[IV

2
k ] + c(θ) = g2

0 (θ) + c(θ), ℓ = 0

Eθ[IVk IVk+ℓ] = g2
ℓ (θ), ℓ > 0

Moment selection

For a finite subset L ⊂ {1, 2, . . .} of lags,

ÎVk :=
(
ÎV k , ÎV

2

k , ÎV k ÎV k−ℓ : ℓ ∈ L
)
, k ∈ Z

Gc(θ) := (g1(θ), g2
0 (θ) + c(θ), g2

ℓ (θ) : ℓ ∈ L), θ ∈ Θ

15 / 24
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ÎV k

]
= Eθ[IVk ] = g1(θ)

2. Eθ

[
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k , ÎV k ÎV k−ℓ : ℓ ∈ L
)
, k ∈ Z

Gc(θ) := (g1(θ), g2
0 (θ) + c(θ), g2

ℓ (θ) : ℓ ∈ L), θ ∈ Θ

15 / 24



Measuring roughness GMM approach Epilogue

Generalised method of moments (GMM)

Estimating function

Define

m̂N(θ) :=
1

N

N∑
k=1

ÎVk − Gc(θ), θ ∈ Θ,

and note Eθ0 [m̂N(θ0)] = 0.

GMM estimator

For a data-dependent weight matrix W ∈ R(2+|L|)×(2+|L|),

θ̂N := argmin
θ∈Θ

m̂N(θ)
′Wm̂N(θ)

The estimator is consistent and asymptotically normal under
suitable conditions.
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Specifying Y

(Rough) fractional stochastic volatility model (FSV/RFSV)

Let Y be a fractional Ornstein–Uhlenbeck process with Hurst index
H ∈ (0, 1),

Yt = ν

∫ t

−∞
e−λ(t−u)dWH

u , t ∈ R,

where:

• WH is an fBm with the Hurst index H

• ν > 0 and λ > 0 are parameters

Introduced as the fractional stochastic volatility (FSV) model by
Comte and Renault (1998) with H ∈ (12 , 1). Repurposed in the
rough case H ∈ (0, 12) by Gatheral, Jaisson and Rosenbaum (2018).

17 / 24



Measuring roughness GMM approach Epilogue

Specifying Y

(Rough) fractional stochastic volatility model (FSV/RFSV)

Let Y be a fractional Ornstein–Uhlenbeck process with Hurst index
H ∈ (0, 1),

Yt = ν

∫ t

−∞
e−λ(t−u)dWH

u , t ∈ R,

where:

• WH is an fBm with the Hurst index H

• ν > 0 and λ > 0 are parameters

Introduced as the fractional stochastic volatility (FSV) model by
Comte and Renault (1998) with H ∈ (12 , 1). Repurposed in the
rough case H ∈ (0, 12) by Gatheral, Jaisson and Rosenbaum (2018).

17 / 24



Measuring roughness GMM approach Epilogue

Specifying Y

(Rough) fractional stochastic volatility model (FSV/RFSV)

Let Y be a fractional Ornstein–Uhlenbeck process with Hurst index
H ∈ (0, 1),

Yt = ν

∫ t

−∞
e−λ(t−u)dWH

u , t ∈ R,

where:

• WH is an fBm with the Hurst index H

• ν > 0 and λ > 0 are parameters

Introduced as the fractional stochastic volatility (FSV) model by
Comte and Renault (1998) with H ∈ (12 , 1). Repurposed in the
rough case H ∈ (0, 12) by Gatheral, Jaisson and Rosenbaum (2018).

17 / 24



Measuring roughness GMM approach Epilogue

Specifying Y

(Rough) fractional stochastic volatility model (FSV/RFSV)

Let Y be a fractional Ornstein–Uhlenbeck process with Hurst index
H ∈ (0, 1),

Yt = ν

∫ t

−∞
e−λ(t−u)dWH

u , t ∈ R,

where:

• WH is an fBm with the Hurst index H

• ν > 0 and λ > 0 are parameters

Introduced as the fractional stochastic volatility (FSV) model by
Comte and Renault (1998) with H ∈ (12 , 1).

Repurposed in the
rough case H ∈ (0, 12) by Gatheral, Jaisson and Rosenbaum (2018).

17 / 24



Measuring roughness GMM approach Epilogue

Specifying Y

(Rough) fractional stochastic volatility model (FSV/RFSV)

Let Y be a fractional Ornstein–Uhlenbeck process with Hurst index
H ∈ (0, 1),

Yt = ν

∫ t

−∞
e−λ(t−u)dWH

u , t ∈ R,

where:

• WH is an fBm with the Hurst index H

• ν > 0 and λ > 0 are parameters

Introduced as the fractional stochastic volatility (FSV) model by
Comte and Renault (1998) with H ∈ (12 , 1). Repurposed in the
rough case H ∈ (0, 12) by Gatheral, Jaisson and Rosenbaum (2018).

17 / 24



Measuring roughness GMM approach Epilogue

Application to simulated FSV/RFSV data

Setup

• Test both ÎV k := IVk and ÎV k := RVk (5 min).

• IVk without correction (c(θ) := 0), RVk with CLT
approximation correction and without.

• Use Gatheral, Jaisson and Rosenbaum’s (2018) procedure to
derive initial parameter guesses (“baseline”).

• Following Fukasawa, Takabatake and Westphal (2022),
consider H ∈ {0.05, 0.1, 0.3, 0.5, 0.7}.

• Other parameters set to keep the data realistic.

• 10 000 replications with N = 4000.

• L := {1, 2, 3, 5, 20, 50}, weight matrix W derived from Newey
and West (1987) long-run covariance estimates.
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• IVk without correction (c(θ) := 0), RVk with CLT
approximation correction and without.

• Use Gatheral, Jaisson and Rosenbaum’s (2018) procedure to
derive initial parameter guesses (“baseline”).

• Following Fukasawa, Takabatake and Westphal (2022),
consider H ∈ {0.05, 0.1, 0.3, 0.5, 0.7}.

• Other parameters set to keep the data realistic.

• 10 000 replications with N = 4000.

• L := {1, 2, 3, 5, 20, 50}, weight matrix W derived from Newey
and West (1987) long-run covariance estimates.

18 / 24



Measuring roughness GMM approach Epilogue

Application to simulated FSV/RFSV data

Setup
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Application to simulated FSV/RFSV data
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Application to simulated FSV/RFSV data
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Application to simulated FSV/RFSV data
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Application to simulated FSV/RFSV data
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Application to Oxford–Man realised variance data

Setup

• Apply GMM estimation to 5-min daily realised variance data
on all indices in the database (except Karachi SE 100 Index
and Straits Times Index, due to gaps in time series).

• Use CLT approximation correction.

• Other estimation settings as in the simulation experiment.

• Inference (confidence intervals) using asymptotic normality.
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Application to Oxford–Man realised variance data
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Measuring the roughness of volatility

Generalised method of moments approach

Epilogue
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Concluding remarks

Summary

• Volatility is rough, as far as realised variance is concerned.

• But inferring that spot volatility is rough is harder.

• Integration (smoothes) and measurement error (roughens)
become counteracting sources of bias.

• But within a log-normal spot volatility model using GMM, we
can accommodate both of these effects.

• GMM estimation and inference suggest that spot volatility is
under log-normality best described by a rough process.

• Typically Ĥ ≈ 0.02, consistent with implied volatility
calibrations.

23 / 24



Measuring roughness GMM approach Epilogue

Concluding remarks

Summary

• Volatility is rough, as far as realised variance is concerned.

• But inferring that spot volatility is rough is harder.

• Integration (smoothes) and measurement error (roughens)
become counteracting sources of bias.

• But within a log-normal spot volatility model using GMM, we
can accommodate both of these effects.

• GMM estimation and inference suggest that spot volatility is
under log-normality best described by a rough process.
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• Typically Ĥ ≈ 0.02, consistent with implied volatility
calibrations.

23 / 24



Measuring roughness GMM approach Epilogue

Bibliography

M. Bennedsen, A. Lunde, and M. S. Pakkanen (2022): Decoupling the short-
and long-term behavior of stochastic volatility. Journal of Financial Econometrics
20(5), 961–1006.

A. E. Bolko, K. Christensen, M. S. Pakkanen and B. Veliyev (2023): A GMM
approach to estimate the roughness of stochastic volatility. Journal of
Econometrics 235(2), 745–778.

F. Comte and E. Renault (1998): Long memory in continuous-time stochastic
volatility models. Mathematical Finance 8(4), 291–323.

M. Fukasawa (2010): Realized volatility with stochastic sampling. Stochastic
Processes and their Applications 120(6), 829–852.

M. Fukasawa, T. Takabatake and R. Westphal (2022): Consistent estimation for
fractional stochastic volatility model under high-frequency asymptotics.
Mathematical Finance 32(4), 1086–1132.

J. Gatheral, T. Jaisson and M. Rosenbaum (2018): Volatility is rough.
Quantitative Finance 18(6), 933–949.

W. K. Newey and K. D. West (1987): A simple, positive semi-definite,
heteroscedasticity and autocorrelation consistent covariance matrix.
Econometrica 55(3), 703–708.

24 / 24


	Measuring the roughness of volatility
	Generalised method of moments approach
	Epilogue

