### STABILITY OF NONLINEAR FILTERS

P. Chigansky

The Weizmann Institute of Science, Israel

January 2, 2005

# Nonlinear filtering

Given the statistical description of the Markov process  $(X_t, Y_t)_{t\geq 0}$ , find the optimal in the mean square sense <u>recursive</u> estimate of the *signal* component  $f(X_t)$  for a fixed f, given a trajectory of the *observation* process  $\{Y_s, s \leq t\}$ , for any  $t \geq 0$ .

In other words, find a recursive realization for

$$\pi_t(f) := \mathbf{E}(f(X_t)|\mathscr{F}_t^Y), \quad t \ge 0$$

where  $\mathscr{F}_t^Y = \sigma\{Y_s, s \leq t\}.$ 

### General discrete time setting

\*  $X = (X_n)_{n \in \mathbb{Z}_+}$  is a Markov process with values in  $\mathbb{S}_x \subseteq \mathbb{R}$ , the transition kernel  $\Lambda(x, du)$  and the initial distribution  $\nu$ 

$$\mathbf{P}(X_n \in A | \mathscr{F}_{n-1}^X) = \int_A \Lambda(X_{n-1}, du), \quad \mathbf{P}(X_0 \in A) = \nu(A).$$

\*  $Y = (Y_n)_{n \in \mathbb{Z}_+}$  is an i.i.d. sequence with values in  $\mathbb{S}_y \subseteq \mathbb{R}$ , conditioned on X

$$\mathbf{P}(Y_n \in A | \mathscr{F}_n^X \lor \mathscr{F}_{n-1}^Y) = \int_A g(X_n, u) \lambda(du)$$

<u>The solution</u>: Solve the filtering equation

$$\pi_n(dx) = \frac{g(u, Y_n) \int_{\mathbb{S}_x} \Lambda(x, du) \pi_{n-1}(dx)}{\int_{\mathbb{S}_x} g(u, Y_n) \int_{\mathbb{S}_x} \Lambda(x, du) \pi_{n-1}(dx)}, \quad \pi_0(du) = \nu(du),$$

for the conditional distribution  $\pi_n(du)$  and calculate

$$\pi_n(f) = \mathrm{E}(f(X_n)|\mathscr{F}_n^Y) = \int_{\mathbb{S}_x} f(u)\pi_n(du).$$

# The stability problem

\* take a probability distribution  $\bar{\nu}$  on  $\mathbb{S}_x$ , different from  $\nu$  and so that the solution of the filtering equation is well defined, if started from  $\bar{\nu}$  (such pair  $(\bar{\nu}, \nu)$  is *admissible*).

\* generate the solution  $\bar{\pi}_n(dx)$  of the filtering equation, started from  $\bar{\nu}$  (the observation process, driving the equation, corresponds to  $\nu$ !

The following notions of stability with respect to initial conditions are usually considered

**1.**  $\lim_{n\to\infty} E(\pi_n(f) - \bar{\pi}_n(f))^2 = 0$  for any continuous and bounded f

**2.**  $\overline{\lim}_{n\to\infty} n^{-1} \log |\pi_n - \bar{\pi}_n| < 0$ , P-a.s., where  $|\cdot|$  denotes the total variation distance for measures (densities)

[**Q**]: What are the conditions on the signal/observation model parameters (transition density, etc.) for the filter to be stable ?



1971 H.Kunita

$$\begin{array}{c|c} \hline X \text{ is Markov-Feller} \end{array} \implies \begin{array}{c} \lim_{t \to \infty} \mathrm{E} \big( f(X_t) - \pi_t(f) \big)^2 \text{ is in-} \\ \text{dependent of } \nu \ \forall f \in C_b \end{array} \end{array}$$

1996 D.Ocone & E.Pardoux

$$\lim_{t \to \infty} \mathrm{E}\big(\pi_t(f) - \bar{\pi}_t(f)\big)^2 = 0, \forall f \in C_b \text{ and } \nu \ll \bar{\nu}$$

 $\mathbf{1997}$  R. Atar & O.Zeitouni considered the stability index

$$\gamma = \lim_{t \to \infty} \frac{1}{t} \log |\pi_t - \bar{\pi}_t| \le 0$$

and derived strictly negative upper bounds via:

- Oseledec's multiplicative ergodic theorem
- Birkhoff contraction inequality for positive operators

# Rough chronology (cntd.)

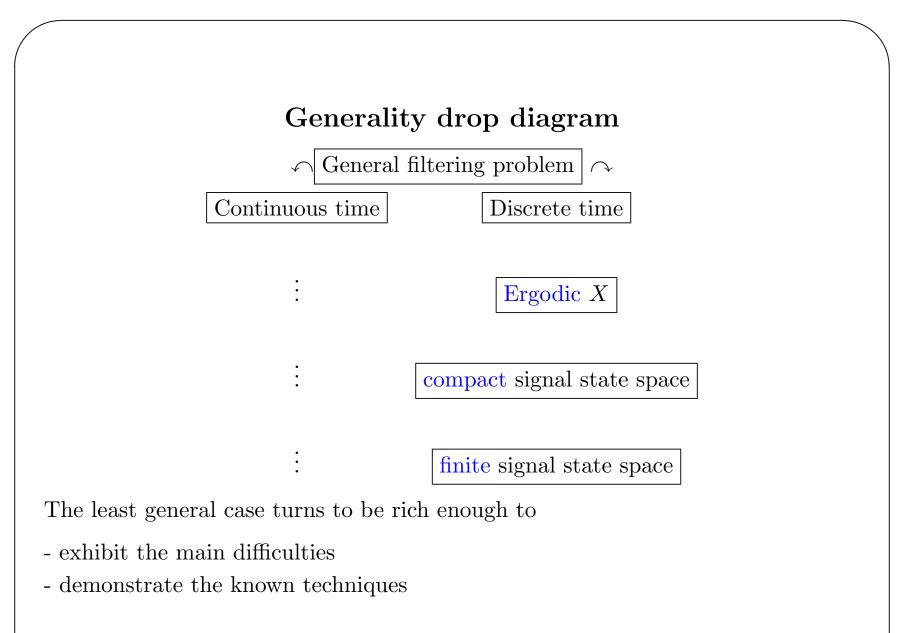
1999 P. Del Moral & A.Guionnet

- bounds on  $\gamma$  via Dobrushin ergodic coefficient

 $\mathbf{2004}$  P.Baxendale, P.Ch. & R.Liptser

- spotted a serious gap in H. Kunita's proof
- bounds on  $\gamma$  by "native" filtering arguments

**Remark:** The chronology is *rough*, omitting many interesting results, which essentially use the aforementioned methods or are applicable to very specific settings (as Kalman-Bucy, Benes filters, etc.) Some to be mentioned as the story unfolds.



### The study case: Hidden Markov Models

<u>The signal</u>:  $X_n$  takes values in  $\mathbb{S} = \{a_1, ..., a_d\}$ , has the transition matrix  $\Lambda$  with the entries  $\lambda_{ij} = \mathbb{P}(X_n = a_j | X_{n-1} = a_i)$  and initial distribution  $\nu$ .

<u>The observation</u>:  $Y_n = \sum_{i=1}^d \mathbf{1}_{\{X_n = a_i\}} \xi_n(i)$ , where  $\xi_n$  are i.i.d. vectors with independent entries and

$$\mathsf{P}(\xi_1(i) \in B) = \int_B g_i(u)\lambda(du), \quad i = 1, ..., d$$

<u>The filter</u>: The vector  $\pi_n$  with the entries  $\pi_n(i) = P(X_n = a_i | \mathscr{F}_n^Y)$  satisfies

$$\pi_n = \frac{g_j(Y_n) \sum_{i=1}^d \lambda_{ij} \pi_{n-1}(i)}{\sum_{j=1}^d g_j(Y_n) \sum_{i=1}^d \lambda_{ij} \pi_{n-1}(i)} = \frac{G(Y_n) \Lambda^* \pi_{n-1}}{|G(Y_n) \Lambda^* \pi_{n-1}|}, \quad \pi_0 = \nu.$$

where  $G(y), y \in \mathbb{R}$  is a diagonal matrix with entries  $g_i(y)$ .

Stability: What are the conditions on  $\Lambda$ ,  $g_i(u)$ 's and  $(\bar{\nu}, \nu)$  so that  $\lim_{n\to\infty} |\pi_n - \bar{\pi}_n| = 0$  is some sense ?

# Which $(\nu, \bar{\nu})$ are admissible ?

#### Let

\*  $(\bar{X}, \bar{Y})$  denote a copy of (X, Y), when  $X_0$  is sampled from  $\bar{\nu}$ \* Q and  $\bar{Q}$  are distributions induced by (X, Y) and  $(\bar{X}, \bar{Y})$  respectively \*  $Q^Y$  and  $\bar{Q}^Y$  are Y-marginals of Q and  $\bar{Q}$ 

$$P(|G(Y_n)\Lambda^*\pi_{n-1}|=0) = 0 \implies \text{the "correct" filtering se-quarks well defined}$$

The "wrong" filtering sequence may not be well defined

$$\mathbf{P}(|G(Y_n)\Lambda^*\bar{\pi}_{n-1}|=0)\stackrel{?}{=}0$$

Solution: if  $Q^Y \ll \overline{Q}^Y$  (at least when restricted to any [0, n]), then

$$P(|G(\bar{Y}_n)\Lambda^*\bar{\pi}_{n-1}|=0)=0 \implies P(|G(Y_n)\Lambda^*\bar{\pi}_{n-1}|=0)=0$$

This will be the case if either of the conditions holds

1.  $\nu \ll \bar{\nu}$ 

- 2. all entries of  $\Lambda$  are positive
- 3. the distribution of the noises are equivalent (mutually absolutely continuous)

# I. Cul-de-sac ...?

Assume for simplicity  $\nu \sim \bar{\nu}$ : by standard change of measure argument

$$\bar{\pi}_n(f) = \frac{\mathrm{E}\left(f(X_n)\frac{d\bar{\nu}}{d\nu}(X_0)|\mathscr{F}_n^Y\right)}{\mathrm{E}\left(\frac{d\bar{\nu}}{d\nu}(X_0)|\mathscr{F}_n^Y\right)}$$

for any bounded f and so

$$\begin{split} \mathbf{E} \Big| \pi_{n}(f) - \bar{\pi}_{n}(f) \Big| &= \mathbf{E} \left| \mathbf{E} \Big( f(X_{n}) |\mathscr{F}_{n}^{Y} \Big) - \frac{\mathbf{E} \Big( f(X_{n}) \frac{d\bar{\nu}}{d\nu}(X_{0}) |\mathscr{F}_{n}^{Y} \Big)}{\mathbf{E} \Big( \frac{d\bar{\nu}}{d\nu}(X_{0}) |\mathscr{F}_{n}^{Y} \Big) \mathbf{E} \Big( f(X_{n}) |\mathscr{F}_{n}^{Y} \Big) - \mathbf{E} \Big( f(X_{n}) \frac{d\bar{\nu}}{d\nu}(X_{0}) |\mathscr{F}_{n}^{Y} \Big) \Big| \leq \\ \mathrm{const.} \| f \|_{\infty} \mathbf{E} \Big| \mathbf{E} \Big( \frac{d\bar{\nu}}{d\nu}(X_{0}) |\mathscr{F}_{n}^{Y} \Big) |\mathscr{F}_{n}^{Y} \Big) - \mathbf{E} \Big( \frac{d\bar{\nu}}{d\nu}(X_{0}) |\mathscr{F}_{n}^{Y} \lor \sigma\{X_{n}\} \Big) \Big| = \\ \mathrm{const.} \mathbf{E} \Big| \mathbf{E} \Big( \frac{d\bar{\nu}}{d\nu}(X_{0}) |\mathscr{F}_{n}^{Y} \Big) - \mathbf{E} \Big( \frac{d\bar{\nu}}{d\nu}(X_{0}) |\mathscr{F}_{n}^{Y} \lor \sigma\{X_{n}\} \Big) \Big| = \\ \mathrm{const.} \mathbf{E} \Big| \mathbf{E} \Big( \frac{d\bar{\nu}}{d\nu}(X_{0}) |\mathscr{F}_{n}^{Y} \Big) - \mathbf{E} \Big( \frac{d\bar{\nu}}{d\nu}(X_{0}) |\mathscr{F}_{[n,\infty)}^{Y} \lor \mathscr{F}_{[n,\infty)}^{X} \Big) \Big| \\ \mathrm{where} \ \mathscr{F}_{[n,\infty)}^{X} = \bigvee_{m \geq n} \sigma\{X_{n}, ..., X_{m}\}, \, \mathrm{etc.} \end{split}$$

By martingale convergence

$$\lim_{n \to \infty} \operatorname{E}\left(\frac{d\bar{\nu}}{d\nu}(X_0)|\mathscr{F}_n^Y\right) = \operatorname{E}\left(\frac{d\bar{\nu}}{d\nu}(X_0)|\mathscr{F}_{[0,\infty)}^Y\right)$$
$$\lim_{n \to \infty} \operatorname{E}\left(\frac{d\bar{\nu}}{d\nu}(X_0)|\mathscr{F}_{[0,\infty)}^Y \lor \mathscr{F}_{[n,\infty)}^X\right) = \operatorname{E}\left(\frac{d\bar{\nu}}{d\nu}(X_0)\Big|\bigcap_{n \ge 1} \mathscr{F}_{[0,\infty)}^Y \lor \mathscr{F}_{[n,\infty)}^X\right)$$

so the filter would be stable if

$$\mathscr{F}^Y_{[0,\infty)} \vee \bigcap_{n \ge 1} \mathscr{F}^X_{[n,\infty)} \stackrel{?}{=} \bigcap_{n \ge 1} \mathscr{F}^Y_{[0,\infty)} \vee \mathscr{F}^X_{[n,\infty)}$$

For ergodic signals (originally considered by H.Kunita, 1971) with trivial tail  $\sigma$ -algebra  $\bigcap_{n\geq 1} \mathscr{F}^X_{[n,\infty)}$ , this reduces to the question

$$\mathscr{F}^{Y}_{[0,\infty)} \stackrel{?}{=} \bigcap_{n \ge 1} \mathscr{F}^{Y}_{[0,\infty)} \vee \mathscr{F}^{X}_{[n,\infty)}.$$

### Can $\lor$ and $\cap$ be interchanged ?

No! Kaijser's counterexample: consider a chain  $X_n$  with  $\mathbb{S} = \{1, 2, 3, 4\}$  and transition matrix (this is an ergodic chain!)

$$\Lambda = \frac{1}{2} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix} \text{ and let } Y_n = \mathbf{1}_{\{X_n = 1\}} + \mathbf{1}_{\{X_n = 3\}}$$

Given  $\mathscr{F}_{[0,\infty)}^Y$  all the transitions  $\{1,3\} \Leftrightarrow \{2,4\}$  can be recovered. If  $X_n$  is added at some n, then the whole trajectory of X is fixed. In particular  $X_0$  is  $\mathscr{F}_{[0,\infty)}^Y \lor \mathscr{F}_{[n,\infty)}^X$ -measurable  $\forall n \ge 1$  and so  $\bigcap_{n\ge 0} \mathscr{F}_{[0,\infty)}^Y \lor \mathscr{F}_{[n,\infty)}^X$  - measurable. However  $X_0$  is not measurable w.r.t.  $\mathscr{F}_{[0,\infty)}^Y$  alone, since  $X_n$  can not be resolved within the pairs  $\{1,3\}$  and  $\{2,4\}$ .

**Remark:** in this example the filter is unstable  $|\pi_n - \bar{\pi}_n| \ge C(\nu, \bar{\nu}) > 0$  for all  $n \ge 0$ , while the signal is ergodic!

## II. Stability as contraction of positive operators

For a pair of measures p and q on S (i.e. vectors in the simplex  $S^{d-1}$ ), the Hilbert projective metric h(p,q) is defined as

$$h(p,q) = \log \frac{\max_{q_j > 0} (p_j/q_j)}{\min_{q_i > 0} (p_i/q_i)}, \quad \text{when } p \sim q$$

and  $h(p,q) := \infty$  for  $p \not\sim q$ .

This (pseudo) metric has the following properties:

1.  $h(c_1p, c_2q) = h(p, q)$  for any positive constants  $c_1$  and  $c_2$ .

2. For a matrix A with nonnegative entries  $(A_{ij})$ 

$$h(Ap, Aq) \le \tau(A)h(p, q)$$

where  $\tau(A) = \frac{1-\sqrt{\psi(A)}}{1+\sqrt{\psi(A)}}$  is the Birkhoff contraction coefficient with

$$\psi(A) = \min_{i,j,k,\ell} \frac{A_{ik}A_{j\ell}}{A_{i\ell}A_{jk}}.$$

3.  $|p-q| \le \frac{2}{\log 3}h(p,q)$ 

### Some facts to recall

Ergodic chains

**Definition:** X is ergodic if the limits  $\lim_{n\to\infty} P(X_n = a_i) > 0$  exist and are independent of  $\nu$ .

**Fact:** X is ergodic if and only if  $\Lambda$  is r-primitive: there is an integer such that all the entries of  $\Lambda^r$  are positive

The Zakai equation

Both  $\pi_n$  and  $\bar{\pi}_n$  can be obtained by solving linear Zakai type equation,

$$\rho_n = G(Y_n)\Lambda^*\rho_{n-1}, \quad \rho_0 = \pi_0$$

and normalizing  $\pi_n = \rho_n / |\rho_n|$  (and  $\bar{\pi}_n = \bar{\rho}_n / |\bar{\rho}_n|$ ).

Back to stability

$$h(\pi_n, \bar{\pi}_n) = h(\rho_n, \bar{\rho}_n) \le \tau \Big(\prod_{m=n-r+1}^n G(Y_m) \Lambda^* \Big) h(\rho_{n-r}, \bar{\rho}_{n-r})$$

and thus (note that  $|\pi_n - \bar{\pi}_n|$  is a nonincreasing sequence)

$$\lim_{n \to \infty} \frac{1}{n} \log |\pi_n - \bar{\pi}_n| = \lim_{k \to \infty} \frac{1}{kr} \log |\pi_{kr} - \bar{\pi}_{kr}| \le \lim_{k \to \infty} \frac{1}{kr} \log h(\pi_{kr}, \bar{\pi}_{kr}) \le$$
$$\lim_{k \to \infty} \frac{1}{k} \sum_{\ell=1}^k \frac{1}{r} \log \tau \Big( \prod_{m=\ell-r+1}^\ell G(Y_m) \Lambda^* \Big) = \frac{1}{r} \operatorname{E}_s \log \tau \Big( \prod_{m=1}^r G(Y_m) \Lambda^* \Big)$$

where  $E_s$  is the expectation with respect to the stationary measure of (X, Y). If  $\Lambda^r$  has positive entries and the densities  $g_i(u)$  vanish only simultaneously, then the entries of  $\prod_{m=1}^r G(Y_m)\Lambda^*$  are positive P-a.s. and

$$\lim_{n \to \infty} \frac{1}{n} \log |\pi_n - \bar{\pi}_n| < 0. \quad \Box$$

#### Limitations

1. If r = 1, i.e. if  $\Lambda$  has all positive entries, then

$$\lim_{n \to \infty} \frac{1}{n} \log |\pi_n - \bar{\pi}_n| \le \tau(\Lambda) \le -\lambda^* / \lambda_*, \quad \text{where } \lambda_* \le \lambda_{ij} \le \lambda^*$$

independently of the noise densities. This  $\[mixing \ condition\]$  is stronger than just ergodicity of X.

2. The Hilbert metric approach typically fails for signals with noncompact state space: the metric can be infinite.

3. Usually requires ergodicity of the signal

### Extensions

Noncompact state space can be traded for certain decay rate of the noise densities tails: A.Budiraja & D.Ocone, (1997), LeGland & Oudjane, (2003)

<u>Remark</u> The method due to Del Moral & Guionnet uses Dobrushin's ergodic coefficient (instead of Birkhoff's) and leads to essentially the same mixing condition

# III. Oseledec's Multiplicative ergodic theorem

Incomplete formulation: Let  $A_n(\omega)$  be a stationary sequence of random  $d \times d$ matrices, such that  $E \log^+ ||A_1|| < \infty$  and let  $x_n$  be the solution of

$$x_n = A_n x_{n-1}, \quad x_0 = x \in \mathbb{R}^d.$$

Then there are d constants  $-\infty \leq \lambda_d \leq \ldots \leq \lambda_1 < \infty$  (the Lyapunov exponents) such that

$$\lim_{n \to \infty} n^{-1} \log |x_n| = \lambda_i, \quad \mathbf{P} - a.s.$$

for some i, depending on the initial vector x.

Moreover the norm of exterior product  $x_n \wedge \bar{x}_n$  of two solutions  $x_n$  and  $\bar{x}_n$  (i.e. area between the vectors) corresponding to the initial conditions  $x \neq \bar{x}$ , grows exponentially, so that

$$\lim_{n \to \infty} n^{-1} \log |x_n \wedge \bar{x}_n| \le \lambda_1 + \lambda_2. \quad \Box$$

# Application to filtering

The key is the inequality (used already by Delyon & Zeitouni, 1992)

$$\begin{aligned} |\pi_n - \bar{\pi}_n| &= \left| \frac{\rho_n}{|\rho_n|} - \frac{\bar{\rho}_n}{|\bar{\rho}_n|} \right| = \frac{\sum_{i=1}^d \left| \sum_{j=1}^d \left( \rho_n(i)\bar{\rho}_n(j) - \bar{\rho}_n(i)\rho_n(j) \right) \right|}{|\rho_n||\bar{\rho}_n|} \leq \\ &\frac{\sum_{i=1}^d \sum_{j=1}^d \left| \rho_n(i)\bar{\rho}_n(j) - \bar{\rho}_n(i)\rho_n(j) \right|}{|\rho_n||\bar{\rho}_n|} := \frac{|\rho_n \wedge \bar{\rho}_n|}{|\rho_n||\bar{\rho}_n|}, \end{aligned}$$

where  $a \wedge b$  is the exterior product of vectors a, b in  $\mathbb{R}^d$ , i.e. the matrix with the entries  $(a_i b_j - a_j b_i)$ 

By the Oseledec's MET

$$\lambda_1 = \lim_{n \to \infty} \frac{1}{n} \log |\rho_n| = \lim_{n \to \infty} \frac{1}{n} \log |\bar{\rho}_n|, \quad \mathbf{P} - a.s.$$

where  $\lambda_1$  is non-random top (largest) Lyapunov exponent (of the Zakai equation), independent of  $\nu$  and  $\bar{\nu}$ .

By the second part of the Oseledec theorem

$$\lim_{n \to \infty} \frac{1}{n} \log |\rho_n \wedge \bar{\rho}_n| \le \lambda_1 + \lambda_2$$

where  $\lambda_2$  is the second Lyapunov exponent (of the Zakai equation).

<u>Conclusion</u>: the stability is controlled by the Lyapunov spectral gap:

$$\frac{\overline{\lim}}{n \to \infty} \frac{1}{n} \log |\pi_n - \overline{\pi}_n| \leq \frac{\overline{\lim}}{n \to \infty} |\rho_n \wedge \overline{\rho}_n| - \lim_{n \to \infty} \frac{1}{n} \log |\rho_n| - \lim_{n \to \infty} \frac{1}{n} \log |\overline{\rho}_n| \leq (\lambda_1 + \lambda_2) - \lambda_1 - \lambda_1 = \lambda_2 - \lambda_1 \leq 0.$$

The Lyapunov exponents are hard to calculate in general (vector) case!

High signal-to-noise asymptotic (Atar & Zeitouni, 1997)

Assume X is ergodic and

$$Y_n = h(X_n) + \sigma \xi_n$$

where  $\xi$  is a standard i.i.d. Gaussian sequence.

Then  $\gamma(\sigma) = \lim_{n \to \infty} n^{-1} \log |\pi_n - \bar{\pi}_n|$  has the following asymptotic

$$\lim_{\sigma \to 0} \sigma^2 \gamma(\sigma) \le -\frac{1}{2} \sum_{i=1}^d \mu_i \min_{j \ne i} \left( h(a_i) - h(a_j) \right)^2.$$

<u>The main tool</u>: Kallianpur-Striebel representation for  $\rho_n$  and  $\rho_n \wedge \bar{\rho}_n$  (a Feynman - Kac type formula for conditional expectations)

### Slow signal asymptotic (Ch., to appear)

For a small parameter  $\varepsilon > 0$ , let  $X_n^{\varepsilon}$  be the Markov chain with transition probabilities

$$P(X_n = a_j | X_{n-1} = a_i) = \begin{cases} 1 - \varepsilon \lambda_{ii}, & i = j \\ \varepsilon \lambda_{ij}, & i \neq j \end{cases}$$

When  $\varepsilon$  is small, the transition frequency drops down. Let  $Y_n^{\varepsilon} = \sum_{i=1}^d \mathbf{1}_{\{X_n^{\varepsilon} = a_i\}} \xi_n(i)$  where  $\xi_n$  are i.i.d. vectors with independent entries distributed with densities  $g_i(u)$ . Then

$$\overline{\lim_{\varepsilon \to 0}} \gamma(\varepsilon) \le -\sum_{i=1}^{d} \mu_i \min_{j \ne i} \mathscr{D}(g_i \parallel g_j)$$

where  $\mathscr{D}(g_i \parallel g_j) = \int_{\mathbb{R}} g_i(u) \log \frac{g_i}{g_j}(u) \lambda(du)$  (Kullback-Leibler divergences). <u>The main tool:</u> Furstenberg-Khasminskii formulae

### Limitations

1. The estimates on the Lyapunov exponents are usually impossible to calculate exactly and the obtained results are typically asymptotic.

### Extensions

1. Applicable to signals with certain noncompact state space cases: R.Atar (1998), A. Budhiraja & D. Ocone, (1999)

2. Applicable to some nonergodic signals, A. Budhiraja & D. Ocone, (1999)

### IV. A "native" filtering approach

The bound

$$\mathbf{E} \left| \pi_n(f) - \bar{\pi}_n(f) \right| \leq$$

$$\operatorname{const.E} \left| \mathbf{E} \left( \frac{d\bar{\nu}}{d\nu}(X_0) | \mathscr{F}_n^Y \right) - \mathbf{E} \left( \frac{d\bar{\nu}}{d\nu}(X_0) | \mathscr{F}_n^Y \lor \sigma\{X_n\} \right) \right|$$

hints to consider the "reversed" filtering probabilities (Ch. & Liptser, 2004)

$$\rho_{ij}(n) = \mathcal{P}(X_0 = a_i | \mathscr{F}_n^Y, X_n = a_j).$$

These satisfy <u>linear</u> equations, driven by  $\pi_n, n \ge 0$ 

$$\rho_{ij}(n) = \frac{\sum_{i=1}^{d} \lambda_{\ell j} \rho_{i\ell}(n-1) \pi_{n-1}(\ell)}{\sum_{i=1}^{d} \lambda_{\ell j} \pi_{n-1}(\ell)}, \quad \rho_{ij}(0) = \delta_{ij}$$

The filter is stable if  $\rho_{ij}(n)$  becomes independent of j as  $n \to \infty$ , i.e. if

$$\delta_i(n) := \max_j \rho_{ij}(n) - \min_m \rho_{im}(n) \xrightarrow{n \to \infty} 0, \quad \forall i = 1, ..., d$$

The sequence  $\delta_i(n)$  satisfies the inequality (recall  $\lambda^* = \max_{ij} \lambda_{ij}$ )

$$\delta_i(n) \le \delta_i(n-1) \left( 1 - \frac{1}{\lambda^*} \sum_{j=1}^d \pi_{n-1}(j) \min_r \lambda_{jr} \right)$$

and by the law of large numbers

$$\lim_{n \to \infty} n^{-1} \log |\pi_n - \bar{\pi}_n| \le \lim_{n \to \infty} n^{-1} \log \max_i \delta_i(n) \le -\frac{1}{\lambda^*} \sum_{j=1}^d \mu_j \min_r \lambda_{jr}.$$

Note that  $\mu_j > 0$  and so the filter is stable if  $\Lambda$  has at least one row with all positive entries (independently of the noise densities). This is a relaxed "mixing condition" (still mixing!).

#### Limitation

Does not seem to be easily extendible to nonergodic or noncompact cases in a direct way (still can be used as a building block as in the approach due to LeGland & Oudjane).

## Some open problems

1. T.Kaijser (1974) addressed the question of ergodicity (=stability) of  $\pi_n$  for the following setting

- X is an ergodic Markov chain
- $Y_n = h(X_n)$  (noiseless partial observations)

giving only sufficient conditions on  $\Lambda$  and h.

Remarkably the sufficient and necessary conditions for this simple setting elude all the aforementioned methods (in a certain sense the presence of noise makes the problem easier!)

**2.** What is the weakest condition on  $\Lambda$ , so that the filter is stable, regardless of the noise densities? ({ergodic X} + {min<sub>r</sub>  $\lambda_{jr} > 0$  for some j}, is the weakest known, but not necessary ...?)

**3.** The noncompact state space:  $\{\text{ergodic } X\} + \{\text{nowhere vanishing noise densities (or equivalent densities)} \}$  imply (non-exponential?) stability

4. Non-ergodic signals are still mysterious ...