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Introduction

O Lead-lag effect

e One process (“leader”) is correlated with another process
(“lagger”) at later times

O The investigation of such a relationship has a long history in
economics

O Classically, it has been examined at moderate frequencies
(day, week, month, quarter, ...) using the statistics for
discrete-time (stationary) processes

e EX. spectral analysis (cf. Granger & Hatanaka, 1964),
distributed lags (cf. Griliches, 1967), cross-autocorrelations
(cf. Campbell et al., 1997), ...



Introduction

Recently, lead-lag effects at (ultra) high-frequencies have
begun to attract notice (e.g. Huth & Abergel, 2014)

For high-frequency data, discrete-time process modeling
tends to be poor; a discretely observed continuous-time
process is often more appropriate

However, there are not many theoretical results on the
statistical inference for lead-lag effects in such a setting

The aim of this talk is to contribute to this area



Introduction

O There are a few approaches to express lead-lag effects

e Hoffmann, Rosenbaum & Yoshida (2013)
Model: continuous semimartingale
Estimation: Hayashi-Yoshida estimator

e Robert & Rosenbaum (2010)
Model: continuous Gaussian martingale
Estimation: random matrix theory

e Bacry, Delattre, Hoffmann & Muzy (2013)
Model: Hawkes process
Estimation: parameter estimation




Introduction

O This talk focuses on the Hoffmann-Rosenbaum-Yoshida
model and investigates

e how to deal with observation noise
e how to detect “small” lags

O In particular, we will provide a simple but effective hypothesis
testing procedure to detect a small lead-lag effect

O We only consider a simple model; an extension to the general
case would be possible (in progress)



Model

0 (X!, X?)ie0.1]: bivariate Brownian motion with a lead-lag effect
X' =oB, X/ =0,B,,

e B, = (B!, B?), t € R: two-sided bivariate standard Brownian
motion with correlation p # 0 such that By = 0

e 01,0, > 0; ¥ € Risthe lag parameter
0 We observe X at equidistant times with noise: Y; = 0 and
Yf:X£+Ef, t,=1i/n (i=1,...,n) (1)

o & "% N(0,,) and €' and € are mutually independent



Model

We are interested in the inference for the parameter

We restrict our attention to the situation where the lag is
nearly zero

— We consider the local asymptotics such that ¢ := &, = ¢,
forsome c € [-6.,0.] andn,, > 0asn — o

Empirically, the sizes of lags are usually comparable with the
sampling frequency, so such a setting is meaningful

We assume n,, = o(n‘%); we show that this setting allows us to
construct a simple, feasible and rate-optimal test for the
absence of a lead-lag effect



Formulation of the problem

0 We consider the following hypothesis testing problem:

Hy:c=0 VS. Hi :c#0

O To discuss the rate optimality problem, we employ the
minimax approach of Ingster (1993)

O Namely, we seek the fastest rate r,, — 0 such that the
hypothesis testing problem

Hy:c=0 VS. Hi(r,) : c € C(r,)
permits a uniformly consistent test, where

C(rp) ={c:r, <|c| £6¢)



Formulation of the problem

O In terms of 4, (3) can be rewritten as

Hy:9=0 VS. H(ry) : ryn, < [0 < dé.my,

— Therefore, our aim corresponds to seeking the fastest rate
r, such that the lag ¢ = r,n,, is distinguishable from 0

O The formal formulation of the problem is given in the next
slides:
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O Notation

o & = (X, An, (Puc)eer-s..5.1): our statistical experiments

e Y, the set of all tests at the stage n, i.e.
yeV¥, o y:X,—{01}is A,-measurable
v ¢ =0 = Hjis accepted
vV ¢y =1 = Hjis rejected
o o,() = P,o(y =1): type | error probability for (3)

® By(, 1) = SUP.cer,) Pnc = 0): maximal type Il error
probability for (3)

o yu(rn) = infyey {a,(¥) + B.(Y, ry)}: Minimax total error
probability for (3)
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r Definition 1 (Ingster, 1993; Spokoiny, 1996) N

A sequence r; is called the minimax rate of testing if v, — 0
and
() For any sequence r, such that r, = o(r;,) we have
Yn(rn) — 1!

(i) For any a,B > 0, there is a constant K > 0 and a se-
quence y,, € ¥, of tests such that

lim sup a,,(¥,) < a, lim sup B,(¥n, K1) < 5

n—00 n—0oo
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Warm-up: an idealized case

O As a warm-up, we consider the idealized situation such that
o1 =03 =1 and pis known

O We start with the case that the noise is absent

~ Proposition 1 ~

If Ty =7, =0and|p| < 1, the minimax rate of testing for (2) is
r, = n‘%n,;l, provided that r;, — 0O

\- J

O If p =1 (resp. p = —1), Hy is equivalent to saying X! = X?
(resp. X! = —X?) for all ¢, so any lag is detectable

13



A rate-optimal test is constructed based on the fact that
lead-lag effects cause the Epps effects

More formally, if ¢ # 0 and it does not depend on =, the

realized covariance U, = 37 (X} — X} )(X; — X; )tendsto 0

li—1
as n — oo

On the other hand, Vi(U, — p) 5 N(0, 1 + p2) if # = 0

This suggests the test rejecting Hy if |T,| > z1—4/2, Where

U, —
Tn:\/ﬁ £

V1 + p?

and z1_4/2 is the (1 — a/2)-quantile of N(0, 1)
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O The following proposition due to Hoffmann et al. (2013)
ensures that the above test indeed satisfies condition (ii) of
Definition 1:

~ Proposition 2 (Hoffmann et al., 2013, Proposition 1) —

Assume 11 = Y» = 0. Then we have

U, = pp(nd) +n"? \/ 1 + p?p(nd)é,

under P, . for all n, c, where ¢(t) = (1 —[t[)1{4<1; and &, is a ran-
dom variable with zero mean and unit variance and converges
in law to N(0, 1) as n — oo (under P, for all n, ).

\- )
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Minimax optimality in the noisy case

O We turn to the noisy case

\_

~ Theorem 1

The minimax rate of testing for (2) is 7}, = n‘%n,gl, provided that

*
r, =0

~

J

O This result is “canonical”’ in the sense that the smallest

detectable lag 77, = n‘%(: (\/ﬁ)‘%) coincides with the one i
the non-noisy case with the sample size +/n (cf. Gloter &
Jacod, 2001)

16
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Construction of a rate-optimal test

O A natural idea is to consider a pre-averaged version of T,
(cf. Podolskij & Vetter, 2009; Vetter & Dette, 2012)

o Namely, we replace U, with U,, = wk I Kty Y Y , where
Yy =1/12 and

ky/2—1 kn/2—1

Z Yl+p+k /2 — Z Yl+p

with k,, being a positive even integer s.t. k, = 0n + o(n'/*) for
some 6 > 0
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Construction of a rate-optimal test

O According to Theorem 2 of Christensen, Kinnebrock &

Podolskij (2010), n'/4(U,, — p) “, N(0,T) for some constant
I'>0if9=0

O Indeed, U, is “too stable” for our purpose:

Proposition 3

If & = o(n™>'®), n!/*(U, - D) i N@O,I')asn —

O The proposition implies that the tests based on the statistic
n'/*(U, — p)/ VT cannot detect lags smaller than n=>/8
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Construction of a rate-optimal test

O We suppose ¥ € {k/n : k € Z} for simplicity

O Fourier coefficients of dX (cf. Malliavin & Mancino, 2009):

cp(dX) = ) exp(=2nf V=1£)(X; - X,._,)

i=1

0 Since E[(X; — X )X; —X; )] =p/nift;—1; =9 and it
vanishes otherwise, we have

Elc/(dXYHe_ 1(dX?)] = exprf V-19)p,

ignoring the end effects
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O This suggests that (a functional of) ¢ would be estimated by
smoothing cs(dX!)c_¢(dX?) in the frequency domain
O However, this is not a good idea in the presence of noise:

e The variance of c¢/(dX")c_¢(dX?) due to the noise
increases as f increases (cf. Mancino & Sanfelici, 2008)

e The end effect due to the noise is crucial

O For these reasons

e \We consider “localized” Fourier coefficients and smooth
them in the time domain

e We only use Fourier sine coefficients; they do not suffer
from the end effect because sin(0) = sin(27) = 0
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Construction of a rate-optimal test

O This results in considering spectral statistics of Bibinger,
Hautsch, Malec & Reif3 (2014) (with the lowest frequency):

e Split [0, 1] into blocks [kh,, (k + 1)h,) (k=0,1,..., k' = 1)

v h, is the width of the blocks and chosen so that ;! € N

1
and h, < n~2

e Define

i1+ 1

Sk= ) (Yi=Yi)®(@), 7
i=1

where ®(f) = sin (7th; ' (t = khy)) Liih, v 1) (0
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Construction of a rate-optimal test

O To make use of Fourier cosine coefficients, we rely on the
same trick as in Bibinger & Winkelmann (2015)

e We consider the spectral statistics on the shifted blocks
[(k = Dha, (k + phy) as well, ie. S, 1 (k=1,....0," = 1)

e Bibinger & Winkelmann (2015) use these statistics to
handle jumps in their spectral covariance estimators

O The following formula plays a key role:

Dy _1(2) — D(t) = cos (ﬂhﬁl (t—(k—-1/2) hn)) Lik=1)n,.(k+1)h,) (F)
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O Therefore, noting that |4 < h,,/2, we have
E [(S,i_1 - S;)Si_% - S;_% (87, - S,%)]

- 'Z Z {cos (ﬂh;1 (fi — (k—1/2) hn)) sin (ﬂh;1 G+ —(k—-1/2) hn))

(k= hn <E<(k+ 3 )
—sin (xh," (7; — (k = 1/2) hy)) cos (nh," (@ + 9 — (k= 1/2) hy))}
= ph, sin (nh;'9)

due to the formula sin(y — x) = cos(x) sin(y) — sin(x) cos(y)

O This motivates us to consider the following moment-type
estimator:

| hol-1

" -1 kZ_:‘ {<Sli—1 ‘Si)si—% _Sli—% (S’%‘l _Si)}

P—
=
b
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~ Theorem 2

Suppose that vnh, — « for some « > 0. For model (1), we
have

h

[\ [O8

(Z4 — phy sin(h,'9)) < N, V)

as n — oo, where

V = {(0‘% + 712/<_2T1) (0‘% + 712/<_2T2) — (0'10'2,0)2}

+ 72 {(0‘% — 7T2K_2T1) (0‘% — 7T2K_2T2) — (0'10'2,0)2} .
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Construction of a rate-optimal test

0 Theorem 2 suggests the test rejecting Hy if |T,,7| > z1_q/2,
3
where TP = h, 2=,/ VV

[\ [P8)

O h,? = n? and hy sin(th;'9) < & (because ¢ = o(h,)) and we
can directly check

r

ho? (B — phy sin(zh; ' 9))

< 0

lim sup sup £, [

n—oo |c|§6€

for all r > 1 (because &, is moment-type), so the test based
on T," is indeed rate-optimal
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Construction of a feasible test

O The test T,” is infeasible in practice because V contains the
parameters o1,07,p, T1, T, which are usually unknown

O However, a feasible test can be obtained once we construct a
consistent estimator for V, and it is an easy task: Set

. 1 n—1
Ty =—= Z(Yip - Y, =Y,
i=1

n
hol-1 22

Sn _ Pcd p q o

qu - Z (SkSk T Sk—l/ZSk—l/z) - @ pl{p=q}
k=1 n

for p,g=1,2
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Construction of a feasible test

O We have /‘Y’\Z P, /Z\Zp —P 0'129 and f’fz —P gopp
= Setting X7 , = X" + (7°/nh;)T" and
In NN NN 28NN NN N =Y
Vi=3 SE L TS 3~ (1) (2) .
we have V" —P V

O Consequently, we obtain a feasible test statistic
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Simulation study

O

O

We set o, = 1, T, = 0.001 for p = 1,2 and p € {0.3,0.6,0.9}

e The noise variance is 0.1% of the quadratic variation,
reflecting the empirical finding of Hansen & Lunde (2006)

n = 3,600
We regard % as 1 second, so [0, 1] corresponds to 1 hour
d=Il/mand=0,1,...,10,15,20,...,45

h, = 30/n; note that the consistency of the test is not ensured
at the lags higher than 4 = h,/2 = 15/n
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Figure 1: Histograms of 7> under H,
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Note. Monte Carlo distribution of T,ip under H, based on 50,000 repetitions
(grey). Blue solid lines denote the N(0, 1) density.
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Figure 2: Rejection rate of Hy at the 5% level (p = 0.6)
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Note. Monte Carlo empirical rejection rate of H, at the 5% level based on
50,000 repetitions (o = 0.6). Red dash line denotes @ = h, /2.
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Figure 3: Rejection rate of Hy at the 5% level (p = 0.9)
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Note. Monte Carlo empirical rejection rate of H, at the 5% level based on
50,000 repetitions (o = 0.9). Red dash line denotes @ = h, /2.

31



Figure 4: Rejection rate of Hy at the 5% level (p = 0.3)
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Note. Monte Carlo empirical rejection rate of H, at the 5% level based on
50,000 repetitions (o = 0.3). Red dash line denotes @ = h, /2.
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Conclusions

O Contributions of this study

e For the Hoffmann-Rosenbaum-Yoshida model of lead-lag
effects, lower bounds of detectable lags’ rate have been
provided both in the non-noisy case and the noisy case

e |n the noisy case, a simple feasible test that attains the
optimal rate is proposed

0O Future works

e Extension of the model: stochastic volatility and
non-synchronous observations (probably routine)

e More general model of lags (e.g. time varying one)
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