
Detecting infinitesimal lead-lag effects from
noisy high-frequency data

Yuta Koike

The Institute of Statistical Mathematics

and

CREST JST

S.A.P.S. X, Le Mans, March 17, 2015

1



Outline

□ Introduction

□ Model

□ Formulation of the problem

□ Main results

□ Simulation study

□ Conclusions

2



Introduction

□ Lead-lag effect

• One process (“leader”) is correlated with another process
(“lagger”) at later times

□ The investigation of such a relationship has a long history in
economics

□ Classically, it has been examined at moderate frequencies
(day, week, month, quarter, . . . ) using the statistics for
discrete-time (stationary) processes

• Ex. spectral analysis (cf. Granger & Hatanaka, 1964),
distributed lags (cf. Griliches, 1967), cross-autocorrelations
(cf. Campbell et al., 1997), . . .
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Introduction

□ Recently, lead-lag effects at (ultra) high-frequencies have
begun to attract notice (e.g. Huth & Abergel, 2014)

□ For high-frequency data, discrete-time process modeling
tends to be poor; a discretely observed continuous-time
process is often more appropriate

□ However, there are not many theoretical results on the
statistical inference for lead-lag effects in such a setting

□ The aim of this talk is to contribute to this area
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Introduction

□ There are a few approaches to express lead-lag effects

• Hoffmann, Rosenbaum & Yoshida (2013)
Model: continuous semimartingale
Estimation: Hayashi-Yoshida estimator

• Robert & Rosenbaum (2010)
Model: continuous Gaussian martingale
Estimation: random matrix theory

• Bacry, Delattre, Hoffmann & Muzy (2013)
Model: Hawkes process
Estimation: parameter estimation
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Introduction

□ This talk focuses on the Hoffmann-Rosenbaum-Yoshida
model and investigates

• how to deal with observation noise

• how to detect “small” lags

□ In particular, we will provide a simple but effective hypothesis
testing procedure to detect a small lead-lag effect

□ We only consider a simple model; an extension to the general
case would be possible (in progress)
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Model

□ (X1
t , X

2
t )t∈[0,1]: bivariate Brownian motion with a lead-lag effect

X1
t = σ1B1

t , X2
t = σ2B2

t−ϑ,

• Bt = (B1
t , B

2
t ), t ∈ R: two-sided bivariate standard Brownian

motion with correlation ρ , 0 such that B0 = 0

• σ1, σ2 > 0; ϑ ∈ R is the lag parameter

□ We observe X at equidistant times with noise: Y p
0 = 0 and

Y p
i = Xp

ti + ϵ
p
i , ti = i/n (i = 1, . . . , n) (1)

• ϵ p
i

i.i.d.∼ N(0,Υp) and ϵ1 and ϵ2 are mutually independent
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Model

□ We are interested in the inference for the parameter ϑ

□ We restrict our attention to the situation where the lag is
nearly zero

⇒We consider the local asymptotics such that ϑ := ϑn = cηn

for some c ∈ [−δc, δc] and ηn → 0 as n→ ∞

□ Empirically, the sizes of lags are usually comparable with the
sampling frequency, so such a setting is meaningful

□ We assume ηn = o(n−
1
2 ); we show that this setting allows us to

construct a simple, feasible and rate-optimal test for the
absence of a lead-lag effect
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Formulation of the problem

□ We consider the following hypothesis testing problem:

H0 : c = 0 vs. H1 : c , 0 (2)

□ To discuss the rate optimality problem, we employ the
minimax approach of Ingster (1993)

□ Namely, we seek the fastest rate rn → 0 such that the
hypothesis testing problem

H0 : c = 0 vs. H1(rn) : c ∈ C(rn) (3)

permits a uniformly consistent test, where

C(rn) = {c : rn ≤ |c| ≤ δc}

9



Formulation of the problem

□ In terms of ϑ, (3) can be rewritten as

H0 : ϑ = 0 vs. H1(rn) : rnηn ≤ |ϑ| ≤ δcηn

⇒ Therefore, our aim corresponds to seeking the fastest rate
rn such that the lag ϑ = rnηn is distinguishable from 0

□ The formal formulation of the problem is given in the next
slides:
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□ Notation

• En = (Xn,An, (Pn,c)c∈[−δc,δc]): our statistical experiments

• Ψn: the set of all tests at the stage n, i.e.

ψ ∈ Ψn ⇔ ψ : Xn → {0, 1} is An-measurable

▽ ψ = 0⇒ H0 is accepted
▽ ψ = 1⇒ H0 is rejected

• αn(ψ) = Pn,0(ψ = 1): type I error probability for (3)

• βn(ψ, rn) = supc∈C(rn) Pn,c(ψ = 0): maximal type II error
probability for (3)

• γn(rn) = infψ∈Ψn {αn(ψ) + βn(ψ, rn)}: minimax total error
probability for (3)
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Definition 1 (Ingster, 1993; Spokoiny, 1996)� �
A sequence r∗n is called the minimax rate of testing if r∗n → 0
and

(i) For any sequence rn such that rn = o(r∗n) we have
γn(rn)→ 1,

(ii) For any α, β > 0, there is a constant K > 0 and a se-
quence ψn ∈ Ψn of tests such that

lim sup
n→∞

αn(ψn) ≤ α, lim sup
n→∞

βn(ψn,Kr∗n) ≤ β

� �
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Warm-up: an idealized case

□ As a warm-up, we consider the idealized situation such that
σ1 = σ2 = 1 and ρ is known

□ We start with the case that the noise is absent

Proposition 1� �
If Υ1 = Υ2 = 0 and |ρ| < 1, the minimax rate of testing for (2) is
r∗n = n−

3
2 η−1

n , provided that r∗n → 0� �
□ If ρ = 1 (resp. ρ = −1), H0 is equivalent to saying X1

t = X2
t

(resp. X1
t = −X2

t ) for all t, so any lag is detectable
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□ A rate-optimal test is constructed based on the fact that
lead-lag effects cause the Epps effects

□ More formally, if ϑ , 0 and it does not depend on n, the
realized covariance Un =

∑n
i=1(X1

ti − X1
ti−1

)(X2
ti − X2

ti−1
) tends to 0

as n→ ∞

□ On the other hand,
√

n(Un − ρ)
d−→ N(0, 1 + ρ2) if ϑ = 0

□ This suggests the test rejecting H0 if |Tn| > z1−α/2, where

Tn =
√

n
Un − ρ√

1 + ρ2

and z1−α/2 is the (1 − α/2)-quantile of N(0, 1)
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□ The following proposition due to Hoffmann et al. (2013)
ensures that the above test indeed satisfies condition (ii) of
Definition 1:

Proposition 2 (Hoffmann et al., 2013, Proposition 1)� �
Assume Υ1 = Υ2 = 0. Then we have

Un = ρφ(nϑ) + n−
1
2

√
1 + ρ2φ(nϑ)ξn

under Pn,c for all n, c, where φ(t) = (1−|t|)1{|t|≤1} and ξn is a ran-
dom variable with zero mean and unit variance and converges
in law to N(0, 1) as n→ ∞ (under Pn,c for all n, c).� �

15



Minimax optimality in the noisy case

□ We turn to the noisy case

Theorem 1� �
The minimax rate of testing for (2) is r∗n = n−

3
4 η−1

n , provided that
r∗n → 0� �
□ This result is “canonical” in the sense that the smallest

detectable lag r∗nηn = n−
3
4 (= (

√
n)−

3
2 ) coincides with the one in

the non-noisy case with the sample size
√

n (cf. Gloter &
Jacod, 2001)
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Construction of a rate-optimal test

□ A natural idea is to consider a pre-averaged version of Tn

(cf. Podolskij & Vetter, 2009; Vetter & Dette, 2012)

□ Namely, we replace Un with Un =
1
ψkn

∑n−kn+1
i=0 Y

1
i Y

2
i , where

ψ = 1/12 and

Y i =
1
kn

kn/2−1∑
p=0

Yi+p+kn/2 −
kn/2−1∑

p=0

Yi+p


with kn being a positive even integer s.t. kn = θ

√
n + o(n1/4) for

some θ > 0
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Construction of a rate-optimal test

□ According to Theorem 2 of Christensen, Kinnebrock &

Podolskij (2010), n1/4(Un − ρ)
d−→ N(0,Γ) for some constant

Γ > 0 if ϑ = 0

□ Indeed, Un is “too stable” for our purpose:

Proposition 3� �
If ϑ = o(n−5/8), n1/4(Un − ρ)

d−→ N(0,Γ) as n→ ∞� �
□ The proposition implies that the tests based on the statistic

n1/4(Un − ρ)/
√
Γ cannot detect lags smaller than n−5/8
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Construction of a rate-optimal test

□ We suppose ϑ ∈ {k/n : k ∈ Z} for simplicity

□ Fourier coefficients of dX (cf. Malliavin & Mancino, 2009):

c f (dX) =
n∑

i=1

exp(−2π f
√
−1ti)(Xti − Xti−1)

□ Since E[(X1
ti − X1

ti−1
)(X2

ti − X2
ti−1

)] = ρ/n if t j − ti = ϑ and it
vanishes otherwise, we have

E[c f (dX1)c− f (dX2)] = exp(2π f
√
−1ϑ)ρ,

ignoring the end effects
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□ This suggests that (a functional of) ϑ would be estimated by
smoothing c f (dX1)c− f (dX2) in the frequency domain

□ However, this is not a good idea in the presence of noise:

• The variance of c f (dX1)c− f (dX2) due to the noise
increases as f increases (cf. Mancino & Sanfelici, 2008)

• The end effect due to the noise is crucial

□ For these reasons

• We consider “localized” Fourier coefficients and smooth
them in the time domain

• We only use Fourier sine coefficients; they do not suffer
from the end effect because sin(0) = sin(2π) = 0
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Construction of a rate-optimal test

□ This results in considering spectral statistics of Bibinger,
Hautsch, Malec & Reiß (2014) (with the lowest frequency):

• Split [0, 1] into blocks [khn, (k + 1)hn) (k = 0, 1, . . . , h−1
n − 1)

▽ hn is the width of the blocks and chosen so that h−1
n ∈ N

and hn ≍ n−
1
2

• Define

S k =

n∑
i=1

(Yi − Yi−1)Φk (t̄i) , t̄i =
ti−1 + ti

2
,

where Φk(t) = sin
(
πh−1

n (t − khn)
)

1[khn,(k+1)hn)(t)
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Construction of a rate-optimal test

□ To make use of Fourier cosine coefficients, we rely on the
same trick as in Bibinger & Winkelmann (2015)

• We consider the spectral statistics on the shifted blocks
[(k − 1

2 )hn, (k + 1
2 )hn) as well, i.e. S k− 1

2
(k = 1, . . . , h−1

n − 1)

• Bibinger & Winkelmann (2015) use these statistics to
handle jumps in their spectral covariance estimators

□ The following formula plays a key role:

Φk−1(t) − Φk(t) = cos
(
πh−1

n (t − (k − 1/2) hn)
)

1[(k−1)hn,(k+1)hn)(t)
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□ Therefore, noting that |ϑ| ≤ hn/2, we have

E
[(

S 1
k−1 − S 1

k

)
S 2

k− 1
2
− S 1

k− 1
2

(
S 2

k−1 − S 2
k

)]
=
ρ

n

∑
(k− 1

2 )hn≤t̄i<(k+ 1
2 )hn

{
cos
(
πh−1

n (t̄i − (k − 1/2) hn)
)

sin
(
πh−1

n (t̄i + ϑ − (k − 1/2) hn)
)

− sin
(
πh−1

n (t̄i − (k − 1/2) hn)
)

cos
(
πh−1

n (t̄i + ϑ − (k − 1/2) hn)
)}

= ρhn sin
(
πh−1

n ϑ
)

due to the formula sin(y − x) = cos(x) sin(y) − sin(x) cos(y)

□ This motivates us to consider the following moment-type
estimator:

Ξn =
1

h−1
n − 1

h−1
n −1∑
k=1

{(
S 1

k−1 − S 1
k

)
S 2

k− 1
2
− S 1

k− 1
2

(
S 2

k−1 − S 2
k

)}
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Theorem 2� �
Suppose that

√
nhn → κ for some κ > 0. For model (1), we

have

h
− 3

2
n

(
Ξn − ρhn sin(πh−1

n ϑ)
) d−→ N(0,V)

as n→ ∞, where

V =
{(
σ2

1 + π
2κ−2Υ1

) (
σ2

2 + π
2κ−2Υ2

)
− (σ1σ2ρ)2

}
+ π−2

{(
σ2

1 − π2κ−2Υ1
) (
σ2

2 − π2κ−2Υ2
)
− (σ1σ2ρ)2

}
.� �
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Construction of a rate-optimal test

□ Theorem 2 suggests the test rejecting H0 if |T sp
n | > z1−α/2,

where T sp
n = h

− 3
2

n Ξn/
√

V

□ h
− 3

2
n ≍ n

3
4 and hn sin(πh−1

n ϑ) ≍ ϑ (because ϑ = o(hn)) and we
can directly check

lim sup
n→∞

sup
|c|≤δc

En,c

[∣∣∣∣∣h− 3
2

n

(
Ξn − ρhn sin(πh−1

n ϑ)
)∣∣∣∣∣r] < ∞

for all r > 1 (because Ξn is moment-type), so the test based
on T sp

n is indeed rate-optimal
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Construction of a feasible test

□ The test T sp
n is infeasible in practice because V contains the

parameters σ1, σ2, ρ,Υ1,Υ2 which are usually unknown

□ However, a feasible test can be obtained once we construct a
consistent estimator for V, and it is an easy task: Set

Υ̂n
p = −

1
n

n−1∑
i=1

(Y p
i − Y p

i−1)(Y p
i+1 − Y p

i ),

Σ̂n
pq =

h−1
n −1∑
k=1

(
S p

k S q
k + S p

k−1/2S q
k−1/2

)
− π2

nh2
n
Υ̂n

p1{p=q}

for p, q = 1, 2
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Construction of a feasible test

□ We have Υ̂n
p →p Υp, Σ̂n

pp →p σ2
p and Σ̂n

12 →p σ1σ2ρ

⇒ Setting Σ̂n
p,± = Σ̂

n
pp ± (π2/nh2

n)Υ̂n
p and

V̂n = Σ̂n
1,+Σ̂

n
2,+ + π

−2Σ̂n
1,−Σ̂

n
2,− − (1 + π−2)

(̂
Σn

12

)2
,

we have V̂n →p V

□ Consequently, we obtain a feasible test statistic

T̂ sp
n = h

− 3
2

n
Ξn(

V̂n
)1/2
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Simulation study

□ We set σp = 1, Υp = 0.001 for p = 1, 2 and ρ ∈ {0.3, 0.6, 0.9}
• The noise variance is 0.1% of the quadratic variation,

reflecting the empirical finding of Hansen & Lunde (2006)

□ n = 3, 600

□ We regard 1
n as 1 second, so [0, 1] corresponds to 1 hour

□ ϑ = l/n and l = 0, 1, . . . , 10, 15, 20, . . . , 45

□ hn = 30/n; note that the consistency of the test is not ensured
at the lags higher than ϑ = hn/2 = 15/n
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Figure 1: Histograms of T̂ sp
n under H0
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Figure 2: Rejection rate of H0 at the 5% level (ρ = 0.6)
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Note. Monte Carlo empirical rejection rate of H0 at the 5% level based on
50,000 repetitions (ρ = 0.6). Red dash line denotes ϑ = hn/2.
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Figure 3: Rejection rate of H0 at the 5% level (ρ = 0.9)

0 10 20 30 40

0.
2

0.
4

0.
6

0.
8

1.
0

ϑ (seconds) 

R
eg

ec
tio

n 
ra

te
 (

%
)

Note. Monte Carlo empirical rejection rate of H0 at the 5% level based on
50,000 repetitions (ρ = 0.9). Red dash line denotes ϑ = hn/2.
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Figure 4: Rejection rate of H0 at the 5% level (ρ = 0.3)
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Note. Monte Carlo empirical rejection rate of H0 at the 5% level based on
50,000 repetitions (ρ = 0.3). Red dash line denotes ϑ = hn/2.
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Conclusions

□ Contributions of this study

• For the Hoffmann-Rosenbaum-Yoshida model of lead-lag
effects, lower bounds of detectable lags’ rate have been
provided both in the non-noisy case and the noisy case

• In the noisy case, a simple feasible test that attains the
optimal rate is proposed

□ Future works

• Extension of the model: stochastic volatility and
non-synchronous observations (probably routine)

• More general model of lags (e.g. time varying one)
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