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Motivation

Problem: Construction of BSDE. We are given a stochastic

differential equation (called forward)

dXt = b(t,Xt) dt+ a(t,Xt) dWt, X0 = x0, 0 ≤ t ≤ T,

and two functions f (t, x, y, z) and Φ (x). We have to construct a

couple of processes (Yt, Zt) such that the solution of the equation

dYt = −f(t,Xt, Yt, Zt) dt+ Zt dWt, Y0, 0 ≤ t ≤ T,

(called backward) has the final value YT = Φ(XT ).

For the existence and uniqueness of the solution see Pardoux and

Peng (1990). The Markovian case considered here was discussed by

Pardoux and Peng (1992).
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Solution: Suppose that u (t, x) is solution of the equation

∂u

∂t
+ b (t, x)

∂u

∂x
+

1

2
a (t, x)

2 ∂2u

∂x2
= −f

(
t, x, u, a (t, x)

∂u

∂x

)
,

with the final condition u (T, x) = Φ (x). Then if we put

Yt = u (t,Xt) , Zt = a (t,Xt)u
′
x (t,Xt). Then by Itô’s formula

dYt =

[
∂u

∂t
(t,Xt) + b (t,Xt)

∂u

∂x
(t,Xt) +

1

2
a (t, x)

2 ∂2u

∂x2
(t,Xt)

]
dt

+ a (t,Xt)
∂u

∂x
(t,Xt) dWt

= −f (t,Xt, Yt, Zt) dt+ Zt dWt, Y0 = u (0, X0) .

The final value YT = u (T,XT ) = Φ (XT ).
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Statistical problems. We consider this problem in the situations,

where the forward equation contains some unknown parameter ϑ:

dXt = b(ϑ, t,Xt) dt+ a(ϑ, t,Xt) dWt, X0 = x0, 0 ≤ t ≤ T.

Then u = u (t, x, ϑ) and the proposed approximations Ŷt, Ẑt of the

couple Yt, Zt are given by the relations

Ŷt = u(t,Xt, ϑ
∗
t ), Ẑt = u′

x(t,Xt, ϑ
∗
t ) a(ϑ

∗
t , t,Xt).

Here ϑ∗
t is some good estimator-process of ϑ with the small error of

estimation Eϑ

(
ϑ̂t − ϑ

)2
. This provides us the small errors

Eϑ

(
Ŷt − Yt

)2
and Eϑ

(
Ẑt − Zt

)2
.
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Main problem: how to find a good estimator-process ϑ∗
t , 0 < t ≤ T?

Good means :

• Depends on observations Xt = (Xs, 0 ≤ s ≤ t) and therefore is

stochastic process ϑ⋆ = ϑ⋆
t , 0 < t ≤ T .

• Easy to calculate for all t ∈ (0, T ].

• Asymptpotically efficient for all t ∈ (0, T ].

The MLE ϑ̂t defined by

V
(
ϑ̂t, X

t
)
= sup

ϑ∈Θ
V
(
ϑ,Xt

)
, t ∈ (0, T ]

can not be used as Good because in non linear case to solve this

equation for all t ∈ (0, T ] is computationally very difficult problem.
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Our goal is to construct the good estimator-processes in different

statements. Kamatani and Uchida [6] recently considered the

problem of parameter estimation by the discrete time observations of

diffusion process and showed that Mullti-step Newton-Raphson

procedure can provide asymptotically efficiennt estimation even if the

preliminary estimators have bad rate of convergence.

The general construction is the following. We fix a learning interval

[0, τ ] and obtain a preliminary estimator ϑ̄τ . Then we use this

estimator to construct one-step and two-step MLE-processes.

6



Example. In ergodic case we take a learning interval[
0, T δ

]
, δ ∈ ( 12 , 1) and any consistent estimator ϑ̄T δ such that

T
δ
2

(
ϑ̄T δ − ϑ

)
is bounded in probability. The one-step MLE-process

ϑ⋆
t , t ∈

[
T δ, T

]
is

ϑ⋆
t = ϑ̄T δ + T−1I

(
ϑ̄T δ

)−1
∫ t

T δ

Ṡ
(
ϑ̄T δ , Xs

)
σ (Xs)

2

[
dXs − S

(
ϑ̄T δ , Xs

)
ds
]
.

This estimator-process is easy to calculate, uniformely on T δ ≤ t ≤ T

consistent, asymptotically normal

√
t (ϑ⋆

t − ϑ) =⇒ N
(
0, I (ϑ)−1

)
and asymptotically efficient. If the learning interval has δ ∈ ( 13 ,

1
2 ],

then we construct two-step MLE-process.
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Models

• Ergodic diffusion process (T → ∞)

dXt = S (ϑ,Xt) dt+ σ (Xt) dWt, X0, 0 ≤ t ≤ T.

• Hidden telegraph signal (T → ∞)

dXt = Y (t) dt+ dWt, X0, 0 ≤ t ≤ T

Y (·) is two-state Markov process depending on ϑ = (λ, µ).

• Diffusion process with small noise (ε → 0)

dXt = S (ϑ, t,Xt) dt+ εσ (t,Xt) dWt, x0, 0 ≤ t ≤ T.

• Discrete time obs. Xn = (Xt0 , Xt1 , . . . Xtn), ti = iTn , n → ∞

dXt = S (t,Xt) dt+ σ (ϑ, t,Xt) dWt, X0, 0 ≤ t ≤ T.
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Note that such one-step estimators are used in the problem of the

construction of asymptotically distribution free test by the

observations of inhomogeneous Poisson process (M. Ben

Abdeddaiem) and in the problem of parameter estimation by

observations of Markov sequence

Xj+1 = S (ϑ,Xj) + εj , j = 1, . . . , n → ∞

(A. Motrunich).

The both results are presented on the Poster session of this workshop.
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Ergodic diffusion

The observed diffusion process is

dXt = S (ϑ,Xt) dt+ σ (Xt) dWt, X0, 0 ≤ t ≤ T

where ϑ ∈ Θ ⊂ Rd. The process Xt, t ≥ 0 has ergodic properties.

Condition A0 (Θ). At particularly : we suppose that the functions

S (ϑ, x) and σ (x)
±1

have polynomial majorants and

lim
|x|→∞

sup
ϑ∈Θ

sgn (x) S (ϑ, x)

σ (x)
2 < 0.

The regularity conditions are: the function S (ϑ, x) has three

continuous derivatives w.r.t. ϑ and these derivatives have polynomial

majorants.
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The identifiability condition is: for any ν > 0

inf
ϑ0∈Θ

inf
|ϑ−ϑ0|>ν

Eϑ0

(
S (ϑ, ξ0)− S (ϑ0, ξ0)

σ (ξ0)

)2

> 0,

where the r.v. ξ0 has the density function f (ϑ0, x). The Fisher

information matrix

I (ϑ) = Eϑ

(
Ṡ (ϑ, ξ) Ṡ (ϑ, ξ)

∗

σ (ξ)
2

)

(here Ṡ (ϑ, x) is derivative w.r.t. ϑ) is uniformly non degenerate

(below λ ∈ Rd)

inf
ϑ∈Θ

inf
|λ|=1

λ∗I (ϑ)λ > 0

We have to estimate ϑ by Xt = (Xs, 0 ≤ s ≤ t) for t ∈ (0, T ] and to

describe the properties of ϑ̄ (t) = ϑ̄ (t,Xt) , 0 < t ≤ T .
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We consider two situations: with learning intervals [τ∗T, T ] and

[τδT, T ], where τ∗ is fixed and τδ → 0. Suppose that we have an

estimator ϑ̄τ∗T constructed by the observations

Xτ∗T = (Xt, 0 ≤ t ≤ τ∗T ), which is consistent and asymptotically

normal √
τ∗T

(
ϑ̄τ∗T − ϑ

)
=⇒ N (0,D (ϑ)) .

Then for τ ∈ [τ∗, 1] we calculate the one-step MLE-process

ϑ⋆
τT = ϑ̄τ∗T + I

(
ϑ̄τ∗T

)−1 ∆τT

(
ϑ̄τ∗T , X

τT
τ∗T

)
+∆τ∗

(
ϑ̄τ∗T , X

τ∗T
)

√
τ T

,
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where for τ ∈ [τ∗, 1]

∆τT

(
ϑ,XτT

τ∗T

)
=

1√
τT

∫ τT

τ∗T

Ṡ (ϑ,Xt)

σ (Xt)
2 [dXt − S (ϑ,Xt) dt] ,

∆τ∗

(
ϑ,Xτ∗T

)
=

A (ϑ,Xτ∗T )√
τT

− 1

2
√
τT

∫ τ∗T

0

B′
x (ϑ,Xt)σ (Xt)

2
dt

−
∫ τ

0

Ṡ (ϑ,Xt)S (ϑ,Xt)√
τTσ (Xt)

2 dt,

B (ϑ, x) =
Ṡ (ϑ, x)

σ (x)
2 , A (ϑ, x) =

∫ x

x0

B (ϑ, z) dz.

Note that under regularity conditions (K. 2004)

√
τT (ϑ⋆

τT − ϑ) =⇒ N
(
0, I (ϑ)−1

)
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One-step MLE (δ ∈ ( 12 , 1))

Introduce the learning interval 0 ≤ t ≤ T δ, where δ ∈ (1/2, 1) and

denote by ϑ̄τδ an estimator of parameter ϑ which is unifrormly in ϑ

on compacts K ⊂ Θ asymptotically normal

T δ/2
(
ϑ̄τδ − ϑ0

)
=⇒ N (0,D (ϑ0)) ,

where τδ = T−1+δ → 0 and the matrix D (ϑ0) of limit covariance is

bounded. Moreover we suppose that we have the convergence of

moments too and we have

sup
ϑ0∈K

T pδ/2Eϑ0

∣∣ϑ̄τδ − ϑ0

∣∣p < C

where the constant C > 0 does not depend on T . As the preliminary

estimator we can take the MLE, minimum distance estimator or any

other.
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The one-step MLE-process we construct as follows:

ϑ⋆
τ = ϑ̄τδ +

I
(
ϑ̄τδ

)−1

√
τT

∆τ

(
ϑ̄τδ , X

τT
T δ

)
, τ ∈ [τδ, 1]

and

∆τ

(
ϑ,XτT

T δ

)
=

1√
τT

∫ τT

T δ

Ṡ (ϑ,Xt)

σ (Xt)
2 [dXt − S (ϑ,Xt) dt] .

Introduce the random process

ητ,T (ϑ0) = τ
√
T I (ϑ0)

1/2
(ϑ⋆

τ − ϑ0) , τ∗ ≤ τ ≤ 1

where τ∗ ∈ (0, 1) and measurable space (C [τ∗, 1] ,B) of continuous on

[τ∗, 1] functions. Here B is the corresponding borelian σ-algebra.

Denote by W (τ) , 0 ≤ τ ≤ 1 the d-dimensional standard Wiener

process.
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Theorem 1 Suppose that the regularity conditions hold. Then the

estimator-process ϑ⋆
τ , τδ < τ ≤ 1 has the following properties:

1. It is uniformly consistent: for any ν > 0

lim
T→∞

sup
ϑ0∈K

Pϑ0

(
sup

τδ≤τ≤1
|ϑ⋆

τ − ϑ0| > ν

)
= 0.

2. For any τ∗ ∈ (0, 1) the random process ητ,T (ϑ0) , τ∗ ≤ τ ≤ 1

converges weakly in (C [τ∗, 1] ,B) to the process

W (τ) , τ∗ ≤ τ ≤ 1.

3. It is asymptotically efficient.
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Two-step MLE.
(
δ ∈ ( 13 ,

1
2 ]
)

Let us take the first estimator ϑ̃τδ

constructed by the observations XT δ

=
(
Xt, , 0 ≤ t ≤ T δ

)
with

δ ∈ ( 13 ,
1
2 ]. We suppose that this estimator is consistent,

asymptotically normal and the moments converge too:

ṽτδ = T
δ
2

(
ϑ̃τδ − ϑ0

)
=⇒ N (0,D (ϑ0)) , sup

ϑ0∈K
Eϑ0 |ṽτδ |

p ≤ C,

for any p > 0. Here D (ϑ0) is some matrix and C > 0 does not

depend on T . It can be the MLE, MDE, BE or the EMM.
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Introduce the second preliminary estimator, which is

estimator-process

ϑ̄τ = ϑ̃τδ + (τT )
−1/2 I

(
ϑ̃τδ

)−1

∆τT

(
ϑ̃τδ , X

τT
T δ

)
, τ ∈ [τδ, 1]

where τδ = T−1+δ. Note that T γ
(
ϑ̄τ − ϑ0

)
→ 0 for γ ∈ (1− δ, 2δ)

∆τT

(
ϑ,XτT

T δ

)
=

1√
τT

∫ τT

T δ

Ṡ (ϑ,Xt)

σ (Xt)
2 [dXt − S (ϑ,Xt) dt] .
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The Two-step MLE-process we define as follows

ϑ⋆⋆
τ = ϑ̄τ +

I
(
ϑ̄τ

)−1

√
τT

∆̂τT

(
ϑ̃τδ , ϑ̄τ , X

τT
T δ

)
, τδ ≤ τ ≤ 1,

where

∆̂τT

(
ϑ1, ϑ2, X

τT
T δ

)
=

1√
τT

∫ τT

T δ

Ṡ (ϑ1, Xt)

σ (Xt)
2 [dXt − S (ϑ2, Xt) dt] .

Note that ∆̂τT

(
ϑ, ϑ,XτT

T δ

)
= ∆τT

(
ϑ,XτT

T δ

)
.
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Theorem 2 Suppose that the conditions of regularity hold.Then the

Two-step MLE-process ϑ⋆⋆
τ , τδ ≤ τ ≤ 1 is consistent, asymptotically

normal

√
T (ϑ⋆⋆

τ − ϑ0) =⇒ N
(
0, τ−1I (ϑ0)

−1
)
,

and asymptotically efficient. The random process

ητ,T (ϑ0) = τ
√
T I (ϑ0)

−1/2
(ϑ⋆⋆

τ − ϑ0) , τ∗ ≤ τ ≤ 1

for any τ∗ ∈ (0, 1) converges in distribution to the Wiener process

W (τ) , τ∗ ≤ τ ≤ 1.

20



Example. Suppose that the observed process is

dXt = − (Xt − ϑ)
3
dt+ dWt, X0, 0 ≤ t ≤ T

The MLE has no explicite expression and

ϑ̄T =
1

T

∫ T

0

Xt dt −→ ϑ,
√
T
(
ϑ̄T − ϑ

)
=⇒ N (0, D (ϑ))

If the learning interval is
[
0, T δ

]
with δ ∈ ( 12 , 1), then the one-step

MLE-process is

ϑ⋆
t = ϑ̄T δ +

3

T I

∫ t

T δ

(
Xs − ϑ̄T δ

)2 [
dXs +

(
Xs − ϑ̄T δ

)3
ds
]

It is asymptotically normal: for all τ ∈ (0, 1]

√
τT (ϑ⋆

τT − ϑ) =⇒ N
(
0, I−1

)
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If the learning interval is
[
0, T δ

]
with δ ∈ ( 13 ,

1
2 ], then the second

estimator is

ϑ̃t = ϑ̄T δ +
3

T I

∫ t

T δ

(
Xs − ϑ̄T δ

)2 [
dXs +

(
Xs − ϑ̄T δ

)3
ds
]

and the third estimator is two-step MLE-process

ϑ⋆⋆
t = ϑ̃t +

3

T I

∫ t

T δ

(
Xs − ϑ̄T δ

)2 [
dXs +

(
Xs − ϑ̃t

)3
ds

]
It is asymptotically normal: for all τ ∈ (0, 1]

√
τT (ϑ⋆⋆

τT − ϑ) =⇒ N
(
0, I−1

)
and asymptotically efficient.
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Hidden Telegraph Signal
(join work with R.Z. Khasminskii)

We observe a trajectory XT = (Xt, 0 ≤ t ≤ T ) of stochastic process

dX (t) = Y (t) dt+ dW (t) , X0,

where Y (t) , 0 ≤ t ≤ T is a two-state (y1 and y2) stationary Markov

process with infinitesimal transition matrix−λ λ

µ −µ

 .

We suppose that the values λ > 0 and µ > 0 are unknown and we

have to estimate the two-dimensional parameter ϑ = (λ, µ) ∈ Θ,

where Θ = (c0, c1)× (c0, c1) by the observations XT . Here c0 < c1

are positive constants.
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Introduce the estimators

λ̂T =
XT

T − y1

y2 − y1
βT ; µ̂T =

y2 − XT

T

y2 − y1
βT

where βT = αT 1I{AT } + (c0 + c1) 1I{Ac
T}. Here AT is the event: the

equation

ζT =

(
XT

T

)2

+ 2ηTΦ (αT )

has solution αT . The function Φ (x) = 1
x − 1

x2 (1− e−x) and

ζT =
1

T

T−1∑
i=0

[Xi+1 −Xi]
2 − 1,

ηT =

(
XT

T
− y1

)(
y2 −

XT

T

)
.
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Theorem 3 we have for the estimators ϑ̄T =
(
λ̄T , µ̄T

)
the relations

E
[√

T
(
λ̄T − λ

)]2
< C, E

[√
T (µ̄T − µ)

]2
< C.

Our goal is to obtain asymptotically efficient estimators.

Let us introduce the learning time interval
[
0, T δ

]
, where 1

2 < δ < 1,

the corresponnding estimators of the method of moments

ϑ̄T δ =
(
λ̄T δ , µ̄T δ

)
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Having this estimator we introduce the one-step MLE-process as

follows

ϑ⋆
T = ϑ̂T δ + T−1IT (ϑ̂T δ)−1

∫ T

T δ

ṁ(ϑ̂T δ , s)
[
dXs −m(ϑ̂T δ , s)ds

]
.

Here m (t, ϑ) = Eϑ

[
Y (t) |FX

t

]
:

m (t, ϑ) = y1Pϑ

(
Y (t) = y1|FX

t

)
+ y2Pϑ

(
Y (t) = y2|FX

t

)
.

Let us denote

π (t, ϑ) = Pϑ

(
Y (t) = y1|FX

t

)
, Pϑ

(
Y (t) = y2|FX

t

)
= 1−π (t, ϑ) .

Hence

m (t, ϑ) = y2 + (y1 − y2)π (t, ϑ) .
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The random process π (t, ϑ) , 0 ≤ t ≤ T satisfies the following equation

dπ (t, ϑ) = [µ− (λ+ µ)π (t, ϑ)

+π (t, ϑ) (1− π (t, ϑ)) (y2 − y1) (y2 + (y1 − y2)π (t, ϑ))] dt

+ π (t, ϑ) (1− π (t, ϑ)) (y1 − y2) dX (t)

the vector

ṁ(ϑ, s) = (y1 − y2)
∂πλ (s, ϑ)

∂ϑ
= (y1 − y2)

(
∂π (t, ϑ)

∂λ
,
∂π (t, ϑ)

∂µ

)
.

The empirical Fisher information matrix is

IT (ϑ) =
(y1 − y2)

2

T

∫ T

T δ

∂πλ (s, ϑ)

∂ϑ

∂πλ (s, ϑ)
∗

∂ϑ
ds.
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Theorem 4 The one-step MLE is asymptotically normal

√
T (ϑ⋆

T − ϑ) =⇒ N
(
0, I(ϑ)−1

)
and asymptotically efficient.

28



Small noise asymptotics

The observed diffusion process is

dXt = S (ϑ, t,Xt) dt+ εσ (t,Xt) dWt, X0, 0 ≤ t ≤ T

where ϑ ∈ Θ ⊂ Rd is unknown parameter.

Recall that ε−1
(
ϑ̂t,ε − ϑ0

)
=⇒ N

(
0, I (ϑ, xt)

−1
)
, but to use it can

be computantionally difficult problem. Here the matrix function

I
(
ϑ, xt (ϑ)

)
=

∫ t

0

Ṡ (ϑ, s, xs (ϑ)) Ṡ (ϑ, s, xs (ϑ))
∗

σ (s, xs (ϑ))
2 ds, 0 < t ≤ T

and {(xs (ϑ) , 0 ≤ s ≤ T ) , ϑ ∈ Θ} is solution of ODE

dxs

ds
= S (ϑ, s, xs) , x0, 0 ≤ s ≤ T.

It is known that Xs converges to xs (ϑ) uniformly in s ∈ [0, T ].
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Preliminary estimator. Fix some (small) τ > 0 and introduce the

MDE ϑ̄τ,ε:∥∥X − x
(
ϑ̄τ,ε

)∥∥2 = inf
ϑ∈Θ

∥X − x (ϑ)∥2 = inf
ϑ∈Θ

∫ τ

0

[Xt − xt (ϑ)]
2
dt.

Suppose that the identifiability condition is fulfilled: for any ν > 0

inf
|ϑ−ϑ0|>ν

∥x (ϑ)− x (ϑ0)∥ > 0.

This estimator is consistent and asymptotically normal

ε−1
(
ϑ̄τ,ε − ϑ0

)
=⇒ N (0,Dτ (ϑ0))

where I (ϑ, xτ (ϑ)) ≥ Dτ (ϑ0) > 0 (K. 1994).
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Introduce the one-step MLE-process: ϑ∗
t,ε, t ∈ [τ, T ]

ϑ∗
t,ε = ϑ̄τ,ε + εI

(
ϑ̄τ,ε, x

t
(
ϑ̄τ,ε

))−1 [
∆t

(
ϑ̄τ,ε, X

t
τ

)
+∆τ

(
ϑ̄τ,ε, X

τ
)]

,

where

∆t

(
ϑ,Xt

τ

)
=

∫ t

τ

Ṡ (ϑ, s,Xs)

εσ (s,Xs)
2 [dXs − S (ϑ, s,Xs) ds] , t ∈ [τ, T ],

∆τ (ϑ,X
τ ) = A (ϑ, τ,Xτ )−

∫ τ

0

A′
s (ϑ, s,Xs) ds

− ε2

2

∫ τ

0

B′
x (ϑ, s,Xs)σ (s,Xs)

2
ds−

∫ τ

0

Ṡ (ϑ, s,Xs)S (ϑ, s,Xs)

σ (s,Xs)
2 ds,

B (ϑ, s, x) =
Ṡ (ϑ, s, x)

σ (s, x)
2 , A (ϑ, s, x) =

∫ x

x0

B (ϑ, s, z) dz
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Theorem 5 (K. and Zhou) Suppose that the conditions of regularity

hold. Then the one-step MLE-process ϑ∗
t,ε, τ ≤ t ≤ T is uniformly

consistent: for any ν > 0

Pϑ0

{
sup

τ≤t≤T

∣∣ϑ∗
t,ε − ϑ0

∣∣ > ν

}
→ 0,

the stochastic process ηt,ε (ϑ0) = ε−1
(
ϑ⋆
t,ε − ϑ0

)
, τ < τ∗ ≤ t ≤ T

converges weakly to the stochastic process

ξt (ϑ0) = It (ϑ0)
−1
∫ t

0

Ṡ (ϑ0, s, xs)σ (s, xs)
−1

dWs, τ∗ ≤ t ≤ T

and the estimator-process ϑ∗
t , τ < t ≤ T is asymptotically efficient.
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We have good estimator process on the time interval [τ, T ]. Let us

consider the possibility of the decreasing learning interval

τ = τε = εδ → 0. Suppose that d = 1, i.e., ϑ is one-dimensional

τ = εδ ∈ (0, T ] and the first preliminary estimator ϑ̄τε .

The stochastic process Xt, 0 ≤ t ≤ τε → 0 can be written as follows

dXt = S (ϑ0, 0, x0) dt+ εσ (0, x0) dWt +O(τε)

Consider the problem of estimation ϑ by observations Yt, 0 ≤ t ≤ τε

with stochastic differential

dYt = S (ϑ0, 0, x0) dt+ εσ (0, x0) dWt, x0, 0 ≤ t ≤ τε.
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Suppose that
∣∣∣ Ṡ(ϑ,0,x0)

σ(0,x0)

∣∣∣ > κ > 0 and define the one-step

MLE-process ϑ⋆
t,ε, τε ≤ t ≤ T as follows

ϑ⋆
t,ε = ϑ̄τε +

∫ t

τε

Ṡ
(
ϑ̄τε , s,Xs

)
I
(
ϑ̄τε , xt(ϑ̄τε)

)
σ (s,Xs)

2

[
dXs − S

(
ϑ̄τε , s,Xs

)
ds
]

Theorem 6 Suppose that the conditions of regularity hold. Then the

one-step MLE-process ϑ⋆
t,ε, τε ≤ t ≤ T is uniformly consistent:

Pϑ0

{
sup

τε≤t≤T

∣∣ϑ⋆
t,ε − ϑ0

∣∣ > ν

}
→ 0,

the stochastic process ηt,ε (ϑ0) = ε−1
(
ϑ⋆
t,ε − ϑ0

)
, τ∗ ≤ t ≤ T for any

τ∗ > 0 converges weakly to the stochastic process ξt (ϑ0) , τ∗ ≤ t ≤ T

and the estimator-process ϑ⋆
t,ε, is asymptotically efficient for all

t ∈ (0, T ].
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If ϑ ∈ Θ ⊂ Rd with d > 1, then the construction of one-step

MLE-process is possible if Xt is k-dimensional and k ≥ d.

It is possible to take smaller learning interval [0, τε] with τε = εδ,

where δ > 1 but this requires the construction two-step MLE-process.
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Unknown volatility (joint work with S. Gasparyan)

The forward equation is

dXt = S (t,Xt) dt+ σ (ϑ, t,Xt) dWt, X0, 0 ≤ t ≤ T

where ϑ ∈ Θ = (α, β). We observe the solution of this equation in

discrete times ti = iTn and have to study the approximation

Ŷt = u(t,Xtk , ϑ̂tk), k = 1, . . . , n, where k satisfies the conditions

tk ≤ t ≤ tk+1 and the estimator ϑ̂tk is construct by the observations

Xk = (X0, Xt1 , . . . , Xtk). Our goal is to realize the same program as

above: we study the one-step pseudo-MLE, which can be relatively

easy in calculation and has some properties of optimality.
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On parameter estimation in diffusion coefficient. First of all

remind that ϑ can be calculated without error if we have continuous

time observations. To illustrate it we give two examples.

Example 1. Suppose that σ (ϑ, t, x) =
√
ϑh (t, x) , ϑ ∈ (α, β) , α > 0,

and the observed process is

dXt = S (t,Xt) dt+
√
ϑh (t,Xt) dWt, X0, 0 ≤ t ≤ T.

We suppose as well that
∫ t

0
h (s,Xs)

2
ds > 0.

Let us write the Itô formula for X2
t :

X2
t = X2

0 + 2

∫ t

0

Xs dXs + ϑ

∫ t

0

h (s,Xs)
2
ds, 0 ≤ t ≤ T.

Hence, for all t ∈ (0, T ] we have with probability 1 the equality

ϑ̂t =
X2

t −X2
0 − 2

∫ t

0
Xs dXs∫ t

0
h (s,Xs)

2
ds

= ϑ
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Example 2. Suppose that ϑ = (ϑ1, . . . , ϑd) ∈ Θ ⊂ Rd and

σ (ϑ, t, x)
2
= h0 (t, x) +

d∑
k=1

ϑkhk (t, x) ≥ 0

for all ϑ ∈ Θ, t ∈ [0, T ] and x ∈ R. Let us put

G
(
Xt
)
= X2

t −X2
0 − 2

∫ t

0

XsdXs −
∫ t

0

h0 (s,Xs) ds,

Hk

(
Xt, t

)
=

∫ t

0

hk (s,Xs) ds.

Then once more by the same Itô formula for X2
t we obtain the family

of equations

G
(
Xt
)
=

d∑
k=1

ϑkHk

(
t,Xt

)
, t ∈ [0, T ] .
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Hence for any t ∈ [0, T ] we can take (t1 < t2 < . . . < td = t) and solve

the system of equations

G
(
Xtm

)
=

d∑
k=1

ϑkHk

(
tm, Xtm

)
, m = 1, . . . , d.

Suppose that the matrix H = (Hkm)d×d, where

Hkm = Hk

(
tm, Xtm

)
,

is such that there exists an inverse matrix H−1, then the

vector-parameter ϑ can be written as

θ = H−1 G,

where the vector G = (G (Xt1) , . . . , G (Xtd)).
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The problem became more interesting if we consider the discrete time

observations Xn = (Xt1 , . . . , Xtn) , tj = j T
n and the problem of

approximation in the high frequency asymptotics (n → ∞). Then in

Example 1 we obtain the estimator

ϑ̂t,k =
X2

tk
−X2

0 − 2
∑k

j=1 Xtk−1

(
Xtk −Xtk−1

)∑k
j=1 h

(
tj−1, Xtj−1

)2
δ

, δ =
T

n
.

It can be easily shown that if n → ∞ then we have ϑ̂t,n → ϑ and we

can use it in the approximation of Yt as follows Ŷt,n = u(t,Xt, ϑ̂t,n).

We can describe the distribution of error
√
n
(
Ŷt,n − Yt

)
, but the

estimator is not asymptotically optimal. We consider a different

estimator.
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Let us introduce the equation

Xtj+1 = Xtj + S
(
tj , Xtj

)
δ + σ

(
tj , Xtj , ϑ

) [
Wtj+1 −Wtj

]
.

Note that conditional (Xt0 , . . . , Xtj ) distribution

Xtj+1 −Xtj − S
(
tj , Xtj

)
δ ∼ N

(
0, σ

(
tj , Xtj , ϑ

)2
δ
)
,

therefore we can itroduce the log pseudo-likelihood ratio

L
(
ϑ,Xk

)
= −1

2

k−1∑
j=0

ln
[
2πσ

(
tj , Xtj , ϑ

)2
δ
]

− 1

2

k−1∑
j=0

(
Xtj+1 −Xtj − S

(
tj , Xtj

)
δ
)2

σ
(
tj , Xtj , ϑ

)2
δ
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The corresponding contrast function is

Uk

(
ϑ,Xk

)
=

k−1∑
j=0

ln a
(
tj , Xtj , ϑ

)
+

k−1∑
j=0

(
Xtj+1 −Xtj − S

(
tj , Xtj

)
δ
)2

a
(
tj , Xtj , ϑ

)
δ

where a (t, x, ϑ) = σ (t, x, ϑ)
2
. The estimator ϑ̂t,n is define by

Uk

(
ϑ̂t,n, X

k
)
= inf

ϑ∈Θ
Uk

(
ϑ,Xk

)
It is known that this estimator is consistent, asymptotically

conditionally normal

√
n
(
ϑ̂t,n − ϑ0

)
=⇒ N

(
0, It (ϑ0)

−1
)
,

It (ϑ0) = 2

∫ t

0

σ̇ (s,Xs, ϑ0)
2

σ (s,Xs, ϑ0)
2 ds

and asymptotically efficient (Dohnal(1987), Genon-Catalot, Jacod

(1993)).
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Note that the approximation Ŷt = u(t,Xtk , ϑ̂t,n) is computationally

difficult to realize. That is why we propose as above the one-step

pseudo-MLE. Let us fix some (small) τ ∈ (0, T ). The PMLE

estimator ϑ̂τ,n constructed by Xt0,n , Xt1,n , . . . , XtN,n
, where N is

chosen from the condition tN,n ≤ τ < tN+1,n, is consistent and

asymptotically conditionally normal.

Introduce the normalized pseudo score-function and the empirical

Fisher information

∆k,n (ϑ) =

k−1∑
j=0

[(
Xtj+1 −Xtj − Sj δ

)2 − aj (θ) δ
]
ȧj (ϑ)

2aj (ϑ)
2 √

δ
,

Ik,n (ϑ) =
1

2

k−1∑
j=0

ȧj (ϑ)
2

aj (ϑ)
2 δ = 2

k−1∑
j=0

σ̇
(
tj , Xtj , ϑ

)2
σ
(
tj , Xtj , ϑ

)2 δ.
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We have the stable convergence

∆k,n (ϑ0) =⇒
√
2

∫ t

0

σ̇ (s,Xs, ϑ0)

σ (s,Xs, ϑ0)
dws

and the convergence in probability

Ik,n (ϑ0) → It (ϑ0) .

The approximation of the random function Yt we will do with the

help of the following one-step PMLE

ϑ⋆
k,n = ϑ̂τ,n +

√
δ
∆k,n(ϑ̂τ,n)

Ik,n(ϑ̂τ,n)

and show that this estimator is asymptotically efficient and easy

calculated for all t ∈ [τ, T ] (or N < k ≤ n).
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