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Introduction

We consider d-dimensional diffusion models Πk (k = 0,1,2) defined by the
following stochastic differential equations

Πk : dX(k)
t = a(k)(X(k)

t , α(k))dt+ b(k)(X(k)
t , β(k))dw(k)

t , t ≥ 0, X(k)
0 ,(1)

where

w(k) is an r-dimensional standard Wiener process,

w(0), w(1), w(2), X(0)
0 , X(1)

0 and X(2)
0 are mutually independent and

θ(k) = (α(k), β(k)) ∈ Θ(k)
α ×Θ(k)

β = Θ(k) with Θ(k)
α and Θ(k)

β being compact convex
subsets of Rpk and Rqk, respectively.

Let k = 0,1,2.

a(k) : Rd ×Θ(k)
α → Rd ⊗Rr and b(k) : Rd ×Θ(k)

β → Rd.

θ(k)∗ = (α(k)
∗ , β(k)

∗ ) is the true value of θ(k) and we assume that θ(k)∗ ∈ Int(Θ(k)).

Moreover, the training data are discrete observations X(k)
n = (X(k)

tni
)0≤i≤n ob-

tained from the diffusion model Πk, where tni = ihn and tnn = nhn =: Tn.
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We assume that the data

X(0)
n = (X(0)

tni
)0≤i≤n are obtained from either Π1 or Π2,

which means that the distribution of model Π0 is the same as

that of one of the two models Π1 and Π2.

We will consider the situation when hn → 0, nhn → ∞ and nh3n →
0 as n → ∞.
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First of all, in this paper, we treat a discriminant analysis for two discretely observed ergodic
diffusion processes. For example, in Table I and Table II below, two sample paths X(1)

n and

X(2)
n are obtained from the diffusion models Π1 and Π2 defined by the following stochastic

differential equations

Π1 : dX(1)
t = (1− 2X(1)

t )dt+4dw(1)
t , t ≥ 0, X(1)

0 = 10,

Π2 : dX(2)
t = (1.5− 2.5X(2)

t +4sin(X(2)
t ))dt+4dw(2)

t , t ≥ 0, X(2)
0 = 10,

respectively. In table 3 below, a new sample path X(0)
n is obtained from either Π1 or Π2.
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We treat a discriminant problem whether X(0)
n is obtained from Π1 or Π2 by using training

data X(k)
n from Πk for k = 1,2.

Since the sample path of X(0)
n is similar to the one of X(2)

n compared with X(1)
n , from viewpoint

of “similarity of sample path”, one may classify X(0)
n into Π2.
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Unfortunately, the answer is wrong. In fact, X(0)
n in Table 3 are the simulation data obtained

from model Π1.

This illustration cautions us about the risk of misclassification based on “similarity of sample
path”.

Therefore, we propose classification criteria based on discriminant functions for stochastic
differential equations.

For the ergodic diffusion models, the asymptotic distributions of discriminant functions are
obtained under the two situations where the volatility functions are same or not.
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Discriminant analysis

Let Ck,l
↑ (Rd×Θ;Rd) denote the space of all functions f satisfying the following conditions: (i)

f(x, θ) is an Rd-valued function on Rd×Θ, (ii) f(x, θ) is continuously differentiable with respect
to x up to order k for all θ. (iii) for |n| = 0,1, . . . , k, ∂nf(x, θ) is continuously differentiable with
respect to θ up to order l for all x. Moreover, for |ν| = 1, . . . , l and |n| = 0,1, . . . , k, δν∂nf(x, θ)
is of polynomial growth in x uniformly in θ. Here n = (n1, . . . , nd) and ν = (ν1, . . . , νm) are
multi-indices, m = dim(Θ), |n| = n1 + . . .+ nd, |ν| = ν1 + . . .+ νm, ∂n = ∂n1

1 · · · ∂nd

d , ∂i = ∂/∂xi,
and δν = δν1θ1 · · · δ

νm
θm
, δθi = ∂/∂θi.

Let F↑(Rd) be the space of all measurable functions f satisfying that f(x) is an R-valued
function on Rd with polynomial growth in x.

Pθ(k) denotes the law of the process defined by the equation (1).

Set ∆X(k)
i = X(k)

tn
i

−X(k)
tn
i−1

and B(k)(x, β(k)) = b(k)(b(k))⋆(x, β(k)), where ⋆ denotes the transpose.

Let Lθ(0) be the infinitesimal generator of the diffusion (1) with k = 0: Lθ(0) =
∑d

i=1
a(0)i (x, α(0))∂i+

1
2

∑d

i,j=1
B(0)

ij (x, β(0))∂i∂j.

Let
p→ and

d→ be the convergence in probability and the convergence in distribution, respec-
tively.

For matrices A and B of the same size, we define A⊗2 = AA⋆ and B[A] = tr(BA⋆).
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Let k = 1,2. We make the following assumption.

[A1] (i) There exists K > 0 such that for all x, y ∈ Rd,

sup
α(k)∈Θ(k)

α

|a(k)(x, α(k))− a(k)(y, α(k))|+ sup
β(k)∈Θ(k)

β

|b(k)(x, β(k))− b(k)(y, β(k))| ≤ K|x− y|.

(ii) infx,β(k) det(B(k)(x, β(k))) > 0.

(iii) a(k) ∈ C2,2
↑ (Rd ×Θ(k)

α ;Rd). b(k) ∈ C2,2
↑ (Rd ×Θ(k)

β ;Rd ⊗Rr).

(iv) There exists a unique invariant probability measure µθ(k)
∗

of X(k)
t and for

any f ∈ F↑(Rd) satisfying
∫
Rd |f(x)|µθ(k)

∗
(dx) < ∞, as T → ∞,

1

T

∫ T

0
f(X(k)

t )dt
p→
∫
Rd

f(x)µθ(k)
∗
(dx).
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Let θ̂(k)n := (α̂(k)(X(k)
n ), β̂(k)(X(k)

n )) be an estimator of θ(k) = (α(k), β(k)) for

model Πk based on the data X(k)
n .

Setting B̄(k)
i−1(β

(k)) = B(k)(X(0)
tni−1

, β(k)), ā(k)i−1(α
(k)) = a(k)(X(0)

tni−1
, α(k)) and

u(k)
n (X(0)

n , θ(k)) = −
1

2

n∑
i=1

{
h−1
n (B̄(k)

i−1(β
(k)))−1[(∆X(0)

i − hnā
(k)
i−1(α

(k)))⊗2]

+ logdet(B̄(k)
i−1(β

(k)))
}
,

one uses the following discriminant function

Un(X
(0)
n , θ̂(1)n , θ̂(2)n ) = u(1)

n (X(0)
n , θ̂(1)n )− u(2)

n (X(0)
n , θ̂(2)n ).

We suggest a discriminant rule such that

X(0)
n is classified into Π1 if Un(X

(0)
n , θ̂(1)n , θ̂(2)n ) ≥ 0 and otherwise into Π2.
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Let two misclassification probabilities denote

pn(1|2) = P (Un(X
(0)
n , θ̂

(1)
n , θ̂

(2)
n ) < 0 | Π1),

pn(2|1) = P (Un(X
(0)
n , θ̂

(1)
n , θ̂

(2)
n ) ≥ 0 | Π2).

We make the following assumption.

[A2] As hn → 0 and nhn → ∞, θ̂
(k)
n →p θ

(k)
∗ .

Proposition 1 Assume [A1] and [A2]. Then, as hn → 0 and

nhn → ∞,

pn(1|2) + pn(2|1) → 0.
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Set

Γ(k)
a (θ(k)∗ )ij =

∫
Rd

(∂αi
a(k)(x, α(k)

∗ ))⋆(B(k)(x, β(k)
∗ ))−1∂αj

a(k)(x, α(k)
∗ )µθ(k)

∗
(dx),

Γ(k)
b (β(k)

∗ )lm =
1

2

∫
Rd

tr{(B(k))−1(∂βl
B(k))(B(k))−1(∂βm

B(k))(x, β(k)
∗ )}µθ(k)

∗
(dx)

for i, j = 1, . . . , pk, and l,m = 1, . . . , qk. Here we suppose that Γ(k)
a (θ(k)∗ ) and

Γ(k)
b (β(k)

∗ ) are non-singular.

Moreover, in order to obtain the asymptotic distributions of the discriminant
function below, we make the assumption as follows.

[A3] As nh3
n → 0,

(
√

nhn(α̂
(k)
n −α(k)

∗ ),
√
n(β̂(k)

n −β(k)
∗ ))

d→ Npk+qk(0,diag[(Γ
(k)
a (θ(k)∗ ))−1, (Γ(k)

b (β(k)
∗ ))−1]).
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Remark 1 For an estimator satisfying [A3], we can refer Yoshida (1992), Kessler (1995,

1997) and Uchida and Yoshida (2012). Let B(k)
i−1(β) = B(k)(X(k)

tn
i−1
, β) and a(k)i−1(α) = a(k)(X(k)

tn
i−1
, α)

for k = 1,2. For example, we use the following utility functions.

V(k)
1,n(β) = −

1

2

n∑
i=1

{
h−1
n (B(k)

i−1(β))
−1[(∆X(k)

i )⊗2] + logdet(B(k)
i−1(β))

}
.

V(k)
2,n(α, β) = −

1

2

n∑
i=1

h−1
n (B(k)

i−1(β))
−1[(∆X(k)

i − hna
(k)
i−1(α))

⊗2].

V(k)
3,n(β; θ̄) = −

1

2

n∑
i=1

{
h−1
n (B(k)

i−1(β))
−1[(∆X(k)

i )⊗2 − h2
nD̄

(k)
2,i−1(θ̄)] + logdet(B(k)

i−1(β))
}
,

where for l,m = 1, . . . , d,

D̄(k)
2,i−1(θ) = γ(k)

2 (Xtn
i−1
, θ) + (a(k)(Xtn

i−1
, α))⊗2,

γ(k)
2 (x, θ)lm =

1

2

{
Lθ(k)B

(k)(x, β)lm +

d∑
j=1

{(∂xja
(k)(x, α)l)B

(k)(x, β)jm + (∂xja
(k)(x, α)m)B(k)(x, β)jl}

}
.
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The adaptive estimators β̃(k)
n , α̂(k)

n and β̂(k)
n are defined as

V(k)
1,n(β̃

(k)
n ) = sup

β(k)

V(k)
1,n(β

(k)),

V(k)
2,n(α̂

(k)
n , β̃(k)

n ) = sup
α(k)

V(k)
2,n(α

(k), β̃(k)
n ),

V(k)
3,n(β̂

(k)
n ; α̂(k)

n , β̃(k)
n ) = sup

β(k)

V(k)
3,n(β

(k); α̂(k)
n , β̃(k)

n ).

Then, under some regularity conditions, as nh2
n → 0.

(
√

nhn(α̂
(k)
n −α(k)

∗ ),
√
n(β̃(k)

n −β(k)
∗ ))

d→ Npk+qk(0,diag[(Γ
(k)
a (θ(k)∗ ))−1, (Γ(k)

b (β(k)
∗ ))−1]).

Furthermore, under some regularity conditions, as nh3
n → 0,

(
√

nhn(α̂
(k)
n −α(k)

∗ ),
√
n(β̂(k)

n −β(k)
∗ ))

d→ Npk+qk(0,diag[(Γ
(k)
a (θ(k)∗ ))−1, (Γ(k)

b (β(k)
∗ ))−1]).

For details, see the adaptive estimator in Kessler (1995) and the Type III
adaptive estimator in Uchida and Yoshida (2012).
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Case I: B(1) ̸= B(2)

In this section, we consider the asymptotic distribution of the discriminant function Un

for the case where the volatility function of Π1 is different from the one of Π2, that is,
µ
θ(0)∗

(B(1)(x, β(1)
∗ ) ̸= B(2)(x, β(2)

∗ )) > 0.

Let

M(x) = −
1

2

{
log

detB(1)(x, β(1)
∗ )

detB(2)(x, β(2)
∗ )

+
{
(B(1)(x, β(1)

∗ ))−1 − (B(2)(x, β(2)
∗ ))−1

}
[B(0)(x, β(0)

∗ )]

}
,

M̄ =

∫
Rd

M(x)µ
θ(0)∗

(dx),

f(x) = M(x)− M̄.

[A4] There exist Gf(x), ∂xiGf(x) ∈ F↑(R) (i = 1, . . . , d) such that for all x,

L
θ(0)∗

Gf(x) = f(x).
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Remark 2 (i) For a sufficient condition for [A4], see Pardoux and Vereten-
nikov (2001). For example, in addition to [A1]-(i)-(ii)-(iii), we assume that
supx,β(k) |B(k)(x, β(k))| < ∞ and that there exist c0 > 0, M0 > 0 and γ ≥ 0 such

that for all α(k),

x∗a(k)(x, α(k))

|x|
≤ −c0|x|γ for all x satisfying |x| ≥ M0.

Then, [A4] holds with [A1]-(iv)-(v).

(ii) In the case that d = r = 1, under mild regularity conditions, µθ(0)
∗

has a

density, that is, µθ(0)
∗
(dx) = v(x, θ(0)∗ )dx, and ∂xGf(x) has the following explicit

form:

∂xGf(x) =
2

B(0)(x, β(0)
∗ )v(x, θ(0)∗ )

∫ x

−∞
f(y)v(y, θ(0)∗ )dy.
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Set

J =

∫
Rd

(∂xGf(x))
⋆B(0)(x, β(0)

∗ )∂xGf(x)µθ(0)
∗
(dx).

Theorem 1 Assume [A1], [A3] and [A4]. Then,√
nhn

(
1

n
Un(X

(0)
n , θ̂(1)n , θ̂(2)n )− M̄

)
→d N(0, J)

as nh3
n → 0.

Remark 3 In the case that nh2
n → 0, we assume [A3]′, which is that [A3]

holds true as nh2
n → 0.

Under [A1], [A3]′ and [A4], Theorem 1 holds true as nh2
n → 0.

In particular, for the estimator θ̃(k)n = (α̂(k)
n , β̃(k)

n ) derived in Remark 1, one has
that as nh2

n → 0,√
nhn

(
1

n
Un(X

(0)
n , θ̃(1)n , θ̃(2)n )− M̄

)
→d N(0, J).
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Case II: B(1) = B(2)

In this section, we consider the situation where the volatility function of Π1 is the same as
the one of Π2 and the drift function of Π1 is different from the one of Π2, that is,
µ
θ(0)∗

(B(1)(x, β(1)
∗ ) = B(2)(x, β(2)

∗ )) = 1 and µ
θ(0)∗

(a(1)(x, α(1)
∗ ) ̸= a(2)(x, α(2)

∗ )) > 0.

Let

N(x) = (B(1)(x, β(1)
∗ ))−1[a(0)(x, α(0)

∗ ), (a(1)(x, α(1)
∗ )− a(2)(x, α(2)

∗ ))]

−
1

2
(B(1)(x, β(1)

∗ ))−1
[(

a(1)(x, α(1)
∗ )

)⊗2
−
(
a(2)(x, α(2)

∗ )
)⊗2

]
,

N̄ =

∫
Rd

N(x)µ
θ(0)∗

(dx),

g(x) = N(x)− N̄.

[A5] There exist Gg(x), ∂xiGg(x) ∈ F↑(R) (i = 1, . . . , d) such that for all x,

L
θ(0)∗

Gg(x) = g(x).
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Set

K̃ =

∫
Rd

[
(∂xGg(x))

⋆B(1)(x, β(1)
∗ )∂xGg(x)

−2(∂xGg(x))
⋆(a(1)(x, α(1)

∗ )− a(2)(x, α(2)
∗ ))

+(a(1)(x, α(1)
∗ )− a(2)(x, α(2)

∗ ))⋆(B(1)(x, β(1)
∗ ))−1(a(1)(x, α(1)

∗ )− a(2)(x, α(2)
∗ ))

]
µ
θ(0)∗

(dx),

J(1)(α(1)
∗ ) =

∫
Rd

(∂αa
(1)(x, α(1)

∗ ))⋆(B(1)(x, β(1)
∗ ))−1(a(0)(x, α(0)

∗ )− a(1)(x, α(1)
∗ ))µ

θ(0)∗
(dx),

J(2)(α(2)
∗ ) = −

∫
Rd

(∂αa
(2)(x, α(2)

∗ ))⋆(B(1)(x, β(1)
∗ ))−1(a(0)(x, α(0)

∗ )− a(2)(x, α(2)
∗ ))µ

θ(0)∗
(dx),

K = (J(1)(β(1)
∗ ))⋆(Γ(1)

a (θ(1)∗ ))−1J(1)(β(1)
∗ ) + (J(2)(β(2)

∗ ))⋆(Γ(2)
a (θ(2)∗ ))−1J(2)(β(2)

∗ ) + K̃.

Theorem 2 Assume [A1], [A3] and [A5]. Then,√
nhn

(
1

nhn
Un(X

(0)
n , θ̂(1)n , θ̂(2)n )− N̄

)
→d N(0,K)

as nh3
n → 0.

Remark 4 Under [A1], [A3]′ and [A5], Theorem 2 holds true as nh2
n → 0. In special, for

θ̃(k)n = (α̂(k)
n , β̃(k)

n ) in Remark 1, we obtain that as nh2
n → 0,√

nhn

(
1

nhn
Un(X

(0)
n , θ̃(1)n , θ̃(2)n )− N̄

)
→d N(0,K).
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Non-ergodic case

In this section, we consider d-dimensional stochastic differential equations Πk (k = 0,1,2)
defined by

Πk : X(k)
t = X(k)

0 +

∫ t

0

a(k)s ds+

∫ t

0

b(k)(s,X(k)
s , θ(k))dw(k)

s , t ∈ [0, T ], (2)

where

w(k) is an r-dimensional standard Wiener process on a stochastic basis (Ω,F , (Ft)t∈[0,T ], P ),

w(0), w(1), w(2), X(0)
0 , X(1)

0 and X(2)
0 are mutually independent,

a(k) is progressively measurable processes with values in Rd,

b(k) is an Rd ⊗Rr-valued function defined on [0, T ]×Rd ×Θ(k), and

Θ(k) is a compact convex subset of Rmk. θ(k)∗ is the true value of θ(k) and we assume that

θ(k)∗ ∈ Int(Θ(k)).
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For k = 1,2, the training data are discrete observations X(k)
n = (X(k)

tni
)0≤i≤n

obtained from the model Πk, where tni = ihn and h = hn = T/n.

We assume that the data X(0)
n = (X(0)

tni
)0≤i≤n are obtained from either Π1 or

Π2, which means that the distribution of model Π0 is the same as that of one
of the two models Π1 and Π2.

The asymptotics will be considered under n → ∞.

Set B(k)(t, x, θ(k)) = (b(k)(t, x, θ(k)))⊗2.

We denote by →ds(FT) the FT -stable convergence in distribution.

In this section, we consider the case where the volatility function of Π1 is
different from the one of Π2, that is,

Pθ(0)
∗
(B(1)(t,X(0)

t , θ(1)∗ ) = B(2)(t,X(0)
t , θ(2)∗ ) for all t ∈ [0, T ] ) = 0.
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We make the following assumption.

[B1] Let k = 1,2.
(i) Equation (2) admits a non-exploding strong solution on [0, T ].

(ii) t → a(k)t is continuous.
(iii) The partial derivatives ∂k1

t ∂k2
x ∂k3

θ(k)b(k) exist and are continuous on [0, T ] ×
Rd ×Θ(k) for k1 = 0,1 and k2, k3 = 0,1,2, and inf t,x,θ(k) detB(k)(t, x, θ(k)) > 0.

Let k = 1,2. Let θ̂(k)n := θ̂(k)(X(k)
n ) be an estimator for an unknown parameter

θ(k) of the model Πk based on the data X(k)
n .
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Set B̃(k)
i−1(θ

(k)) = B(k)(tni−1, X
(0)
tni−1

, θ(k)) and

ũ(k)
n (X(0)

n , θ(k)) = −
1

2

n∑
i=1

{
h−1
n (B̃(k)

i−1(θ
(k)))−1[(∆X(0)

i )⊗2] + logdet(B̃(k)
i−1(θ

(k)))
}
.

The following quadratic discriminant function for the non-ergodic case is used.

Un(X
(0)
n , θ̂(1)n , θ̂(2)n ) = ũ(1)

n (X(0)
n , θ̂(1)n )− ũ(2)

n (X(0)
n , θ̂(2)n )

= −
1

2

n∑
i=1

{
log

detB(1)
i−1(θ̂

(1)
n )

detB(2)
i−1(θ̂

(2)
n )

+ h−1
n

{
(B(1)

i−1(θ̂
(1)
n ))−1 − (B(2)

i−1(θ̂
(2)
n )−1

}
[(∆X(0)

i )⊗2]

}
.

We propose a discriminant rule such that

X(0)
n is classified into Π1 if Un(X

(0)
n , θ̂(1)n , θ̂(2)n ) ≥ 0 and otherwise into Π2.

Let two misclassification probabilities denote

qn(1|2) = P (Un(X
(0)
n , θ̂(1)n , θ̂(2)n ) < 0 | Π1),

qn(2|1) = P (Un(X
(0)
n , θ̂(1)n , θ̂(2)n ) ≥ 0 | Π2).
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We make the following assumption.

[B2] As n → ∞, θ̂(k)n →p θ(k)∗ .

Proposition 2 Assume [B1] and [B2]. Then, as n → ∞,

qn(1|2) + qn(2|1) → 0.

Set

γ(k)(t,X(k)
t , θ(k)∗ )ij = tr{(B(k))−1(∂θi

B(k))(B(k))−1(∂θj
B(k))(t,X(k)

t , θ(k)∗ )},

Γ(k)(θ(k)∗ )ij =
1

2T

∫ T

0
γ(k)(t,X(k)

t , θ(k)∗ )ijdt

for i, j = 1, . . . ,mk. Here we suppose that Γ(k)(θ(k)∗ ) is Pθ(k)
∗
-a.s. invertible.

Moreover, we make the assumption as follows.

[B3]
√
n(θ̂(k)n − θ(k)∗ ) →ds(FT) (Γ(k)(θ(k)∗ ))−1/2ζ(k) as n → ∞, where ζ(k) is an mk-

dimensional standard normal random variable independent of Γ(k)(θ(k)∗ ).

Remark 5 For an estimator θ̂(k)n satisfying [B3], we can refer Genon-Catalot
and Jacod (1993) and Uchida and Yoshida (2011b).
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Let for j = 1, . . . ,mk and k = 1,2,

U(t, x) = −
1

2

{
log

detB(1)(t, x, θ(1)∗ )

detB(2)(t, x, θ(2)∗ )

+
{
(B(1)(t, x, θ(1)∗ ))−1 − (B(2)(t, x, θ(2)∗ ))−1

}
[B(0)(t, x, θ(0)∗ )]

}
,

Ū =
1

T

∫ T

0

U(t,X(0)
t )dt,

K(k)(t, x, θ(k)∗ )j = −
1

2

{
tr
(
(B(k))−1∂θjB

(k)(t, x, θ(k)∗ )
)
+ (∂θj(B

(k))−1(t, x, θ(k)∗ ))B(0)(t, x, θ(0)∗ )
}
,

K̄(k)
j =

1

T

∫ T

0

K(k)(t,X(0)
t , θ(k)∗ )jdt,

J(0)(t, x) =
1

2
tr

[({
(B(1)(t, x, θ(1)∗ ))−1 − (B(2)(t, x, θ(2)∗ ))−1

}
B(0)(t, x, θ(0)∗ )

)2]
,

J̄(0) =
1

T

∫ T

0

J(0)(t,X(0)
t )dt.

Let

Γ =
(
(K̄(1))⋆(Γ(1)(θ(1)∗ ))−1/2,−(K̄(2))⋆(Γ(2)(θ(2)∗ ))−1/2, (J̄(0))1/2

)
.

Theorem 3 Assume [B1] and [B3]. Then, as n → ∞,

√
n

(
1

n
Un(X

(0)
n , θ̂(1)n , θ̂(2)n )− Ū

)
−→ds(FT ) Γζ,

where ζ is an (m1 +m2 +1)-dimensional standard normal random variable independent of Γ.
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Examples and simulation studies

Case I with different parametric models

Consider the one-dimensional diffusion processes defined by

Π1 : dX(1)
t =

(
α(1)
1 − α(1)

2 X(1)
t

)
dt+ β(1)dw(1)

t , X(1)
0 = 10,

Π2 : dX(2)
t = (α(2)

1 − α(2)
2 X(2)

t + α(2)
3 sin(X(2)

t ))dt+
β(2)
1 + β(2)

2 (X(2)
t )2

1+ (X(2)
t )2

dw(2)
t , X(2)

0 = 10,

where α(1) = (α(1)
1 , α(1)

2 ), α(2) = (α(2)
1 , α(2)

2 , α(3)
2 ), β(1) and β(2) = (β(2)

1 , β(2)
2 ) are unknown

parameters, and the true parameter values are α(1)
∗ = (1,2), α(2)

∗ = (1.5,2.5,6), β(1)
∗ = 4 and

β(2)
∗ = (4,3).

The simulations were done for each (hn, T ) = (1/250,20) and (1/390,250).

1000 independent sample paths X(1)
n and X(2)

n are generated from the models Π1 and Π2,
respectively.

Moreover, 1000 independent sample paths X(0)
n are generated from the model Π1.

For each model Πk, we use the type III adaptive estimators in Remark 1, that is, θ̃(k)n =

(α̂(k)
n , β̃(k)

n ) for nh2
n → 0, and θ̂(k)n = (α̂(k)

n , β̂(k)
n ) for nh3

n → 0. Furthermore, the discriminant

functions are U3,n := Un(X
(0)
n , θ̂(1)n , θ̂(2)n ) for nh3

n → 0, and U2,n := Un(X
(0)
n , θ̃(1)n , θ̃(2)n ) for nh2

n → 0
in Remark 3.
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Π1 : dX(1)
t =

(
α(1)
1 − α(1)

2 X(1)
t

)
dt+ β(1)dw(1)

t , X(1)
0 = 10,

Π2 : dX(2)
t = (α(2)

1 − α(2)
2 X(2)

t + α(2)
3 sin(X(2)

t ))dt+
β(2)
1 + β(2)

2 (X(2)
t )2

1+ (X(2)
t )2

dw(2)
t , X(2)

0 = 10,

Table 1. The number of selecting Π1 for 1000 independent simulated sample paths with
α(1)
∗ = (1,2), α(2)

∗ = (1.5,2.5,6), β(1)
∗ = 4 and β(2)

∗ = (4,3).

hn T U2,n ≥ 0 U3,n ≥ 0
1/250 20 1000 1000
1/390 250 1000 1000

Table 2. The mean and s.d. of estimators for 1000 independent simulated sample paths with
α(1)
∗ = (1,2), α(2)

∗ = (1.5,2.5,6), β(1)
∗ = 4 and β(2)

∗ = (4,3).

hn T β̃(1) β̃(2)
1 β̃(2)

2 β̂(1) β̂(2)
1 β̂(2)

2
1/250 20 3.99(0.038) 4.008(0.12) 2.98(0.05) 4.002(0.039) 4.00(0.13) 3.005(0.05)
1/390 250 3.99(0.009) 4.012(0.02) 2.98(0.01) 4.001(0.009) 3.99(0.02) 3.002(0.01)

hn T α̂(1)
1 α̂(1)

2 α̂(2)
1 α̂(2)

2 α̂(2)
3

1/250 20 1.052(1.001) 2.143(0.418) 1.901(1.379) 2.679(0.464) 5.860(1.228)
1/390 250 1.006(0.266) 2.010(0.125) 1.510(0.237) 2.494(0.119) 5.925(0.355)

Although the drift estimator α̂(2) has a bias when T = 20, the discriminant function works
well. Also the discriminant function has a good behavior when T = 250.
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Π1 : dX(1)
t =

(
α(1)
1 − α(1)

2 X(1)
t

)
dt+ β(1)dw(1)

t , X(1)
0 = 10,

Π2 : dX(2)
t = (α(2)

1 − α(2)
2 X(2)

t + α(2)
3 sin(X(2)

t ))dt+
β(2)
1 + β(2)

2 (X(2)
t )2

1+ (X(2)
t )2

dw(2)
t , X(2)

0 = 10,

Furthermore, we consider the simulation study in the non-ergodic case for each

(hn, T ) = (1/250,1), (1/390,1) and (1/1000,1)

with 1000 independent sample paths X(0)
n , X(1)

n and X(2)
n generated in the same way as the

previous example.

For each model Πk, we use the initial estimator β̃(k)
n in Remark 1, which is

the maximum likelihood type estimator and satisfies [B3], see Genon-Catalot and Jacod
(1993) and Uchida and Yoshida (2011b).

The number of selecting the model Π1 by using the discriminant functions Un = Un(X
(0)
n , β̃(1)

n , β̃(2)
n )

in Section 3, the mean and the s.d. for the estimators are computed and shown in Table 3
below.

Table 3. The number of selecting Π1 and the mean and s.d. of estimators for 1000 independent
simulated sample paths with α(1)

∗ = (1,2), α(2)
∗ = (1.5,2.5,6), β(1)

∗ = 4 and β(2)
∗ = (4,3).

hn T Un ≥ 0 β̃(1) β̃(2)
1 β̃(2)

2
1/250 1 996 4.029(0.173) 3.265(2.057) 3.136(0.205)
1/390 1 999 4.022(0.134) 3.487(1.662) 3.097(0.174)
1/1000 1 1000 4.008(0.089) 3.773(1.043) 3.040(0.109)

In all cases, the volatility estimators β̂(2) are biased, but the discriminant functions work well.
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Case I for specified parametric models

Next, we treat the following one-dimensional diffusion processes. For k = 1,2,

Πk : dX(k)
t = (α(k)

1 − α(k)
2 X(k)

t + α(k)
3 sin(X(k)

t ))dt+
β(k)
1 + β(k)

2 (X(k)
t )2

1+ (X(k)
t )2

dw(k)
t , X(1)

0 = 10,

where α(1) = (α(1)
1 , α(1)

2 , α(1)
3 ), α(2) = (α(2)

1 , α(2)
2 , α(3)

2 ), β(1) = (β(1)
1 , β(1)

2 ) and β(2) = (β(2)
1 , β(2)

2 )

are unknown parameters, and the true parameter values are α(1)
∗ = α(2)

∗ = (1.5,2.5,6), β(1)
∗ =

(3.9,2.9) and β(2)
∗ = (4,3).

In the same way as in Section 4.1, the simulations were done for each

(hn, T ) = (1/250,20) and (1/390,250) with

1000 independent sample paths X(0)
n , X(1)

n and X(2)
n generated from the models Π1, Π1 and

Π2, respectively.

The type III adaptive estimators in Remark 1, θ̃(k)n = (α̂(k)
n , β̃(k)

n ) for nh2
n → 0 and θ̂(k)n =

(α̂(k)
n , β̂(k)

n ) for nh3
n → 0, are used and the discriminant functions are U3,n := Un(X

(0)
n , θ̂(1)n , θ̂(2)n )

for nh3
n → 0, and U2,n := Un(X

(0)
n , θ̃(1)n , θ̃(2)n ) for nh2

n → 0 in Remark 3.

29



For k = 1,2,

Πk : dX(k)
t = (α(k)

1 − α(k)
2 X(k)

t + α(k)
3 sin(X(k)

t ))dt+
β(k)
1 + β(k)

2 (X(k)
t )2

1+ (X(k)
t )2

dw(k)
t , X(1)

0 = 10.

Table 4. The number of selecting Π1 for 1000 independent simulated sample paths with
α(1)
∗ = α(2)

∗ = (1.5,2.5,6), β(1)
∗ = (3.9,2.9) and β(2)

∗ = (4,3).

hn T U2,n ≥ 0 U3,n ≥ 0
1/250 20 841 875
1/390 250 1000 1000

Table 5. The mean and s.d. of estimators for 1000 independent simulated sample paths with
α(1)
∗ = α(2)

∗ = (1.5,2.5,6), β(1)
∗ = (3.9,2.9) and β(2)

∗ = (4,3).

hn T β̃(1)
1 β̃(1)

2 β̂(1)
1 β̂(1)

2
1/250 20 3.907(0.152) 2.889(0.051) 3.897(0.125) 2.905(0.050)
1/390 250 3.911(0.027) 2.887(0.010) 3.897(0.027) 2.903(0.011)

hn T β̃(2)
1 β̃(2)

2 β̂(2)
1 β̂(2)

2
1/250 20 4.008(0.127) 2.989(0.052) 4.000(0.131) 3.005(0.054)
1/390 250 4.012(0.027) 2.986(0.011) 3.998(0.027) 3.002(0.011)

hn T α̂(1)
1 α̂(1)

2 α̂(1)
3 α̂(2)

1 α̂(2)
2 α̂(2)

3
1/250 20 1.79(1.23) 2.64(0.44) 5.84(1.23) 1.90(1.37) 2.67(0.46) 5.86(1.22)
1/390 250 1.51(0.24) 2.49(0.11) 5.91(0.35) 1.51(0.23) 2.49(0.11) 5.92(0.35)

When T = 20, the drift estimators α̂(1) and α̂(2) have biases, and the discriminant function
has misclassification. On the other hand, when T = 250, the discriminant function works
well.

30



For k = 1,2,

Πk : dX(k)
t = (α(k)

1 − α(k)
2 X(k)

t + α(k)
3 sin(X(k)

t ))dt+
β(k)
1 + β(k)

2 (X(k)
t )2

1+ (X(k)
t )2

dw(k)
t , X(1)

0 = 10.

Moreover, we investigate the simulation study in the non-ergodic cases for each (hn, T ) =

(1/250,1), (1/390,1) and (1/1000,1) with 1000 independent sample paths X(0)
n , X(1)

n and

X(2)
n generated as in the previous subsection.

Table 6. The number of selecting Π1 and the mean and s.d. of estimators for 1000 independent
simulated sample paths with α(1)

∗ = α(2)
∗ = (1.5,2.5,6), β(1)

∗ = (3.5,2.5) and β(2)
∗ = (4,3).

hn T Un ≥ 0 β̃(1)
1 β̃(1)

2 β̃(2)
1 β̃(2)

2
1/250 1 834 2.479(1.969) 2.677(0.190) 3.265(2.057) 3.136(0.205)
1/390 1 902 2.817(1.452) 2.619(0.150) 3.487(1.662) 3.097(0.174)
1/1000 1 968 3.233(0.816) 2.547(0.091) 3.773(1.043) 3.040(0.109)

Table 7. The number of selecting Π1 and the mean and s.d. of estimators for 1000 independent
simulated sample paths with α(1)

∗ = (2.5,3.5,7), α(2)
∗ = (1.5,2.5,6), β(1)

∗ = (3.5,2.5) and

β(2)
∗ = (4,3).

hn T Un ≥ 0 β̃(1)
1 β̃(1)

2 β̃(2)
1 β̃(2)

2
1/250 1 805 2.294(1.496) 2.766(0.195) 3.265(2.057) 3.136(0.205)
1/390 1 877 2.697(1.194) 2.678(0.158) 3.487(1.662) 3.097(0.174)
1/1000 1 965 3.181(0.655) 2.572(0.097) 3.773(1.043) 3.040(0.109)

We can see from Tables 6 and 7 that the drift term does not strongly depend on the
classification
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Table 8. The number of selecting Π1 and the mean and s.d. of estimators for 1000 independent
simulated sample paths with α(1)

∗ = (1.5,2.5,5), α(2)
∗ = (1.5,2.5,6), β(1)

∗ = (3.5,2.5) and

β(2)
∗ = (4,3).

hn T Un ≥ 0 β̃(1)
1 β̃(1)

2 β̃(2)
1 β̃(2)

2
1/250 1 820 2.529(1.857) 2.677(0.188) 3.265(2.057) 3.136(0.205)
1/390 1 900 2.857(1.409) 2.618(0.148) 3.487(1.662) 3.097(0.174)
1/1000 1 966 3.250(0.785) 2.547(0.090) 3.773(1.043) 3.040(0.109)
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Case II for different parametric models

We consider the one-dimensional diffusion processes defined by

Π1 : dX(1)
t = (α(1)

1 − α(1)
2 X(1)

t )dt+
β(1)
1 + β(1)

2 (X(1)
t )2

1+ (X(1)
t )2

dw(1)
t , X(1)

0 = 10,

Π2 : dX(2)
t = (α(2)

1 − α(2)
2 X(2)

t + α(2)
3 sin(X(2)

t ))dt+
β(2)
1 + β(2)

2 (X(2)
t )2

1+ (X(2)
t )2

dw(2)
t , X(2)

0 = 10,

where α(1) = (α(1)
1 , α(1)

2 ), α(2) = (α(2)
1 , α(2)

2 , α(2)
3 ), β(1) = (β(1)

1 , β(1)
2 ) and β(2) = (β(2)

1 , β(2)
2 ) are

unknown parameters, and the true parameter values are α(1)
∗ = (1,2), α(2)

∗ = (1.5,2.5,6) and

β(1)
∗ = β(2)

∗ = (3,4).

The simulations were done for each (hn, T ) = (1/250,20) and (1/390,250).

1000 independent sample paths X(1)
n , X(2)

n and X(0)
n are generated from the models Π1, Π2

and Π1, respectively.

For each model Πk, the type III adaptive estimators in Remark 1, θ̃(k)n = (α̂(k)
n , β̃(k)

n ) for

nh2
n → 0, and θ̂(k)n = (α̂(k)

n , β̂(k)
n ) for nh3

n → 0, are used and the discriminant functions are

U2,n := Un(X
(0)
n , θ̃(1)n , θ̃(2)n ) for nh2

n → 0 in Remark 4, and U3,n := Un(X
(0)
n , θ̂(1)n , θ̂(2)n ) for nh3

n → 0.
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We consider the one-dimensional diffusion processes defined by

Π1 : dX(1)
t = (α(1)

1 − α(1)
2 X(1)

t )dt+
β(1)
1 + β(1)

2 (X(1)
t )2

1+ (X(1)
t )2

dw(1)
t , X(1)

0 = 10,

Π2 : dX(2)
t = (α(2)

1 − α(2)
2 X(2)

t + α(2)
3 sin(X(2)

t ))dt+
β(2)
1 + β(2)

2 (X(2)
t )2

1+ (X(2)
t )2

dw(2)
t , X(2)

0 = 10.

Table 9. The number of selecting Π1 for 1000 independent simulated sample paths with
α(1)
∗ = (1,2), α(2)

∗ = (1.5,2.5,6) and β(1)
∗ = β(2)

∗ = (3,4).

hn T U2,n ≥ 0 U3,n ≥ 0
1/250 20 945 941
1/390 250 1000 1000

Table 10. The mean and s.d. of estimators for 1000 independent simulated sample paths
with α(1)

∗ = (1,2), α(2)
∗ = (1.5,2.5,6) and β(1)

∗ = β(2)
∗ = (3,4).

hn T β̃(1)
1 β̃(1)

2 β̂(1)
1 β̂(1)

2
1/250 20 2.995(0.059) 3.999(0.065) 3.002(0.061) 4.002(0.066)
1/390 250 2.997(0.012) 3.996(0.015) 2.999(0.013) 4.002(0.015)

hn T β̃(2)
1 β̃(2)

2 β̂(2)
1 β̂(2)

2
1/250 20 3.036(0.087) 3.973(0.060) 2.998(0.088) 4.007(0.061)
1/390 250 3.024(0.019) 3.978(0.013) 2.997(0.019) 4.003(0.013)

hn T α̂(1)
1 α̂(1)

2 α̂(2)
1 α̂(2)

2 α̂(2)
3

1/250 20 1.038(0.855) 2.145(0.439) 1.804(1.260) 2.685(0.480) 5.876(1.328)
1/390 250 1.004(0.229) 2.011(0.137) 1.511(0.253) 2.496(0.133) 5.923(0.379)

When T = 20, the drift estimator of model Π2, α̂(2), is biased and the discriminant function
has some misclassification. On the other hand, when T = 250, the discriminant function
works very well.
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Case II for specified parametric models

Next, we investigate the one-dimensional diffusion processes as follows. For k = 1,2,

Πk : dX(k)
t = (α(k)

1 − α(k)
2 X(k)

t + α(k)
3 sin(X(k)

t ))dt+
β(k)
1 + β(k)

2 (X(k)
t )2

1+ (X(k)
t )2

dw(k)
t , X(k)

0 = 10,

where α(1) = (α(1)
1 , α(1)

2 , α(1)
3 ), α(2) = (α(2)

1 , α(2)
2 , α(2)

3 ), β(1) = (β(1)
1 , β(1)

2 ) and β(2) = (β(2)
1 , β(2)

2 )

are unknown parameters, and the true parameter values are α(1)
∗ = (0.5,1.5,5), α(2)

∗ =

(1.5,2.5,6) and β(1)
∗ = β(2)

∗ = (4,3).

In the same way as in the previous example, the simulations were done for each

(hn, T ) = (1/250,20) and (1/390,250) with

1000 independent sample paths X(1)
n , X(2)

n and X(0)
n generated from the models Π1, Π2 and

Π1, respectively.

We use the type III adaptive estimators in Remark 1, θ̃(k)n = (α̂(k)
n , β̃(k)

n ) for nh2
n → 0, and θ̂(k)n =

(α̂(k)
n , β̂(k)

n ) for nh3
n → 0. Moreover, the discriminant functions are U2,n := Un(X

(0)
n , θ̃(1)n , θ̃(2)n ) for

nh2
n → 0 in Remark 4, and U3,n := Un(X

(0)
n , θ̂(1)n , θ̂(2)n ) for nh3

n → 0.
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For k = 1,2,

Πk : dX(k)
t = (α(k)

1 − α(k)
2 X(k)

t + α(k)
3 sin(X(k)

t ))dt+
β(k)
1 + β(k)

2 (X(k)
t )2

1+ (X(k)
t )2

dw(k)
t , X(k)

0 = 10.

Table 11. The number of selecting Π1 for 1000 independent simulated sample paths with
α(1)
∗ = (0.5,1.5,5), α(2)

∗ = (1.5,2.5,6) and β(1)
∗ = β(2)

∗ = (4,3).

hn T U2,n ≥ 0 U3,n ≥ 0
1/250 20 830 829
1/390 250 1000 1000

Table 12. The mean and s.d. of estimators for 1000 independent simulated sample paths
with α(1)

∗ = (0.5,1.5,5), α(2)
∗ = (1.5,2.5,6) and β(1)

∗ = β(2)
∗ = (4,3).

hn T β̃(1)
1 β̃(1)

2 β̂(1)
1 β̂(1)

2
1/250 20 4.011(0.129) 2.989(0.047) 3.999(0.133) 3.003(0.049)
1/390 250 4.011(0.028) 2.989(0.010) 3.998(0.029) 3.002(0.010)

hn T β̃(2)
1 β̃(2)

2 β̂(2)
1 β̂(2)

2
1/250 20 4.008(0.127) 2.989(0.052) 4.000(0.131) 3.005(0.054)
1/390 250 4.012(0.027) 2.986(0.011) 3.998(0.027) 3.002(0.011)

hn T α̂(1)
1 α̂(1)

2 α̂(1)
3 α̂(2)

1 α̂(2)
2 α̂(2)

3
1/250 20 0.648(1.01) 1.634(0.32) 4.978(1.13) 1.901(1.37) 2.679(0.46) 5.860(1.22)
1/390 250 0.507(0.21) 1.505(0.08) 4.960(0.32) 1.510(0.23) 2.494(0.11) 5.925(0.35)

Similarly as the previous example, when T = 20, the discriminant function has some misclas-
sification because the drift estimators α̂(1) and α̂(2) have considerable biases. On the other
hand, when T = 250, the discriminant function works very well.
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