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Introduction

We consider d-dimensional diffusion models M, (k = 0,1,2) defined by the
following stochastic differential equations

MNe:  dX® = a®(X® oa®at + 8 (xP gEaw® >0, x (1)

where

w® is an r-dimensional standard Wiener pProcess,
w©®, w® @ x99 x{ and x§? are mutually independent and

k) = (k) gk) ¢ @&k)x@é’“) = o® with ©® and @g“) being compact convex
subsets of RP* and R%, respectively.

Let k=0,1,2.
a®:R?x ©f) - R'@R” and b® : R? x ©f” — R
o) = (o 3)Y is the true value of 8% and we assume that 0 ¢ Int(©@®).

Moreover, the training data are discrete observations X = (Xt(f))ogz-gn ob-
tained from the diffusion model I, where t? = ih,, and t], = nh, =: T,.



We assume that the data
(0) _ (0) _ : .
Xpn = (X’ )o<i<n are obtained from either My or My,

which means that the distribution of model llg is the same as
that of one of the two models 1 and Tl».

We will consider the situation when hy, — 0, nhy, — oo and nh% —
0O as n — oo.



First of all, in this paper, we treat a discriminant analysis for two discretely observed ergodic
diffusion processes. For example, in Table I and Table II below, two sample paths Xfll) and

Xff) are obtained from the diffusion models M7 and N> defined by the following stochastic
differential equations

Ny :  dx® (1 —2xMP)dt + 4dw'?, t>0, x§ =10,
M. dxP® = (1.5-25X2 +4sin(X?))dt +4dw®, t>0, x =10,

respectively. In table 3 below, a new sample path Xflo) is obtained from either Iy or I5.
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We treat a discriminant problem whether X%O) is obtained from [I1; or N> by using training
data Xff) from M, for k =1,2.

Since the sample path of X%O) is similar to the one of Xff) compared with Xfll), from viewpoint
of “similarity of sample path'”, one may classify Xflo) into Mo.
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Table I. sample path of Table II. sample path of Table III. sample path of
X,(f) from My Xff) from I X%O) from either Iy or I»

Unfortunately, the answer is wrong. In fact, X%O) in Table 3 are the simulation data obtained
from model ;.

This illustration cautions us about the risk of misclassification based on “similarity of sample
path’ .

Therefore, we propose classification criteria based on discriminant functions for stochastic
differential equations.

For the ergodic diffusion models, the asymptotic distributions of discriminant functions are
obtained under the two situations where the volatility functions are same or not.



Discriminant analysis

Let Cf’l(Rd x ©; R%) denote the space of all functions f satisfying the following conditions: (i)

f(z,0) is an Revalued function on R?x O, (ii) f(x,0) is continuously differentiable with respect
to z up to order k for all 6. (iii) for ln| =0,1,...,k, 9"f(x,0) is continuously differentiable with
respect to 6 up to order [ for all . Moreover, for |v|=1,...,l and |n| =0,1,...,k, 6"0"f(x,0)
is of polynomial growth in x uniformly in 6. Here n = (n1,...,nq) and v = (v1,...,vy) are
multi-indices, m =dim(©), In| =n1+...+ng, [v|=v1+... +vp, O* =01" -0}, 0; = 0/0x;,
and ¢” =6, -+ ,", dg, = 0/00;.

Let 7 (RY) be the space of all measurable functions f satisfying that f(z) is an R-valued
function on R? with polynomial growth in z.

Pyw denotes the law of the process defined by the equation (1).

Set AXM = xP — xM and B® (z, 38)) = p®) (6(®)*(z, %)), where » denotes the transpose.

n
ti—l

Let Lyo be the infinitesimal generator of the diffusion (1) with k = 0: Ly = Zle az@(w, a(9);+

d 0
% Zi,jzl Bi(j >(5U7 B(O))aiaj.

Let & and i be the convergence in probability and the convergence in distribution, respec-
tively.

For matrices A and B of the same size, we define A%2 = AA* and B[A] = tr(BA*).



Let £ =1,2. We make the following assumption.

[A1] (i) There exists K > 0 such that for all z,y € RY,

sup [a®(z,a®) — a®(y,a®)| 4+ sup [p®(z, B0 — b®(y, B9 < Kz — y|.
Od(k)eegk) B(k)eeék)

(i) inf, g det(B® (x, 3(M)) > 0.

(i) a® € CT?(R? x O, RY). v € CP*(R? x ©f”; R‘ @ R").

(iv) There exists a unique invariant probability measure pyw of Xt("") and for
any f e F(R%) satisfying [g, |f(2)|pyw(dz) < oo, as T — oo,

1 /T
?/o f(Xt(k))dtg Rdf(m),ueiw(dx).



Let 8% = (a® (X)), (X)) be an estimator of 8 = (a®, g for
model I, based on the data Xff).

Setting BX) (6®) = BO (XD, 5®), a) (a®) = a® (X, a®) and

1

1 — _
uP (XD, 00) = —52{h;l(B@l(ﬁ(“))—l[(AX;”—hna§ﬁ>1<a<k>>>®2]
=1

+log det(BX, (M) }
one uses the following discriminant function
Un(X,659,02)) = ulP (X, 6V) — ufP (X, 6(2)).

We suggest a discriminant rule such that

X9 is classified into My if U,(X?, 8P 8%) > 0 and otherwise into Mo.
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Let two misclassification probabilities denote

pn(12) = PU.X?,8,02) <0 | ny),
pn(2]1) = PULX,80 882 >0 | ny).

We make the following assumption.
[A2] AS hy, — O and nhs, — oo, 5 —p (k).

Proposition 1 Assume [Al] and [A2]. Then, as h, — 0 and

nhy — 00,

pn(1]2) + pn(2]|1) — 0.
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Set

ree"); = /(&xia(k)(w,aﬁ’“)))*(B(’“)(m,5§’“)))_10aja(’“)(:v,ai’“))uegm(da?),
R¢

O = /R tr{(B) (05 BD)(BM) (95, BY) (2, B8) Yo (d)

for i,7 =1,...,pr, and I,m = 1,...,q,. Here we suppose that rg“(eﬁ’“) and
r (g™ are non-singular.

Moreover, in order to obtain the asymptotic distributions of the discriminant
function below, we make the assumption as follows.

[A3] As nh3 — 0,

(Vnh (6P —a®), Vr(BP —BH)) L N, 14.(0,diag[(FP (90)) 1, (KR (88))~17).
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Remark 1 For an estimator satisfying [A3], we can refer Yoshida (1992), Kessler (1995,
1997) and Uchida and Yoshida (2012). Let B*) (8) = B® (X" 8) and ¥ () = a® (X, @)

o
g

for k =1,2. For example, we use the following utility functions.

VOE) = 5D {mBEE) IAXP)P) +iogdet(BY ()}
=1
V.8 = 33 mtBEE)AXY — ha®, (@)
=1

VG = 23 {nBEE) X - m2DE) | (B)] + log det(BX,(8)}
=1

where forl,m =1,...,d,
ng?_l(ﬁ) = 7§k)(Xt;117 9) + (a(k)(Xt;gla Oé))®2,
d
1
P)ék)(xae)lm == 5 Le(k)B(k)(xaﬁ)lm + Z{(@mja(k)(x,a)l)B(k)(a:,,B)]m + (amja/(k)(xaa)m)B(k)(x7B)jl}

Jj=1
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The adaptive estimators BT(L’“), a,(f) and BSP are defined as

(k)(ﬁ(k)) = supVYQ(ﬁ(k)),
B® ’
v @®, 5Py = supvé’“g(a(’“),ﬁék)),
YR (BW; 5 FR) = Sﬁlfk?v(k)(ﬁ(k) ONCION

Then, under some regularity conditions, as nh% — 0.

(Vnha (@ —a®), /r(BP—H)) & N, 1, (0,diag[(Fr®P (6M)) 1, (P (3*))-1]).

Furthermore, under some regularity conditions, as nh;’; — 0,

(V/nha (@59 —a®), V(P -BH)) 4 N, 1,.(0,diag[(F® (6@ 1, (KR (8M))~1]).

For details, see the adaptive estimator in Kessler (1995) and the Type III
adaptive estimator in Uchida and Yoshida (2012).
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Case I: B(D) = B(@)

In this section, we consider the asymptotic distribution of the discriminant function U,
for the case where the volatility function of Iy is different from the one of I,, that is,

pyo (BD(z, B7) # BA(z, 82)) > 0.

Let
_ 1 det B (z, B) (1) (1)yy-1 2) (2)yy-1 (0) (0)
M = M(%)Meio)(dx),
R
f(x) = M(z)— M.

[A4] There exist G¢(z), 0,,G¢(z) € F4(R) (i=1,...,d) such that for all z,
LG,EO)Gf(x) = f(x).
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Remark 2 (i) For a sufficient condition for [A4], see Pardoux and Vereten-
nikov (2001). For example, in addition to [A1]-(i)-(ii)-(iii), we assume that
sup, gw | B® (z, B9)| < 0o and that there exist co > 0, Mg > 0 and v > 0 such
that for all a(®),

z*a(F) (z, ak))
||
Then, [A4] holds with [A1]-(iv)-(Vv).

< —colz|”  for all x satisfying |x| > Mp.

(ii) In the case that d = r = 1, under mild regularity conditions, p,« has a

density, that is, pyo(dz) = v(z,0!”)dz, and 8,G;(z) has the following explicit
form:

_ 2 ’ (0)
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Set

J= [ (8:G;(2))*BO(z, )0.G(x) pyo (dm).
Rd

Theorem 1 Assume [Al], [A3] and [A4]. Then,

/nhn, (lUn(XSf’), o) g2y M) —4 N(0,J)
n
as nh3 — 0.

Remark 3 In the case that nh? — 0, we assume [A3]’, which is that [A3]
holds true as nh2 — 0.

Under [A1], [A3] and [A4], Theorem 1 holds true as nh2 — O.

In particular, for the estimator é}%’“ = (&%k),ﬁﬁk)) derived in Remark 1, one has
that as nh2 — 0,

1 o _
Vnhn, (—Un(Xg’), gl g2y M) —% N(0, J).
n
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Case II: B(1) = B(©)

In this section, we consider the situation where the volatility function of Ny is the same as
the one of N, and the drift function of M is different from the one of 5, that is,

oo (BD @, B7) = BO(x, 62)) = 1 and 1y (e (i, 0l7) # 0@ (z,0!?)) > 0.

Let
N(@@) = (BW(z,M) alV(z,al”), (aW(z,aV) - a® (2,af*))]
(B0 5N [ (@@, 08) 7 - (6@ (,a)) 7

N = / N (@)py0 (d2),
Rd

g(z) = N(x)-N.

[A5] There exist Gy(z), 0,,G4(z) € F4+(R) (s =1,...,d) such that for all z,

L9£0>Gg(fl?) = g(x).

18



Set

R = / [(8.Gy(2))*BD (2, )8, Gy ()
Rd

—2(0,Gy(2))* (P (z, V) — a@ (z,a?))

+(@W (2, 0) = a® (2,0l (BY (2, 57) 70D (@, 0tV) = a® (@, i) | g (dr),

JO@) = | (Bea® (2, i) (BD (@, )7 0O (2, al) = D (x, ai)) iy (d),
R¢ )
JP?) = - / (0201 (, 0i))* (BW (2, 8:7) 7 (@ (2, 01%) — P (a, ai?)) o (dr),
R )
K = (JO@E)) (P E) IO ED) + (1A EN)rPe) A E?) + K.

Theorem 2 Assume [Al], [A3] and [A5]. Then,

o

nnn

UL(X, 09, 09) - F) ' N(0, K)

as nh3 — 0.

Remark 4 Under [Al], [A3] and [A5], Theorem 2 holds true as nh? — 0. In special, for
o = (a®, Y in Remark 1, we obtain that as nh2 — 0,

1 oy _
\/nhy, ( - U (X g g(2)y _ N) —% N (0, K).
n

n
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Non-ergodic case

In this section, we consider d-dimensional stochastic differential equations M, (k = 0,1,2)
defined by

t t
Ne: xP = x® -|-/ ag"’)ds-l—/ b (s, X® 9N gw® ¢ e [0, T, (2)
0 0
where
w® is an r-dimensional standard Wiener process on a stochastic basis (€2, F, (F)sc[0.17: P).
w0, w@ @) Xéo), Xél) and XéQ) are mutually independent,

a®) s progressively measurable processes with values in R,

b(®) is an R% ® R’-valued function defined on [0,7] x R% x ©%), and

©® is a compact convex subset of R™. 0% is the true value of #%) and we assume that
o) ¢ Int(e®).
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For Kk = 1,2, the training data are discrete observations X%k) = (Xff))ogign
obtained from the model I, where t* = ih, and h = h, = T/n.

We assume that the data X{® = (thﬂo))ogign are obtained from either My or
1>, which means that the distribution of model Iy is the same as that of one
of the two models 11 and [l5.

The asymptotics will be considered under n — oo.
Set BW (¢, z,00)) = (b (¢, 2, 0(F)))®2,
We denote by —d.(F7) the Fr-stable convergence in distribution.

In this section, we consider the case where the volatility function of Iy is
different from the one of l,, that is,

Pyo(BD (1, X%, 07) = B@ (1, X%, 0:?)) for all ¢t € [0,7] ) = 0.

21



We make the following assumption.

[B1] Let k =1, 2.
(i) Equation (2) admits a non-exploding strong solution on [0,T].

(i) t — at(’“) is continuous.
(iii) The partial derivatives 9,*0%9}2 b®) exist and are continuous on [0,7] x
R? x ©®) for ky = 0,1 and ks, k3 = 0,1,2, and inf,, g det B® (¢, z,0()) > 0.

Let k=1,2. Let @S’“) = é(k)(Xff“)) be an estimator for an unknown parameter
9(%) of the model M, based on the data X{®.
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Set B (0®) = B® (¢, X{V,0%)) and

1o - -
BPXO,00) = 23 {n (BEEP) AKX + logdet(BF, (09)) |
1=1

The following quadratic discriminant function for the non-ergodic case is used.
U(X,001,0) = a{P (X, 00) — 1P (XD, 852)
1 z”: g 96t B (85Y)
= —— O
2 221" get B®, (69

We propose a discriminant rule such that

+r { BEODN T - (B2 (02) ] [<AX§°>>®2]} .

X9 is classified into My if U, (XY, 0, 852) > 0 and otherwise into Mo.

Let two misclassification probabilities denote

an(112) = PUXD,0,0(2) < 0| Ny),
gn(2]1) PU, (X, 01 ,6() >0 | Ny).
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We make the following assumption.

[B2] As n — oo, @Sk) —P Hik).
Proposition 2 Assume [B1] and [B2]. Then, as n — oo,

qn(1]2) + qn(2]1) — O.

Set
v ® @, XP 08 = tr{(B®) 718, BP)(B®) (95, B (1, X7, 60},
1 [T "
r™ef); = ﬁ/o YO (&, XM, 00)5dt
for i, = 1,...,ms. Here we suppose that F® o)y is Pyw-a.s. invertible.

Moreover, we make the assumption as follows.

(B3] /(0 — ")y —d(Fn) (rt(9)))=1/2¢(®) as n — oo, where ¢ is an my-
dimensional standard normal random variable independent of r® (o{®).

Remark 5 For an estimator 97(1"7) satisfying [B3], we can refer Genon-Catalot
and Jacod (1993) and Uchida and Yoshida (2011b).
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Let for yj=1,...,m; and k=1, 2,

U(t,x)

Let

1 det BO(t, z, 08V)
—— < log 2)
2 det B@ (¢, x, 6$2)
+{(BO(,z,000)) 7 = (BO(t,2,6:2)) 1 } [BO(t,2,60)] }

1 T
—/ Ut, X,
T 0

1
—5{tr ((B™) 05, B9 (t,2,687)) + (0,(B) 7 (t,2,00) BO(1,2,6) }

T

1

f/ K® (¢, x{9 0%, dt,
0

%tr [({(Bﬂ)(t,x,eil)))—l — (B@(t,z,0))7*} B(O)(t,x,Hio)))Q} :

1 T
- / JO (¢, xat.
0

M= ((RO)(r® o)) =/2, —(E@)*(r@))=1/2, (JO)1/2) .

Theorem 3 Assume [B1] and [B3]. Then, as n — oo,

Vi (S1,(X©, 00,62 ~ ) 7 re,
n

where ¢ is an (m1 + mo + 1)-dimensional standard normal random variable independent of I.
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Examples and simulation studies
Case I with different parametric models

Consider the one-dimensional diffusion processes defined by

My : dXt(l) — (agl) (1)X(1)> dt—i—ﬁ(l)dw(l), Xél) — 10,
(2) (2) X(2) 2
M dx® = @ - a@x? +aP sin(x@yae+ L 0,00 @ — 10
1 _|_ (X( ))2

where a® = (a{V,al?), @ = (a}?,a!?,a?), O and @ = (82, 5{?)) are unknown
parameters, and the true parameter values are a(l) = (1,2), a(2) = (1.5,2.5,6), il) = 4 and
(2) = (4,3).

The simulations were done for each (h,,T) = (1/250,20) and (1/390,250).

1000 independent sample paths Xq(ll) and Xff) are generated from the models 17 and [y,
respectively.

Moreover, 1000 independent sample paths XSLO) are generated from the model ;.

For each model I, we use the type III adaptive estimators in Remark 1, that is, @Sk) =
@® 3Ry for nh? — 0, and ok = (g 3y for nh2 — 0. Furthermore, the discriminant

functions are Us,, := U (X, 08, 8$2)) for nh3 — 0, and Upp = U (X9, 81, 8$2)) for nh2 — 0
in Remark 3.
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Table 1.

ax{®

dx®

2
(07 ~

X3P 4 o sin(X?))dt 4+ =

(efV — oSV XY dt + pWVdw®,  x{ =10,
+B§2)(X(2))2d @

(2)

1+ (X?)2

@) _
, X{? =10,

The number of selecting N1 for 1000 independent simulated sample paths with
oV =(1,2), o' = (1.5,2.5,6), BV =4 and 8% = (4,3).

hn T U2,n Z 0 U3,n 2 0
1/250 20 1000 1000
1/390 | 250 1000 1000

Table 2. The mean and s.d. of estimators for 1000 independent simulated sample paths with

oM =(1,2), o? = (1.5,2.5,6),

M =4 and 8? = (4,3).

R I - g 5 5D g 5

1/250 | 20 | 3.99(0.038) | 4.008(0.12) | 2.98(0.05) | 4.002(0.039) | 4.00(0.13) | 3.005(0.05)

1/390 | 250 | 3.99(0.009) | 4.012(0.02) | 2.98(0.01) | 4.001(0.009) | 3.99(0.02) | 3.002(0.01)
han T at as a'? as” ay

1/250 | 20 | 1.052(1.001) | 2.143(0.418) | 1.901(1.379) | 2.679(0.464) | 5.860(1.228)

1/390 | 250 | 1.006(0.266) | 2.010(0.125) | 1.510(0.237) | 2.494(0.119) | 5.925(0.355)

Although the drift estimator a(® has a bias when T = 20, the discriminant function works

well.

Also the discriminant function has a good behavior when T = 250.
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x§Y =10,
o+ O, o
1+ (X2)?

My : dXt(l) = (agl)—

oSV x M) dt + B dw®,

No: daxP® = (@2 —aPxP +al?sin(x?))dt + , X =10,

Furthermore, we consider the simulation study in the non-ergodic case for each
(hn,T) = (1/250,1), (1/390,1) and (1/1000,1)

with 1000 independent sample paths Xflo), Xfll) and X,(f) generated in the same way as the
previous example.

For each model I, we use the initial estimator ~flk) in Remark 1, which is

the maximum likelihood type estimator and satisfies [B3], see Genon-Catalot and Jacod

(1993) and Uchida and Yoshida (2011b).

The number of selecting the model M7 by using the discriminant functions U,, = Un(XﬁlO), 721), B}SQ))
in Section 3, the mean and the s.d. for the estimators are computed and shown in Table 3
below.

Table 3. The number of selecting '} and the mean and s.d. of estimators for 1000 independent
simulated sample paths with o = (1,2), o? = (1.5,2.5,6), Bil) =4 and Bﬁz) = (4,3).

B T | U, >0 ELS) 3 55
1/250 | 1 | 996 | 4.029(0.173) | 3.265(2.057) | 3.136(0.205)
1/390 | 1 | 999 | 4.022(0.134) | 3.487(1.662) | 3.007(0.174)
1/1000 1 1000 4.008(0.089) 3.773(1.043) 3.040(0.109)

In all cases,

the volatility estimators 3(2) are biased, but the discriminant functions work well.



Case I for specified parametric models
Next, we treat the following one-dimensional diffusion processes. For k=1, 2,

k (k k
( ) )(X( ))2d (k:)
1+ (X("”)2

where o = (a{?, o, af?), @ = (o, 0, ), B0 = (8, ) and @ = (82, )

are unknown parameters, and the true parameter values are ol = o{? = (1.5,2.5,6), gV =

(3.9,2.9) and 8? = (4,3).

Me: dax® = (@® - a®x® 4 oP® sin(x®))dt + 2 , XM =10,

In the same way as in Section 4.1, the simulations were done for each
(hn,T) = (1/250,20) and (1/390,250) with

1000 independent sample paths X%O), X,(ll) and XSLQ) generated from the models My, My and
M-, respectively.

The type III adaptive estimators in Remark 1, H(k) (a (k),b’(k)) for nh2 — 0 and §§f“) =
@, By for nh3 — 0, are used and the discriminant functions are Usyp i= U, (X0 gD g(2)y
for nh3 — 0, and Uz, := U (X9, 089, 8$2)) for nh2 — 0 in Remark 3.
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For k=1,2,

My :

ax®

— (k)
= (O‘l

— o x® 4 o sin(xP))dt + 2

(k)+5§k)(x(k))zd o
1+ (x{7)?

1)
) XO -

10.

Table 4. The number of selecting 1 for 1000 independent simulated sample paths with
oV =l = (1.5,2.5,6), g = (3.9,2.9) and 82 = (4,3).

hy, T UQ,n Z 0 U3,n 2 0
1/250 20 841 875
1/390 | 250 1000 1000

Table 5. The mean and s.d. of estimators for 1000 independent simulated sample paths with
oV = = (1.5,25,6), s = (3.9,2.9) and 82 = (4,3).

h T 3(1) (D) A1) (1)
n By B5 By B5

1/250 20 3.907(0.152) | 2.889(0.051) | 3.897(0.125) | 2.905(0.050)

1/390 | 250 | 3.911(0.027) | 2.887(0.010) | 3.897(0.027) | 2.903(0.011)

TR £ ER E%
1/250 20 4.008(0.127) | 2.989(0.052) | 4.000(0.131) | 3.005(0.054)
1/390 | 250 | 4.012(0.027) | 2.986(0.011) | 3.998(0.027) | 3.002(0.011)
I T & a0 &0 a® & a@

1/250 20 1. 79(1 23) | 2. 64(0 44) | 5. 84(1 23) | 1. 90(1 37) | 2. 67(0 46) | 5. 86(1 22)
1/390 | 250 | 1.51(0.24) | 2.49(0.11) | 5.91(0.35) | 1.51(0.23) | 2.49(0.11) | 5.92(0.35)

When T = 20, the drift estimators &1 and a(? have biases, and the discriminant function

has misclassification.

well.

On the other hand, when T° = 250, the discriminant function works
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For k=1,2,

(0 1 g0 (x®)y2
oS Xx® 4 ol sin(xF))dt + 2 2 dw™
14+ (xM)2

MNe: dx® = (P - , XM = 10.
Moreover, we investigate the simulation study in the non-ergodic cases for each (h,,T) =
(1/250,1), (1/390,1) and (1/1000,1) with 1000 independent sample paths X, X{" and

Xff) generated as in the previous subsection.

Table 6. The number of selecting N1 and the mean and s.d. of estimators for 1000 independent
simulated sample paths with oY = o® = (1.5,2.5,6), 8Y) = (3.5,2.5) and 8? = (4,3).

b [T [thzo]  BD 7D 5 %
1/250 | 1 | 834 | 2.479(1.969) | 2.677(0.190) | 3.265(2.057) | 3.136(0.205)
1/390 | 1 | 902 | 2.817(1.452) | 2.619(0.150) | 3.487(1.662) | 3.007(0.174)
1/1000 | 1 | 968 | 3.233(0.816) | 2.547(0.001) | 3.773(1.043) | 3.040(0.109)

Table 7. The number of selecting N1 and the mean and s.d. of estimators for 1000 independent

simulated sample paths with ! = (2.5,3.5,7), al? = (1.5,2.5,6), g = (3.5,2.5) and
¥ =(4,3).
I T | U, >0 3D B0 B 3
1/250 | 1 | 805 | 2.204(1.496) | 2.766(0.195) | 3.265(2.057) | 3.136(0.205)
1/390 | 1 | 877 | 2.697(1.194) | 2.678(0.158) | 3.487(1.662) | 3.097(0.174)
1/1000 | 1 | 965 | 3.181(0.655) | 2.572(0.097) | 3.773(1.043) | 3.040(0.109)

We can see from Tables 6 and 7 that the drift term does not strongly depend on the
classification

31



Table 8. The number of selecting N1 and the mean and s.d. of estimators for 1000 independent

simulated sample paths with ail) = (1.5,2.5,5), aiQ) = (1.5,2.5,6), Bil) = (3.5,2.5) and
B2 = (4,3).
I T | U, >0 3D B0 s 3
1/250 | 1 | 820 | 2.529(1.857) | 2.677(0.188) | 3.265(2.057) | 3.136(0.205)
1/390 | 1 | 900 | 2.857(1.409) | 2.618(0.148) | 3.487(1.662) | 3.097(0.174)
1/1000 | 1 | 966 | 3.250(0.785) | 2.547(0.090) | 3.773(1.043) | 3.040(0.109)
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Case II for different parametric models

We consider the one-dimensional diffusion processes defined by

O+ OEOR

N dxP = @ —aPxMP)de 4 =2 W x{Y =10,
14+ (XxM)2

(2 4 g (x@y2

Mo dXy® = (o —ag? X[ + o sin(X;))dt + = dwi®, X = 10,
1+ (X?)2

where o) = (agn,agl)), a@® = (agz),ag)’agz)), B = (59)’621)) and 8@ = (5§2),5§2)) are
unknown parameters, and the true parameter values are ail) = (1,2), aﬁz) = (1.5,2.5,6) and
D=5 = 3,9).

The simulations were done for each (h,,T) = (1/250,20) and (1/390,250).

1000 independent sample paths Xfll), Xff) and Xflo) are generated from the models M4, M
and [, respectively.

For each model M, the type III adaptive estimators in Remark 1, 8% = (a® 3"y for
nh? — 0, and @(f“) = (&,(f),B,(f)) for nh3 — 0, are used and the discriminant functions are
Uz i= Upn(X, 059, 0) for nh2 — 0 in Remark 4, and Us,, := U (X, 089, 082) for nk3 — 0.
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We consider the one-dimensional diffusion processes defined by

N daxM

MNy: dx®

(1)
(041

2
(af? ~

—aPxMydt +

(1)+5§1)(X(1))2d o

P X2 ol sin(x?))dt +

14+ (XxM)2

(1)
, Xp

<2>+B§2>(X<2>)2d @

= 10,

1+ (x(?)?

, X{? = 10.

Table 9. The number of selecting ;1 for 1000 independent simulated sample paths with

o =(1,2), o? = (1.5,2.5,6) and gY =

) = (3,4).
hn T U2,n 2 0 U3,n 2 0
1/250 | 20 045 041
1/390 | 250 1000 1000

Table 10. The mean and s.d. of estimators for 1000 independent simulated sample paths
with olP = (1,2), o = (1.5,2.5,6) and 8P = 82 = (3, 4).

h T 3(1) 51 2(1) 2(1)
n 51 62 61 62

1/250 | 20 | 2.995(0.059) | 3.999(0.065) | 3.002(0.061) | 4.002(0.066)

1/390 | 250 | 2.997(0.012) | 3.996(0.015) | 2.999(0.013) | 4.002(0.015)

hn T By 32 5@ 3D
1/250 | 20 | 3.036(0.087) | 3.973(0.060) | 2.998(0.088) | 4.007(0.061)
1/390 | 250 | 3.024(0.019) | 3.978(0.013) | 2.997(0.019) | 4.003(0.013)
h T A<1) A(l) A<2) A(z) A<2>

1/250 | 20 | 1. 038(0 855) | 2. 145(0 439) | 1. 804(1 260) | 2. 685(0 430) | 5. 876(1 328)
1/390 | 250 | 1.004(0.229) | 2.011(0.137) | 1.511(0.253) | 2.496(0.133) | 5.923(0.379)

When T = 20, the drift estimator of model My, a2, is biased and the discriminant function

has some misclassification.
works very well.

On the other hand, when T = 250, the discriminant function
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Case 1II for specified parametric models
Next, we investigate the one-dimensional diffusion processes as follows. For k=1, 2,

(kr) k:) (k)y2
X,
( ) du®

. B = (o _a®x® 40O gin(x® 1 (k) _
M. dx® = (af X5 4 ol sin(x ™)) dt + +(X(k))2 , X =10,

where a® = (afV,aV,af)), a® = (af?,af?,al?), g0 = 8V, 85") and p@ = (82, 85?)
are unknown parameters, and the true parameter values are oY) = (0.5,1.5,5), P =
(1.5,2.5,6) and gV = g = (4, 3).

In the same way as in the previous example, the simulations were done for each
(hn,T) = (1/250,20) and (1/390,250) with

1000 independent sample paths X%l), X,(f) and XSLO) generated from the models My, N> and
11, respectively.

We use the type III adaptive estimators in Remark 1, 9("9 (a (k),ﬁ(k)) for nh2 — 0, and @,(Lk) =
@™, By for nh3 — 0. Moreover, the discriminant functions are Us,, := U (X, 059,65 for
nh2 — 0 in Remark 4, and Us,, := U (X, 080,82y for nh3 — 0.
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For k=1,2,

I’Ik:

Table 11.

ax®

k
(" ~

P X® 4 ol sin(xP))dt + 2

(k)+5§k)(x(k))zd o

ofV =(0.5,1.5,5), ol = (1.5,2.5,6) and g = ¥ = (4,3).

hn T U2,n Z 0 U3,n 2 0
1/250 20 830 829
1/390 | 250 1000 1000

14+ (xM)2

) —
;X =1

The number of selecting Ny for 1000 independent simulated sample paths with

Table 12. The mean and s.d. of estimators for 1000 independent simulated sample paths

with ol = (0.5,1.5,5), o' = (1.5,2.5,6) and 8P = 8? = (4,3).
hn T B i 5D 3D
1/250 | 20 | 4.011(0.129) | 2.989(0.047) | 3.999(0.133) | 3.003(0.049)
1/390 | 250 | 4.011(0.028) | 2.989(0.010) | 3.998(0.029) | 3.002(0.010)
hn T B~ 35" B;” By~
1/250 | 20 | 4.008(0.127) | 2.989(0.052) | 4.000(0.131) | 3.005(0.054)
1/390 | 250 | 4.012(0.027) | 2.986(0.011) | 3.998(0.027) | 3.002(0.011)
I T &0 a0 a0 e e 5O
1/250 | 20 | 0.648(1.01) | 1.634(0.32) | 4.978(1.13) | 1.901(1.37) | 2.679(0.46) | 5.860(1.22)
1/390 | 250 | 0.507(0.21) | 1.505(0.08) | 4.960(0.32) | 1.510(0.23) | 2.494(0.11) | 5.925(0.35)

Similarly as the previous example, when T' = 20, the discriminant function has some misclas-
sification because the drift estimators a(1) and a{® have considerable biases. On the other
hand, when T' = 250, the discriminant function works very well.
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