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LEG problem in one slide

The model

nonobservable signal sequence (Xt ), t ≥ 1 with values
in R1;
observations (Yt ) from R1;
exponential type payoff function LT

The aim

To find h̄ which minimizes the payoff function.
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LEG Filtering Problem
The precise statement

observation model

signal– (Xt ), observations— (Yt ): (Xt , Yt )t≥1 is Gaussian.

Aim: To minimize with respect to h : ht ∈ Yt , t ≥ 1 the
quantity:

Exponential Criterium,I

1
µ

ln

[
Eexp

{
µ

2

T∑
t=1

(Xt − ht )
2Qt

}]
,

A Quiz

where
h : ht is Yt -measurable, Yt = σ({Yu , 1 ≤ u ≤ t})
Qs, 1 ≤ s ≤ T : given nonnegative numbers
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Three different cases

There are three different cases for LEG filtering problem:

µ = 0 - risk-neutral filtering problem.
µ > 0 - risk-averse filtering problem.
µ < 0 - risk-preferring filtering problem.

Our approach

Solve the problem for µ < 0 (it is easier).
Reduce the problem to an auxiliary risk-neutral filtering
problem.
Extend results to the general case using the analytical
properties.
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The second problem: Risk Sensitive Filtering

Recursive equation as a definition of the Risk-sensitive
Filtering:

Exponential Criterium,II

ĝt = arg min
g∈Yt

1
µ

ln
[
Eexp

{µ
2

(Xt − g)2Qt

+
µ

2

t−1∑
s=1

(Xs − ĝs)2Qs

}/
Yt

]
,

where g is a Yt measurable variable.
RS problem, result
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Connection between two problems

Are they equal?

Q: Can we always take h̄ = ĥ?
A: Sometimes yes, sometimes no . . .
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A Quiz,I

short memory

Q: What happens for a short memory criterium?

i.i.d.signal

Q: What happens if X i.i.d.?
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A Quiz,II

Quadratic Criterium

LT (h, µ) = E

[
µ

2

T∑
0

(Xs − h(s))2Qs

]
,

Risk - Neutral Filtering

Q: What happens for the quadratic type payoff function?
A: Solutions of LQG and RS: g = h̄T , h̄t = ĥt = πt (X ),
where πt (X ) := E[Xt |Yt ] (can be computed using Kalman
filter).
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Kalman filter,I

AR(1) Markov model

signal Xt = atXt−1 + D
1
2
t ε̃t , t ≥ 1 ; X0 = x ,

observation:

Yt = AtXt + εt , t ≥ 1 .

where
ε = (εt )t≥1 - i.i.d. N(0,1) random variables,
independent of X ;
A := (At , t ≥ 1) some sequence of the real numbers.
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Kalman filter,I

Estimation

πt (X ) = atπt−1(X )+
Atγt

1 + A2
t γt

[Yt−atAtπt−1(X )], t ≥ 1, π0 = x .

Filtering error

γs = Ds +
a2

sγs−1

1 + A2
s−1γs−1

, s ≥ 1, E[(Xt − πt (X ))2/Yt ] = γ̄(t).
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Kalman filter,II

Generalized Kalman filter

π(X )t = mt +
t∑

l=1

Alγ(t , l)(Yl − Alπl(X )),

Filtering error

γ(t , s) = Γ(t , s)−
s−1∑
l=1

γ(t , l)γ(s, l)
A2

l

1 + A2
l γ l

the variance of the filtering error—-
E[(Xt − πt (X ))2/Yt ] = γ̄(t , t).
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Motivations

Robust estimation
H∞ estimations
Estimation of probability to exceed the fixed level
Theory of a system failure. Estimation of the
parameters of a survival function with unobservable
component.
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References

Markov observation model.

History 1: control & partial observations P.Whittle,1981;
A. Bensoussan & J.H. van Schuppen, 1985
History 2: LEG filtering, discrete time setting J.L.
Speyer, 1992 Discrete time Markov observation model
History 3: Risk-Sensitive setting R.J. Elliott, S. Dey,
J.B.Moore, 1994 Risk-Sensitive Filtering, definition by
recursive equation
History 4 "Information State" approach, first definitions
proposed by R.J. Elliott, S. Dey, J.B.Moore and ... for
RS filtering problem
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AR(1) model, J.L. Speyer, 1992

Observation model{
Xt = atXt−1 + D

1
2
t ε̃t , t ≥ 1 ; X0 = x ,

Yt = AtXt + εt .

The solution of LEG filtering problem


ht = atht−1 +

Atγt

1 + A2
t γt

[Yt − atAtht−1], t ≥ 1, h0 = x

γs = Ds +
a2

sγs−1

1 + (A2
s−1 − µQs−1)γs−1

, s ≥ 1, γ0 = 0.

Of course, ht 6= πt (X ), but may be?
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Remaining question

What to do if the observation model is not Markovian?

references

1 M.L. Kleptsyna, A. Le Breton and M.Viot
SIAM J. Optimization and Control 47 (6) (2008), 2886 -
2911.

2 M.L. Kleptsyna, A. Le Breton and M.Viot
discrete time case arXiv:0908.2960; CDC09,
Shanghai, Chine.

3 M.L. Kleptsyna, A. Le Breton and M.Viot
relationship LEG and RS arXiv.org/abs/0902.0940
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LEG Filtering Problem, Result

Consider h̄ = (h̄(t), t ≥ 0): solution of LEG filtering problem

LEG, definition

h = argminh: ht∈Yt ,t≥1
1
µ ln

[
Eexp

{
µ
2
∑T

t=1(Xt − ht )
2Qt

}]
.

LEG, characterization

ht = π̂t (Xt )

—the conditional expectation of X w.r.to the new measure

-Which measure?
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LEG problem, result for Markov type
observations

Observations

Yt = AtXt + εt , t ≥ 1 .

LEG, solution

ht = mt +
∑t

l=1 Alγ(t , l)(Yl − Alhl),

finding γ: Riccati type equation

γ(t , s) = Γ(t , s)−
∑s−1

l=1 γ(t , l)γ(s, l) Sl
1+Slγ l

, Sl = A2
l − µQl
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RS problem, result

Consider ĥ = (ĥ(t), t ≥ 0): solution of RS filtering problem
The second problem: Risk Sensitive Filtering

RS, solution, characterization

ĥt = π̂t (Xt )

- the conditional expectation of X with respect to the new
measure.

we have also the equality of two solutions ĥ = h̄.
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New measure, the first approach
Change of measure

notation

Jt = exp

{
−1

2

t∑
s=1

(Xs − hs)2Qs

}
.

New measure

d P̂
d P

=
T∏

t=1

Mt

Mt−1
,

with

Mt

Mt−1
=

πt−1[1(Xt ∈ dx , Yt ∈ dy)Jt−1]

πt−1[Jt−1]Et−11(Xt ∈ dx , Yt ∈ dy)

∣∣∣∣
x=Xt , y=Yt

.
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New measure-property

Property

with respect to the new measure P̂ variables (Xt ), t ≥ 1
are independent
Yt does not depend on (Xs), s ≤ t − 1.

πt [Jt ] = π̂t [Jt ]πt [Mt ]

it is not exactly the classical Bayes formula.
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Back to the initial measure - calculation rules
Auxiliary filtering problem

Auxiliary observations, I

Ȳt = (Y 1
t ,Y

2
t ), such that{

Y 1
t = Yt ,

Y 2
t = Qt (Xt − ht ) +

√
Qt ε̄t ,

where ε̄ = (ε̄t )t≥1 – a sequence of i.i.d. N (0,1) random
variables independent of X

Auxiliary observations, II

ξt =
∑t

s=1(Xs − hs)Y 2
s .

Bayes formula
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Back to the initial measure

Link between measures

π̂t (X ) = π̄t ,t−1(Xt )− γ̄Xξ
(t , t − 1)

with

π̄t,t−1(X ) = E[Xt/Ȳt,t−1] –the conditional expectation of
X
γ̄Xξ

(t , t − 1) =

E[(Xt − E[Xt/Ȳt,t−1])(ξt−1 − πt−1(ξt−1))/Ȳt,t−1] - the
conditional covariance

γ̂t = E[(Xt − E[Xt/Ȳt ,t−1])]2 — the variance of the
filtering error
σ-field Yt ,t−1 = σ({(Ys,Y 2

r ), 1 ≤ s ≤ t , 1 ≤ r ≤ t − 1}).



Filtering with
Exponential

Criteria

Le Breton,
Viot,

Kleptsyna

Introduction
Problems statement

Motivations and
references

General
Gaussian
observation
model
LEG and RS filtering
problem, result

Particular cases

LEG and RS
filtering
problems — A
bit more
general
setting

open
questions

Back to the initial measure

Link between measures

π̂t (X ) = π̄t ,t−1(Xt )− γ̄Xξ
(t , t − 1)

with
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Applying our solution to particular cases

Methodology

Write equations for
the variance of the filtering error γ̄XX (t , t − 1);
for the difference π̂t (X ) = π̄t,t−1(X )− γ̄Xξ(t).

Solve the LEG filtering problem: take h̄ = π̂t (X ).

Notation

(εt , ε̃t , t = 1,2, . . . ) is a sequence of i.i.d. standard
Gaussian random variables
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AR(1) model

Observation model{
Xt = atXt−1 + D

1
2
t ε̃t , t ≥ 1 ; X0 = x ,

Yt = AtXt + εt .

The solution of LEG filtering problem

 ht = atht−1 + Atγt
1+A2

t γt
[Yt − atAtht−1], t ≥ 1, h0 = x .,

γs = Ds +
a2

sγs−1
1+(A2

s−1−µQs−1)γs−1
, s ≥ 1, γ0 = 0.
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MA(1) model

Observation model{
Xt = ε̃t + λε̃t−1 ; t ≥ 1 ,
Yt = AtXt + εt .

The solution of LEG filtering problem

 γt = 1 + λ2 − λ A2
t−1−µQt−1

1+(A2
t−1−µQt−1)γt−1

, t ≥ 1 ; γ0 = 1 + λ2,

ht = λ
At−1

1+A2
t γt

[Yt−1 − At−1ht−1] + Atγt
1+A2

t γt
Yt , t ≥ 1, h0 = x .
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"Non Markov" observations, can be elaborated

observations contains MA(1){
Xt
Yt = AtXt + ε̃t + λε̃t−1 ; t ≥ 1 ,

observations contains AR(1)
Xt
Yt = AtXt + ε̃t + λε̃t−1 ; t ≥ 1 ,
εt = btεt−1 + ε̃t
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Two problems, again

For given positive symmetric deterministic 2× 2 matrices

Ωs,1 ≤ s ≤ T , let us set Φt (h) = (Xt ht )Ωt

(
Xt
ht

)
.

“LEG setting”

h = arg min
ht∈Yt , t≥1

1
µ

ln

[
E

{
exp

{
µ

2

T∑
1

Φs(h)

}}]
.

“RS setting”

ĥt = arg min
g∈Yt

1
µ

ln

(
E
[

exp
{µ

2
Φt (g) +

µ

2

t−1∑
1

Φs(ĥ)
}/

Yt

])
,

where g ∈ Yt means that g is a Yt measurable variable.
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Equality of two solutions, yes

The question

Does the equality h̄ = ĥ hold ?

One possible answer

Yes for degenerated matrices Ω :
Ω1,1 = Ω2,2 = −Ω1,2 = −Ω′2,1 = Q.
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Equality of two solutions,no

LEG problem, solution

Ω =

(
2 1
1 1

)
, A = 1, µ = −1 and Xt = Xt−1 + ε̃t .

h1 =
1 + Γ(T ,1)

2 + Γ(T ,1)
Y1

where

Γ(T , t) = 10
λT − λt

(1−
√

5)λT − (1 +
√

5)λt
, λ =

(3−
√

5)

(3 +
√

5)
.

RS problem, solution

ĥ1 =
π1(X1)

1 + γ1
=

1
4

Y1
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Open questions

A couple of unexplored cases

1 The non-linear setting
2 Equality of the solutions of the two problems for

non-Gaussian models
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