Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statemen Motivations and references

General Gaussian observation model LEG and RS filterin problem, result Particular cases

LEG and RS filtering problems — A bit more general setting

open questions

Filtering with Exponential Criteria Discrete time case

Alain Le Breton¹ Michel Viot¹ Marina Kleptsyna²

¹University of Grenoble, France

²University of Le Mans, France

June 17th, 2010 / Angers

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statemen Motivations and references

- General Gaussian observation model
- LEG and RS filtering problem, result Particular cases
- LEG and RS filtering problems — A bit more general setting

open questions

Introduction

- Problems statement
- Motivations and references

2 General Gaussian observation model

- LEG and RS filtering problem, result
- Particular cases
- 3 LEG and RS filtering problems A bit more general setting

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

4 open questions

Outline

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statement Motivations and references

General Gaussian observation model LEG and RS filte

problem, result Particular cases

LEG and RS filtering problems — A bit more general setting

open questions

Introduction

Problems statement

Motivations and references

General Gaussian observation model ■ LEG and RS filtering problem, result ■ Particular cases

3 LEG and RS filtering problems — A bit more general setting

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

3

open questions

LEG problem in one slide

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statement Motivations and references

General Gaussian observation model

LEG and RS filtering problem, result Particular cases

LEG and RS filtering problems — A bit more general setting

open questions

The model

■ nonobservable signal sequence (X_t), t ≥ 1 with values in ℝ¹;

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- observations (Y_t) from \mathbb{R}^1 ;
- exponential type payoff function L_T

The aim

To find \bar{h} which minimizes the payoff function.

LEG problem in one slide

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statement Motivations and references

General Gaussian observation model

LEG and RS filtering problem, result Particular cases

LEG and RS filtering problems — A bit more general setting

open questions

The model

■ nonobservable signal sequence (X_t), t ≥ 1 with values in ℝ¹;

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- observations (Y_t) from \mathbb{R}^1 ;
- exponential type payoff function L_T

The aim

To find \bar{h} which minimizes the payoff function.

LEG Filtering Problem

The precise statement

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statement Motivations and

Motivations and references

General Gaussian observation model LEG and RS filteri problem, result

Particular cases

LEG and RS filtering problems — A bit more general setting

open questions

observation model

signal– (X_t), observations— (Y_t): (X_t , Y_t) $_{t\geq 1}$ is Gaussian.

Aim: To minimize with respect to $h: h_t \in \mathcal{Y}_t, t \ge 1$ the quantity:

Exponential Criterium,I

$$\frac{1}{\mu} \ln \left[\mathbb{E} \exp \left\{ \frac{\mu}{2} \sum_{t=1}^{T} (X_t - h_t)^2 Q_t \right\} \right],$$

A Quiz

where

 $\blacksquare h: h_t \text{ is } \mathcal{Y}_t \text{-measurable, } \mathcal{Y}_t = \sigma(\{Y_u, 1 \leq u \leq t\})$

 $\blacksquare Q_s, 1 \leq s \leq T$: given nonnegative numbers is s = s = s = s = s

LEG Filtering Problem The precise statement

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statement Motivations and

General Gaussian observation model

problem, result Particular cases

LEG and RS filtering problems — *F* bit more general setting

open questions

observation model

signal– (X_t), observations— (Y_t): (X_t , Y_t) $_{t\geq 1}$ is Gaussian.

Aim: To minimize with respect to $h: h_t \in \mathcal{Y}_t, t \ge 1$ the quantity:

Exponential Criterium,I

$$\frac{1}{\mu} \ln \left[\mathbb{E} \exp \left\{ \frac{\mu}{2} \sum_{t=1}^{T} (X_t - h_t)^2 Q_t \right\} \right].$$

A Quiz

where

■ $h: h_t$ is \mathcal{Y}_t -measurable, $\mathcal{Y}_t = \sigma(\{Y_u, 1 \le u \le t\})$ ■ $Q_s, 1 \le s \le T$: given nonnegative numbers

Three different cases

Le Breton, Viot, Kleptsyna

Introduction Problems statement Motivations and references

General Gaussian observation model LEG and RS filte

LEG and RS filtering problem, result Particular cases

LEG and RS filtering problems — A bit more general setting

open questions

There are three different cases for LEG filtering problem:

• $\mu = 0$ - risk-neutral filtering problem.

 $\mu > 0$ - risk-averse filtering problem.

 $\mu < 0$ - risk-preferring filtering problem.

Dur approach

- Solve the problem for $\mu < 0$ (it is easier).
- Reduce the problem to an auxiliary risk-neutral filtering problem.
- Extend results to the general case using the analytical properties.

Three different cases

Le Breton, Viot, Kleptsyna

Introduction Problems statement Motivations and references

General Gaussian observation model LEG and RS filte

Particular cases

filtering problems — A bit more general setting

open questions There are three different cases for LEG filtering problem:

- $\mu = 0$ risk-neutral filtering problem.
- $\mu > 0$ risk-averse filtering problem.

 $\mu < 0$ - risk-preferring filtering problem.

Dur approach

- Solve the problem for $\mu < 0$ (it is easier).
- Reduce the problem to an auxiliary risk-neutral filtering problem.
- Extend results to the general case using the analytical properties.

Three different cases

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statement Motivations and references

General Gaussian observation model LEG and RS filte

LEG and RS filtering problems — A bit more general setting

open questions There are three different cases for LEG filtering problem:

- $\mu = 0$ risk-neutral filtering problem.
- $\mu > 0$ risk-averse filtering problem.
- $\mu < 0$ risk-preferring filtering problem.

Our approach

- Solve the problem for $\mu < 0$ (it is easier).
- Reduce the problem to an auxiliary risk-neutral filtering problem.
- Extend results to the general case using the analytical properties.

The second problem: Risk Sensitive Filtering

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statement Motivations and references

General Gaussian observation model LEG and RS filteri problem, result Particular cases

LEG and RS filtering problems — A bit more general setting

open questions Recursive equation as a definition of the Risk-sensitive Filtering:

Exponential Criterium,II

$$\hat{g}_{t} = \arg\min_{g \in \mathcal{Y}_{t}} \frac{1}{\mu} \ln \left[\mathbb{E} \exp \left\{ \frac{\mu}{2} (X_{t} - g)^{2} Q_{t} + \frac{\mu}{2} \sum_{s=1}^{t-1} (X_{s} - \hat{g}_{s})^{2} Q_{s} \right\} \middle/ \mathcal{Y}_{t} \right],$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

where *g* is a \mathcal{Y}_t measurable variable.

RS problem, result

Connection between two problems

Introduction Problems statement Motivations and references

General Gaussian observation model LEG and RS filte

problem, result Particular cases

LEG and RS filtering problems — A bit more general setting

open questions

Are they equal?

Q: Can we always take $\bar{h} = \hat{h}$?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Connection between two problems

Viot, Kleptsyna

Introduction Problems statement Motivations and references

General Gaussian observation model

Particular cases

LEG and RS filtering problems — A bit more general setting

open questions

Are they equal?

Q: Can we always take $\bar{h} = \hat{h}$?

A: Sometimes yes, sometimes no ...

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

A Quiz,I

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statement Motivations and references

General Gaussian observation model LEG and RS filter

problem, result Particular cases

LEG and RS filtering problems — A bit more general setting

open questions

short memory

Q: What happens for a short memory criterium?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

i.d.signa

Q: What happens if X i.i.d.?

A Quiz,I

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statement Motivations and references

General Gaussian observation model LEG and RS filter

problem, result Particular cases

LEG and RS filtering problems — A bit more general setting

open questions

short memory

Q: What happens for a short memory criterium?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

i.i.d.signal

Q: What happens if X i.i.d.?

A Quiz,II

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Problems statement Motivations and references

General Gaussian observation model LEG and RS filteri problem, result

Particular cases

LEG and RS filtering problems — A bit more general setting

open questions

Quadratic Criterium

$$L_T(h,\mu) = \mathbb{E}\left[rac{\mu}{2}\sum_{0}^T (X_s - h(s))^2 Q_s
ight],$$

Risk - Neutral Filtering

Q: What happens for the quadratic type payoff function? A: Solutions of LQG and RS: $g = \bar{h}_T$, $\bar{h}_t = \hat{h}_t = \pi_t(X)$, where $\pi_t(X) := \mathbb{E}[X_t | \mathcal{Y}_t]$ (can be computed using Kalman filter).

A Quiz,II

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Problems statement Motivations and references

General Gaussian observation model LEG and RS filteri problem result

Particular cases

LEG and RS filtering problems — A bit more general setting

open questions

Quadratic Criterium

$$L_T(h,\mu) = \mathbb{E}\left[rac{\mu}{2}\sum_{0}^{T}(X_s - h(s))^2 Q_s
ight],$$

Risk - Neutral Filtering

Q: What happens for the quadratic type payoff function? A: Solutions of LQG and RS: $g = \bar{h}_T$, $\bar{h}_t = \hat{h}_t = \pi_t(X)$, where $\pi_t(X) := \mathbb{E}[X_t|\mathcal{Y}_t]$ (can be computed using Kalman filter).

A Quiz,II

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Problems statement Motivations and references

General Gaussian observation model LEG and RS filterin problem, result

Particular cases

LEG and RS filtering problems — A bit more general setting

open questions

Quadratic Criterium

$$L_T(h,\mu) = \mathbb{E}\left[rac{\mu}{2}\sum_{0}^T (X_s - h(s))^2 Q_s
ight],$$

Risk - Neutral Filtering

Q: What happens for the quadratic type payoff function? A: Solutions of LQG and RS: $g = \bar{h}_T$, $\bar{h}_t = \hat{h}_t = \pi_t(X)$, where $\pi_t(X) := \mathbb{E}[X_t | \mathcal{Y}_t]$ (can be computed using Kalman filter).

Kalman filter,I

AR(1) Markov model

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statement Motivations and references

General Gaussian observation model LEG and RS filteri problem, result

LEG and RS filtering problems — A bit more general setting

open questions

1

signal
$$X_t = a_t X_{t-1} + D_t^{\frac{1}{2}} \widetilde{\varepsilon}_t$$
, $t \ge 1$; $X_0 = x$, observation:

$$Y_t = A_t X_t + \varepsilon_t , \quad t \ge 1 .$$

where

- $\varepsilon = (\varepsilon_t)_{t \ge 1}$ i.i.d. N(0, 1) random variables, independent of X;
- $A := (A_t, t \ge 1)$ some sequence of the real numbers.

Kalman filter,I

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statement Motivations and

General Gaussian observation model LEG and RS filteri problem, result

LEG and RS filtering problems — *i* bit more general setting

open questions

Estimation

$$\pi_t(X) = a_t \pi_{t-1}(X) + \frac{A_t \overline{\gamma}_t}{1 + A_t^2 \overline{\gamma}_t} [Y_t - a_t A_t \pi_{t-1}(X)], \ t \ge 1, \ \pi_0 = x.$$

iltering error

$$\overline{\gamma}_s = D_s + \frac{a_s^2 \overline{\gamma}_{s-1}}{1 + A_{s-1}^2 \overline{\gamma}_{s-1}}, s \ge 1, \mathbb{E}[(X_t - \pi_t(X))^2 / \mathcal{Y}_t] = \overline{\gamma}(t).$$

・ロト ・ 同ト ・ ヨト ・ ヨト

э.

Kalman filter,I

Estimation

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statement Motivations and references

General Gaussian observation model LEG and RS filter problem result

Particular cases

LEG and RS filtering problems — *F* bit more general setting

open questions

$\pi_t(X) = a_t \pi_{t-1}(X) + \frac{A_t \overline{\gamma}_t}{1 + A_t^2 \overline{\gamma}_t} [Y_t - a_t A_t \pi_{t-1}(X)], \ t \ge 1, \ \pi_0 = x.$

Filtering error

$$\overline{\gamma}_{s} = D_{s} + \frac{a_{s}^{2}\overline{\gamma}_{s-1}}{1 + A_{s-1}^{2}\overline{\gamma}_{s-1}}, \ s \geq 1, \ \mathbb{E}[(X_{t} - \pi_{t}(X))^{2}/\mathcal{Y}_{t}] = \overline{\gamma}(t).$$

Kalman filter,II

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statement Motivations and references

General Gaussian observation model LEG and RS filterir problem, result Particular cases

LEG and RS filtering problems — A bit more general setting

open questions

Generalized Kalman filter

$$\pi(X)_t = m_t + \sum_{l=1}^t A_l \overline{\gamma}(t, l) (Y_l - A_l \pi_l(X)),$$

Filtering error

$$\overline{\gamma}(t,s) = \Gamma(t,s) - \sum_{l=1}^{s-1} \overline{\gamma}(t,l) \overline{\gamma}(s,l) \, rac{A_l^2}{1+A_l^2 \overline{\gamma}_l}$$

the variance of the filtering error— $\mathbb{E}[(X_t - \pi_t(X))^2 / \mathcal{Y}_t] = \bar{\gamma}(t, t).$

Kalman filter,II

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statement Motivations and references

General Gaussian observation model LEG and RS filteri problem, result Particular cases

LEG and RS filtering problems — A bit more general setting

open questions

Generalized Kalman filter

$$\pi(X)_t = m_t + \sum_{l=1}^t A_l \overline{\gamma}(t, l) (Y_l - A_l \pi_l(X)),$$

Filtering error

$$\overline{\gamma}(t, s) = \Gamma(t, s) - \sum_{l=1}^{s-1} \overline{\gamma}(t, l) \overline{\gamma}(s, l) \frac{A_l^2}{1 + A_l^2 \overline{\gamma}_l}$$

the variance of the filtering error— $\mathbb{E}[(X_t - \pi_t(X))^2 / \mathcal{Y}_t] = \bar{\gamma}(t, t).$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ● の々で

Kalman filter,II

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statement Motivations and references

General Gaussian observation model LEG and RS filteri problem, result Particular cases

LEG and RS filtering problems — A bit more general setting

open questions

Generalized Kalman filter

$$\pi(X)_t = m_t + \sum_{l=1}^t A_l \overline{\gamma}(t, l) (Y_l - A_l \pi_l(X)),$$

Filtering error

$$\overline{\gamma}(t, \boldsymbol{s}) = \Gamma(t, \boldsymbol{s}) - \sum_{l=1}^{s-1} \overline{\gamma}(t, l) \overline{\gamma}(\boldsymbol{s}, l) \frac{A_l^2}{1 + A_l^2 \overline{\gamma}_l}$$

the variance of the filtering error—- $\mathbb{E}[(X_t - \pi_t(X))^2 / \mathcal{Y}_t] = \bar{\gamma}(t, t).$

▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三理 - 釣A@

Outline

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statement Motivations and references

General Gaussian observation model LEG and RS filte

LEG and RS filtering problem, result Particular cases

LEG and RS filtering problems — A bit more general setting

open questions

Introduction

Problems statement

- Motivations and references
- General Gaussian observation model LEG and RS filtering problem, result Particular cases
- 3 LEG and RS filtering problems A bit more general setting

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

open questions

Motivations

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statement Motivations and references

General Gaussian observation model LEG and RS filter problem, result

Particular cases

LEG and RS filtering problems — A bit more general setting

open questions

Robust estimation

- H_{∞} estimations
- Estimation of probability to exceed the fixed level
- Theory of a system failure. Estimation of the parameters of a survival function with unobservable component.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

References

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statement Motivations and references

General Gaussian observation model LEG and RS filter problem, result

FG and RS

filtering problems — A bit more general setting

open questions

Markov observation model.

- History 1: control & partial observations P.Whittle,1981;
 A. Bensoussan & J.H. van Schuppen, 1985
- History 2: LEG filtering, discrete time setting J.L.
 Speyer, 1992 Discrete time Markov observation model
- History 3: Risk-Sensitive setting R.J. Elliott, S. Dey, J.B.Moore, 1994 Risk-Sensitive Filtering, definition by recursive equation
- History 4 "Information State" approach, first definitions proposed by R.J. Elliott, S. Dey, J.B.Moore and ... for RS filtering problem

AR(1) model, J.L. Speyer, 1992

Observation model

Criteria Le Breton, Viot,

Filtering with

Exponential

Introduction Problems statement Motivations and references

General Gaussian observation model LEG and RS filteri problem, result

LEG and RS filtering problems — A bit more general setting

open question

$$\begin{cases} X_t = a_t X_{t-1} + D_t^{\frac{1}{2}} \widetilde{\varepsilon}_t, \ t \ge 1; \quad X_0 = x, \\ Y_t = A_t X_t + \varepsilon_t. \end{cases}$$

The solution of LEG filtering problem

$$\begin{cases} \overline{h}_t = a_t \overline{h}_{t-1} + \frac{A_t \overline{\gamma}_t}{1 + A_t^2 \overline{\gamma}_t} [Y_t - a_t A_t \overline{h}_{t-1}], \ t \ge 1, \ \overline{h}_0 = x \\ \overline{\gamma}_s = D_s + \frac{a_s^2 \overline{\gamma}_{s-1}}{1 + (A_{s-1}^2 - \mu Q_{s-1}) \overline{\gamma}_{s-1}}, \ s \ge 1, \ \overline{\gamma}_0 = 0. \end{cases}$$

Of course, $\overline{h}_t \neq \pi_t(X)$, but may be?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

AR(1) model, J.L. Speyer, 1992

Observation model

Criteria Le Breton Viot.

Filtering with

Exponential

Introduction Problems statemen Motivations and references

General Gaussian observation model LEG and RS filteri problem, result Particular cases

LEG and RS filtering problems — *A* bit more general setting

open questions

$$\begin{cases} X_t = a_t X_{t-1} + D_t^{\frac{1}{2}} \widetilde{\varepsilon}_t, \ t \ge 1; \quad X_0 = x, \\ Y_t = A_t X_t + \varepsilon_t. \end{cases}$$

The solution of LEG filtering problem

$$\begin{cases} \overline{h}_t = a_t \overline{h}_{t-1} + \frac{A_t \overline{\gamma}_t}{1 + A_t^2 \overline{\gamma}_t} [Y_t - a_t A_t \overline{h}_{t-1}], \ t \ge 1, \ \overline{h}_0 = x \\ \overline{\gamma}_s = D_s + \frac{a_s^2 \overline{\gamma}_{s-1}}{1 + (A_{s-1}^2 - \mu Q_{s-1}) \overline{\gamma}_{s-1}}, \ s \ge 1, \ \overline{\gamma}_0 = 0. \end{cases}$$

Of course, $\overline{h}_t \neq \pi_t(X)$, but may be?

AR(1) model, J.L. Speyer, 1992

Observation model

Criteria Le Breton Viot,

Filtering with

Exponential

Introduction Problems statemen Motivations and references

General Gaussian observation model LEG and RS filteri problem, result Particular cases

LEG and RS filtering problems — A bit more general setting

open question

$$\begin{cases} X_t = a_t X_{t-1} + D_t^{\frac{1}{2}} \widetilde{\varepsilon}_t, \ t \ge 1; \quad X_0 = x, \\ Y_t = A_t X_t + \varepsilon_t. \end{cases}$$

The solution of LEG filtering problem

$$\begin{cases} \overline{h}_t = a_t \overline{h}_{t-1} + \frac{A_t \overline{\gamma}_t}{1 + A_t^2 \overline{\gamma}_t} [Y_t - a_t A_t \overline{h}_{t-1}], \ t \ge 1, \ \overline{h}_0 = x \\ \overline{\gamma}_s = D_s + \frac{a_s^2 \overline{\gamma}_{s-1}}{1 + (A_{s-1}^2 - \mu Q_{s-1}) \overline{\gamma}_{s-1}}, \ s \ge 1, \ \overline{\gamma}_0 = 0. \end{cases}$$

Of course, $\overline{h}_t \neq \pi_t(X)$, but may be?

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statement Motivations and references

General Gaussian observation model

problem, result Particular cases

LEG and RS filtering problems — A bit more general setting

open questions

Remaining question

What to do if the observation model is not Markovian?

eterences

- M.L. Kleptsyna, A. Le Breton and M.Viot SIAM J. Optimization and Control 47 (6) (2008), 2886 -2911.
- M.L. Kleptsyna, A. Le Breton and M.Viot discrete time case arXiv:0908.2960; CDC09, Shanghai, Chine.
- 3 M.L. Kleptsyna, A. Le Breton and M.Viot relationship LEG and RS arXiv.org/abs/0902.0940

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statement Motivations and references

- General Gaussian observation model
- problem, result Particular cases
- LEG and RS filtering problems — A bit more general setting

open questions

Remaining question

What to do if the observation model is not Markovian?

references

- M.L. Kleptsyna, A. Le Breton and M.Viot SIAM J. Optimization and Control 47 (6) (2008), 2886 -2911.
- M.L. Kleptsyna, A. Le Breton and M.Viot discrete time case arXiv:0908.2960; CDC09, Shanghai, Chine.
- 3 M.L. Kleptsyna, A. Le Breton and M.Viot relationship LEG and RS arXiv.org/abs/0902.0940

Outline

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statement Motivations and references

General Gaussian observation model LEG and RS filtering

problem, result Particular cases

LEG and RS filtering problems — A bit more general setting

open questions

Introduction

Problems statement

- Motivations and references
- 2 General Gaussian observation model
 LEG and RS filtering problem, result
 Particular cases

3 LEG and RS filtering problems — A bit more general setting

・ロット (雪) (日) (日) (日)

open questions

LEG Filtering Problem, Result

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statement Motivations and references

General Gaussian observation model LEG and RS filtering problem, result Particular cases

LEG and RS filtering problems — A bit more general setting

open questions

Consider $\bar{h} = (\bar{h}(t), t \ge 0)$: solution of LEG filtering problem

_EG, definition

$$\overline{h} = \operatorname{argmin}_{h: h_t \in \mathcal{Y}_t, t \ge 1} \frac{1}{\mu} \ln \left[\mathbb{E} \exp \left\{ \frac{\mu}{2} \sum_{t=1}^T (X_t - h_t)^2 Q_t \right\} \right].$$

EG, characterization

$$\overline{h}_t = \widehat{\pi}_t(\boldsymbol{X}_t)$$

-the conditional expectation of X w.r.to the new measure

-Which measure?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

LEG Filtering Problem, Result

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statemen Motivations and references

General Gaussian observation model LEG and RS filtering problem, result Particular cases

LEG and RS filtering problems — A bit more general setting

open questions Consider $\bar{h} = (\bar{h}(t), t \ge 0)$: solution of LEG filtering problem

LEG, definition

$$\overline{h} = \operatorname{argmin}_{h: h_t \in \mathcal{Y}_t, t \ge 1} \frac{1}{\mu} \ln \left[\mathbb{E} \exp \left\{ \frac{\mu}{2} \sum_{t=1}^T (X_t - h_t)^2 Q_t \right\} \right].$$

EG, characterization

$$\overline{h}_t = \widehat{\pi}_t(\boldsymbol{X}_t)$$

-the conditional expectation of X w.r.to the new measure

-Which measure?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

LEG Filtering Problem, Result

Filtering with Exponential Criteria

LEG and RS filtering problem, result

Consider $\bar{h} = (\bar{h}(t), t \ge 0)$: solution of LEG filtering problem

LEG, definition

$$\overline{h} = \operatorname{argmin}_{h: h_t \in \mathcal{Y}_t, t \ge 1} \frac{1}{\mu} \ln \left[\mathbb{E} \exp \left\{ \frac{\mu}{2} \sum_{t=1}^T (X_t - h_t)^2 Q_t \right\} \right].$$

LEG, characterization

$$\overline{h}_t = \widehat{\pi}_t(X_t)$$

-the conditional expectation of X w.r.to the new measure

▲□▶▲□▶▲□▶▲□▶ □ のQ@

LEG Filtering Problem, Result

Filtering with Exponential Criteria

LEG and RS filtering problem, result

Consider $\bar{h} = (\bar{h}(t), t \ge 0)$: solution of LEG filtering problem

LEG, definition

$$\overline{h} = \operatorname{argmin}_{h: h_t \in \mathcal{Y}_t, t \ge 1} \frac{1}{\mu} \ln \left[\mathbb{E} \exp \left\{ \frac{\mu}{2} \sum_{t=1}^T (X_t - h_t)^2 Q_t \right\} \right].$$

LEG, characterization

$$\overline{h}_t = \widehat{\pi}_t(X_t)$$

-the conditional expectation of X w.r.to the new measure

-Which measure?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

LEG problem, result for Markov type observations

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statemen Motivations and references

General Gaussian observation model LEG and RS filtering problem, result

LEG and RS filtering problems — A bit more general setting

open questions

Observations

$$Y_t = A_t X_t + \varepsilon_t , \quad t \ge 1 .$$

LEG, solution

$$\overline{h}_t = m_t + \sum_{l=1}^t A_l \overline{\gamma}(t, l) (Y_l - A_l \overline{h}_l),$$

finding γ : Riccati type equation

$$\overline{\gamma}(t, s) = \Gamma(t, s) - \sum_{l=1}^{s-1} \overline{\gamma}(t, l) \overline{\gamma}(s, l) \frac{S_l}{1 + S_l \overline{\gamma}_l}, \quad S_l = A_l^2 - \mu Q_l$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

RS problem, result

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statement Motivations and references

General Gaussian observation model LEG and RS filtering problem, result

Particular cases

LEG and RS filtering problems — A bit more general setting

open questions

Consider $\hat{h} = (\hat{h}(t), t \ge 0)$: solution of RS filtering problem

The second problem: Risk Sensitive Filtering

RS, solution, characterization

$$\hat{h}_t = \widehat{\pi}_t(X_t)$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- the conditional expectation of *X* with respect to the new measure.

we have also the equality of two solutions $\hat{h} = \bar{h}$.

RS problem, result

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statement Motivations and references

General Gaussian observation model LEG and RS filtering problem, result

Particular cases

LEG and RS filtering problems — A bit more general setting

open questions

Consider $\hat{h} = (\hat{h}(t), t \ge 0)$: solution of RS filtering problem

• The second problem: Risk Sensitive Filtering

RS, solution, characterization

$$\hat{h}_t = \widehat{\pi}_t(X_t)$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- the conditional expectation of *X* with respect to the new measure.

we have also the equality of two solutions $\hat{h} = \bar{h}$.

New measure, the first approach Change of measure

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statemen Motivations and references

General Gaussian observation model LEG and RS filtering problem, result

LEG and RS filtering problems — A bit more general setting

open questions

notation

$$J_t = \exp\left\{-rac{1}{2}\sum_{s=1}^t (X_s - h_s)^2 Q_s
ight\}.$$

New measure

$$\frac{d\,\widehat{\mathbb{P}}}{d\,\mathbb{P}}=\prod_{t=1}^T\frac{M_t}{M_{t-1}},$$

with

$$\frac{M_t}{M_{t-1}} = \frac{\pi_{t-1}[\mathbf{1}(X_t \in dx, Y_t \in dy)\mathbf{J}_{t-1}]}{\pi_{t-1}[J_{t-1}]\mathbb{E}_{t-1}\mathbf{1}(X_t \in dx, Y_t \in dy)}\Big|_{x=X_t, y=Y_t}$$

New measure-property

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statement Motivations and references

General Gaussian observation model LEG and RS filtering

problem, result Particular cases

LEG and RS filtering problems — A bit more general setting

open questions

Property

- with respect to the new measure P̂ variables (X_t), t ≥ 1 are independent
- Y_t does not depend on $(X_s), s \le t 1$.

$$\pi_t[J_t] = \widehat{\pi}_t[J_t]\pi_t[M_t]$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

it is not exactly the classical Bayes formula.

New measure-property

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statement Motivations and references

General Gaussian observation model LEG and RS filtering problem, result

Particular cases

LEG and RS filtering problems — A bit more general setting

open questions

Property

- with respect to the new measure P̂ variables (X_t), t ≥ 1 are independent
- Y_t does not depend on $(X_s), s \le t 1$.

$$\pi_t[J_t] = \widehat{\pi}_t[J_t]\pi_t[M_t]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

it is not exactly the classical Bayes formula.

Back to the initial measure - calculation rules

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statemen Motivations and references

General Gaussian observation model LEG and RS filtering problem, result Particular cases

LEG and RS filtering problems — A bit more general setting

open questions

Auxiliary observations, I

 $\bar{Y}_t = (Y_t^1, Y_t^2)$, such that

$$\begin{cases} Y_t^1 = Y_t, \\ Y_t^2 = Q_t(X_t - h_t) + \sqrt{Q_t} \overline{\varepsilon}_t, \end{cases}$$

where $\bar{\varepsilon} = (\bar{\varepsilon}_t)_{t \ge 1}$ – a sequence of i.i.d. $\mathcal{N}(0, 1)$ random variables independent of *X*

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Auxiliary observations, I

$$\xi_t = \sum_{s=1}^t (X_s - h_s) Y_s^2.$$

Bayes formula

Back to the initial measure - calculation rules Auxiliary filtering problem

Filtering with Exponential Criteria

LEG and RS filtering problem, result

Auxiliary observations, I

 $\overline{Y}_t = (Y_t^1, Y_t^2)$, such that

$$\begin{cases} Y_t^1 = Y_t, \\ Y_t^2 = Q_t(X_t - h_t) + \sqrt{Q_t} \overline{\varepsilon}_t, \end{cases}$$

where $\bar{\varepsilon} = (\bar{\varepsilon}_t)_{t \ge 1}$ – a sequence of i.i.d. $\mathcal{N}(0, 1)$ random

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Auxiliary observations, II

variables independent of X

$$\xi_t = \sum_{s=1}^t (X_s - h_s) Y_s^2.$$

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statement Motivations and references

General Gaussian observation model LEG and RS filtering

problem, result Particular cases

LEG and RS filtering problems — A bit more general setting

open questions

Link between measures

$$\widehat{\pi}_t(X) = \overline{\pi}_{t,t-1}(X_t) - \overline{\gamma}_{X\xi}(t,t-1)$$
with

- $\bar{\pi}_{t,t-1}(X) = \mathbb{E}[X_t/\bar{\mathcal{Y}}_{t,t-1}]$ -the conditional expectation of X
- $\overline{\gamma}_{x_{\xi}}(t, t-1) = \\ \mathbb{E}[(X_t \mathbb{E}[X_t/\bar{\mathcal{Y}}_{t,t-1}])(\xi_{t-1} \overline{\pi}_{t-1}(\xi_{t-1}))/\bar{\mathcal{Y}}_{t,t-1}] \text{the} \\ \text{conditional covariance}$
- $\widehat{\gamma}_t = \mathbb{E}[(X_t \mathbb{E}[X_t/\overline{y}_{t,t-1}])]^2$ the variance of the filtering error

■ σ -field $\mathcal{Y}_{t,t-1} = \sigma(\{(Y_s, Y_r^2), 1 \le s \le t, 1 \le r \le t-1\}).$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statement Motivations and references

General Gaussian observation model LEG and RS filtering

problem, result Particular cases

LEG and RS filtering problems — A bit more general setting

open questions

Link between measures

$$\widehat{\pi}_t(X) = \overline{\pi}_{t,t-1}(X_t) - \overline{\gamma}_{X\xi}(t,t-1)$$
with

- $\bar{\pi}_{t,t-1}(X) = \mathbb{E}[X_t/\bar{\mathcal{Y}}_{t,t-1}]$ -the conditional expectation of X
- $\bar{\gamma}_{\chi_{\xi}}(t, t-1) = \mathbb{E}[(X_t \mathbb{E}[X_t/\bar{\mathcal{Y}}_{t,t-1}])(\xi_{t-1} \overline{\pi}_{t-1}(\xi_{t-1}))/\bar{\mathcal{Y}}_{t,t-1}]$ the conditional covariance
- $\widehat{\gamma}_t = \mathbb{E}[(X_t \mathbb{E}[X_t / \overline{\mathcal{Y}}_{t,t-1}])]^2$ the variance of the filtering error

■ σ -field $\mathcal{Y}_{t,t-1} = \sigma(\{(Y_s, Y_r^2), 1 \le s \le t, 1 \le r \le t-1\}).$

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statement Motivations and references

General Gaussian observation model LEG and RS filtering problem, result

Particular cases

LEG and RS filtering problems — A bit more general setting

open questions

Link between measures

$$\widehat{\pi}_t(X) = \overline{\pi}_{t,t-1}(X_t) - \overline{\gamma}_{X\xi}(t,t-1)$$
with

- $\bar{\pi}_{t,t-1}(X) = \mathbb{E}[X_t/\bar{\mathcal{Y}}_{t,t-1}]$ -the conditional expectation of X
- $\bar{\gamma}_{x\xi}(t, t-1) = \mathbb{E}[(X_t \mathbb{E}[X_t/\bar{\mathcal{Y}}_{t,t-1}])(\xi_{t-1} \overline{\pi}_{t-1}(\xi_{t-1}))/\bar{\mathcal{Y}}_{t,t-1}]$ the conditional covariance
- $\hat{\gamma}_t = \mathbb{E}[(X_t \mathbb{E}[X_t / \bar{\mathcal{Y}}_{t,t-1}])]^2$ the variance of the filtering error

■ σ -field $\mathcal{Y}_{t,t-1} = \sigma(\{(Y_s, Y_r^2), 1 \le s \le t, 1 \le r \le t-1\}).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statement Motivations and references

General Gaussian observation model LEG and RS filtering problem, result

Particular cases

LEG and RS filtering problems — A bit more general setting

open questions

Link between measures

$$\widehat{\pi}_t(X) = \overline{\pi}_{t,t-1}(X_t) - \overline{\gamma}_{X\xi}(t,t-1)$$
with

- $\bar{\pi}_{t,t-1}(X) = \mathbb{E}[X_t/\bar{\mathcal{Y}}_{t,t-1}]$ -the conditional expectation of X
- $\bar{\gamma}_{x\xi}(t, t-1) = \mathbb{E}[(X_t \mathbb{E}[X_t/\bar{\mathcal{Y}}_{t,t-1}])(\xi_{t-1} \overline{\pi}_{t-1}(\xi_{t-1}))/\bar{\mathcal{Y}}_{t,t-1}]$ the conditional covariance
- $\hat{\gamma}_t = \mathbb{E}[(X_t \mathbb{E}[X_t / \bar{\mathcal{Y}}_{t,t-1}])]^2$ the variance of the filtering error

• σ -field $\mathcal{Y}_{t,t-1} = \sigma(\{(Y_s, Y_r^2), 1 \le s \le t, 1 \le r \le t-1\}).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Outline

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statemen Motivations and references

General Gaussian observation model LEG and RS filteri

Particular cases

LEG and RS filtering problems — A bit more general setting

open questions

Introductior

- Problems statement
 - Motivations and references

2 General Gaussian observation model LEG and RS filtering problem, result

Particular cases

(

LEG and RS filtering problems — A bit more general setting

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

open questions

Applying our solution to particular cases

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statement Motivations and references

General Gaussian observation model

problem, result Particular cases

LEG and RS filtering problems — A bit more general setting

open questions

Methodology

Write equations for

- the variance of the filtering error $\bar{\gamma}_{xx}(t, t-1)$;
- for the difference $\widehat{\pi}_t(X) = \overline{\pi}_{t,t-1}(X) \overline{\gamma}_{X\xi}(t)$.
- Solve the LEG filtering problem: take $\bar{h} = \hat{\pi}_t(X)$.

Notatior

 $(\varepsilon_t, \widetilde{\varepsilon}_t, t = 1, 2, ...)$ is a sequence of i.i.d. standard Gaussian random variables

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Applying our solution to particular cases

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statement Motivations and references

General Gaussian observation model LEG and RS filte

problem, result Particular cases

LEG and RS filtering problems — A bit more general setting

open questions

Methodology

Write equations for

- the variance of the filtering error $\bar{\gamma}_{xx}(t, t-1)$;
- for the difference $\widehat{\pi}_t(X) = \overline{\pi}_{t,t-1}(X) \overline{\gamma}_{X\xi}(t)$.
- Solve the LEG filtering problem: take $\bar{h} = \hat{\pi}_t(X)$.

Notation

 $(\varepsilon_t, \widetilde{\varepsilon}_t, t = 1, 2, ...)$ is a sequence of i.i.d. standard Gaussian random variables

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

AR(1) model

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statemen Motivations and references

General Gaussian observation model LEG and RS filteri problem, result Particular cases

LEG and RS filtering problems — *F* bit more general setting

open questions

Observation model

$$\begin{cases} X_t = a_t X_{t-1} + D_t^{\frac{1}{2}} \widetilde{\varepsilon}_t, \ t \ge 1; \quad X_0 = x, \\ Y_t = A_t X_t + \varepsilon_t. \end{cases}$$

The solution of LEG filtering problem

$$\begin{cases} \overline{h}_t = a_t \overline{h}_{t-1} + \frac{A_t \overline{\gamma}_t}{1 + A_t^2 \overline{\gamma}_t} [Y_t - a_t A_t \overline{h}_{t-1}], \ t \ge 1, \ \overline{h}_0 = x., \\ \overline{\gamma}_s = D_s + \frac{a_s^2 \overline{\gamma}_{s-1}}{1 + (A_{s-1}^2 - \mu Q_{s-1}) \overline{\gamma}_{s-1}}, \ s \ge 1, \ \overline{\gamma}_0 = 0. \end{cases}$$

AR(1) model

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statemen Motivations and references

General Gaussian observation model LEG and RS filteri problem, result Particular cases

LEG and RS filtering problems — *I* bit more general setting

open questions

Observation model

$$\begin{cases} X_t = a_t X_{t-1} + D_t^{\frac{1}{2}} \widetilde{\varepsilon}_t, \ t \ge 1; \quad X_0 = x, \\ Y_t = A_t X_t + \varepsilon_t. \end{cases}$$

The solution of LEG filtering problem

$$\begin{cases} \overline{h}_t = a_t \overline{h}_{t-1} + \frac{A_t \overline{\gamma}_t}{1 + A_t^2 \overline{\gamma}_t} [Y_t - a_t A_t \overline{h}_{t-1}], \ t \ge 1, \ \overline{h}_0 = x., \\ \overline{\gamma}_s = D_s + \frac{a_s^2 \overline{\gamma}_{s-1}}{1 + (A_{s-1}^2 - \mu Q_{s-1}) \overline{\gamma}_{s-1}}, \ s \ge 1, \ \overline{\gamma}_0 = 0. \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

MA(1) model

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statemen Motivations and references

General Gaussian observation model LEG and RS filterin problem, result Particular cases

LEG and RS filtering problems — *F* bit more general setting

open questions

Observation model

$$\begin{cases} X_t = \widetilde{\varepsilon}_t + \lambda \widetilde{\varepsilon}_{t-1} ; t \ge 1, \\ Y_t = A_t X_t + \varepsilon_t. \end{cases}$$

The solution of LEG filtering problem

$$\begin{cases} \overline{\gamma}_t = 1 + \lambda^2 - \lambda \frac{A_{t-1}^2 - \mu Q_{t-1}}{1 + (A_{t-1}^2 - \mu Q_{t-1})\overline{\gamma}_{t-1}}, \ t \ge 1; \quad \overline{\gamma}_0 = 1 + \lambda^2, \\ \overline{h}_t = \lambda \frac{A_{t-1}}{1 + A_t^2 \overline{\gamma}_t} [Y_{t-1} - A_{t-1}\overline{h}_{t-1}] + \frac{A_t \overline{\gamma}_t}{1 + A_t^2 \overline{\gamma}_t} Y_t, \ t \ge 1, \ \overline{h}_0 = x. \end{cases}$$

MA(1) model

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statemen Motivations and references

General Gaussian observation model LEG and RS filtering problem, result Particular cases

LEG and RS filtering problems — *i* bit more general setting

open questions

Observation model

$$\begin{cases} X_t = \widetilde{\varepsilon}_t + \lambda \widetilde{\varepsilon}_{t-1} ; t \ge 1, \\ Y_t = A_t X_t + \varepsilon_t. \end{cases}$$

The solution of LEG filtering problem

$$\begin{cases} \overline{\gamma}_t = 1 + \lambda^2 - \lambda \frac{A_{t-1}^2 - \mu Q_{t-1}}{1 + (A_{t-1}^2 - \mu Q_{t-1})\overline{\gamma}_{t-1}}, \ t \ge 1; \quad \overline{\gamma}_0 = 1 + \lambda^2, \\ \overline{h}_t = \lambda \frac{A_{t-1}}{1 + A_t^2 \overline{\gamma}_t} [Y_{t-1} - A_{t-1}\overline{h}_{t-1}] + \frac{A_t \overline{\gamma}_t}{1 + A_t^2 \overline{\gamma}_t} Y_t, \ t \ge 1, \ \overline{h}_0 = x. \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

"Non Markov" observations, can be elaborated

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statemen Motivations and references

General Gaussian observation model LEG and RS filterin problem, result Particular cases

LEG and RS filtering problems — A bit more general setting

open questions

observations contains MA(1)

 $\begin{cases} X_t \\ Y_t = A_t X_t + \widetilde{\varepsilon}_t + \lambda \widetilde{\varepsilon}_{t-1} ; t \ge 1 , \end{cases}$

observations contains AR(1)

$$\begin{cases} X_t \\ Y_t = A_t X_t + \widetilde{\varepsilon}_t + \lambda \widetilde{\varepsilon}_{t-1} ; t \ge 1 , \\ \varepsilon_t = b_t \varepsilon_{t-1} + \widetilde{\varepsilon}_t \end{cases}$$

Two problems, again

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statement Motivations and references

General Gaussian observation model LEG and RS filter problem, result Particular cases

LEG and RS filtering problems — A bit more general setting

open questions For given positive symmetric deterministic 2 × 2 matrices Ω_s , 1 ≤ s ≤ T, let us set $\Phi_t(h) = (X_t h_t)\Omega_t \begin{pmatrix} X_t \\ h_t \end{pmatrix}$.

"LEG setting"

$$\overline{h} = \arg\min_{h_t \in \mathcal{Y}_t, t \ge 1} \frac{1}{\mu} \ln \left[\mathbb{E} \left\{ \exp \left\{ \frac{\mu}{2} \sum_{1}^T \Phi_s(h) \right\} \right\} \right].$$

RS setting

$\hat{h}_{t} = \arg\min_{g \in \mathcal{Y}_{t}} \frac{1}{\mu} \ln \left(\mathbb{E} \left[\exp \left\{ \frac{\mu}{2} \Phi_{t}(g) + \frac{\mu}{2} \sum_{1}^{t-1} \Phi_{s}(\hat{h}) \right\} \middle/ \mathcal{Y}_{t} \right] \right)$

Two problems, again

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statement Motivations and references

General Gaussian observation model LEG and RS filteri problem, result Particular cases

LEG and RS filtering problems — A bit more general setting

open questions For given positive symmetric deterministic 2 × 2 matrices Ω_s , 1 ≤ $s \le T$, let us set $\Phi_t(h) = (X_t h_t)\Omega_t \begin{pmatrix} X_t \\ h_t \end{pmatrix}$.

"LEG setting"

$$\overline{h} = \arg\min_{h_t \in \mathcal{Y}_t, t \ge 1} \frac{1}{\mu} \ln \left[\mathbb{E} \left\{ \exp \left\{ \frac{\mu}{2} \sum_{1}^T \Phi_s(h) \right\} \right\} \right].$$

"RS setting"

$$\hat{h}_{t} = \arg\min_{g \in \mathcal{Y}_{t}} \frac{1}{\mu} \ln \left(\mathbb{E} \Big[\exp \Big\{ \frac{\mu}{2} \Phi_{t}(g) + \frac{\mu}{2} \sum_{1}^{t-1} \Phi_{s}(\hat{h}) \Big\} \middle/ \mathcal{Y}_{t} \Big] \right)$$

Equality of two solutions, yes

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statement Motivations and references

General Gaussian observation model LEG and RS filterin problem, result Particular cases

LEG and RS filtering problems — A bit more general setting

open questions

The question

Does the equality $\bar{h} = \hat{h}$ hold ?

One possible answer

Yes for degenerated matrices Ω : $\Omega_{1,1} = \Omega_{2,2} = -\Omega_{1,2} = -\Omega'_{2,1} = Q$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Equality of two solutions, yes

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statement Motivations and references

General Gaussian observation model LEG and RS filteri problem, result Particular cases

LEG and RS filtering problems — A bit more general setting

open questions

The question

Does the equality $\bar{h} = \hat{h}$ hold ?

One possible answer

Yes for degenerated matrices Ω :

$$\Omega_{1,1} = \Omega_{2,2} = -\Omega_{1,2} = -\Omega'_{2,1} = Q.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Equality of two solutions,no

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statemen Motivations and references

General Gaussian observation model LEG and RS filter problem, result

Particular cases

LEG and RS filtering problems — A bit more general setting

open questions

LEG problem, solution

$$\Omega = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}, A = 1, \mu = -1 \text{ and } X_t = X_{t-1} + \tilde{\varepsilon}_t.$$

$$\overline{h}_1 = \frac{1 + \Gamma(T, 1)}{2 + \Gamma(T, 1)} Y_1$$

where

$$\Gamma(T,t) = 10 \frac{\lambda^{T} - \lambda^{t}}{(1 - \sqrt{5})\lambda^{T} - (1 + \sqrt{5})\lambda^{t}}, \ \lambda = \frac{(3 - \sqrt{5})}{(3 + \sqrt{5})}.$$

イロト 不得 トイヨト イヨト

э.

RS problem, solutior

$$\hat{n}_1 = \frac{\pi_1(X_1)}{1+\gamma_1} = \frac{1}{4}Y_1$$

Equality of two solutions,no

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statemen Motivations and references

General Gaussian observation model LEG and RS filter problem, result

LEG and RS filtering problems — A bit more general setting

open questions

LEG problem, solution

$$\begin{split} \Omega &= \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}, A = 1, \mu = -1 \text{ and } X_t = X_{t-1} + \widetilde{\varepsilon}_t.\\ \overline{h}_1 &= \frac{1 + \Gamma(T, 1)}{2 + \Gamma(T, 1)} Y_1\\ \text{where} \end{split}$$

$$\Gamma(T,t) = 10 \frac{\lambda^T - \lambda^t}{(1-\sqrt{5})\lambda^T - (1+\sqrt{5})\lambda^t}, \ \lambda = \frac{(3-\sqrt{5})}{(3+\sqrt{5})}.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

э.

RS problem, solutior

$$\hat{n}_1 = \frac{\pi_1(X_1)}{1+\gamma_1} = \frac{1}{4}Y_1$$

Equality of two solutions,no

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statemen Motivations and references

General Gaussian observation model LEG and RS filter problem, result

Particular cases

LEG and RS filtering problems — A bit more general setting

open questions

LEG problem, solution

$$\begin{split} \Omega &= \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}, A = 1, \mu = -1 \text{ and } X_t = X_{t-1} + \widetilde{\varepsilon}_t.\\ \overline{h}_1 &= \frac{1 + \Gamma(T, 1)}{2 + \Gamma(T, 1)} Y_1\\ \text{where} \end{split}$$

$$\Gamma(T,t) = 10 \frac{\lambda^T - \lambda^t}{(1-\sqrt{5})\lambda^T - (1+\sqrt{5})\lambda^t}, \ \lambda = \frac{(3-\sqrt{5})}{(3+\sqrt{5})}.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

RS problem, solution

$$\hat{h}_1 = \frac{\pi_1(X_1)}{1+\gamma_1} = \frac{1}{4}Y_1$$

Open questions

Filtering with Exponential Criteria

Le Breton, Viot, Kleptsyna

Introduction Problems statemen Motivations and references

General Gaussian observation model LEG and RS filte

LEG and RS filtering problems — A bit more general setting

open questions

A couple of unexplored cases

- The non-linear setting
- 2 Equality of the solutions of the two problems for non-Gaussian models

▲□▶▲□▶▲□▶▲□▶ □ のQ@